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COVID-19 is a highly infectious disease and public health hazard that has been wreaking
havoc around the world; thus, assessing and simulating the risk of the current pandemic is
crucial to its management and prevention. The severe situation of COVID-19 around the
world cannot be ignored, and there are signs of a second outbreak; therefore, the accurate
assessment and prediction of COVID-19 risks, as well as the prevention and control of
COVID-19, will remain the top priority of major public health agencies for the foreseeable
future. In this study, the risk of the epidemic in Guangzhou was first assessed through
logistic regression (LR) on the basis of Tencent-migration data and urban point of interest
(POI) data, and then the regional distribution of high- and low-risk epidemic outbreaks in
Guangzhou in February 2021 was predicted. The main factors affecting the distribution of
the epidemic were also analyzed by using geographical detectors. The results show that
the number of cases mainly exhibited a declining and then increasing trend in 2020, and
the high-risk areas were concentrated in areas with resident populations and floating
populations. In addition, in February 2021, the “Spring Festival travel rush” in China was
predicted to be the peak period of population movement. The epidemic risk value was also
predicted to reach its highest level at external transportation stations, such as Baiyun
Airport and Guangzhou South Railway Station. The accuracy verification showed that the
prediction accuracy exceeded 99%. Finally, the interaction between the resident
population and floating population could explain the risk of COVID-19 to the highest
degree, which indicates that the effective control of population agglomeration and
interaction is conducive to the prevention and control of COVID-19. This study
identifies and predicts high-risk areas of the epidemic, which has important practical
value for urban public health prevention and control and containment of the second
outbreak of COVID-19.
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INTRODUCTION

As of October 15, 2020, there were 38,599,508 confirmed cases of COVID-19 and 1,093,548 deaths
worldwide (Fan et al., 2021). The World Health Organization has classified the outbreak as a “global
pandemic”. The rapid and extensive spread of COVID-19 requires the consideration of as many
factors as possible, and quickly responding to this major public health event poses a great challenge to
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the scientific community. Therefore, at the intersection of
medicine, virology, geography, public administration and other
disciplines, there is an urgent need to formulate accurate
epidemic prevention policies (Yu et al., 2020).

Although China’s COVID-19 epidemic has been effectively
controlled with the joint efforts of the Chinese government and
the Chinese people (Zhang et al., 2020a), the number of COVID-
19 patients continues to show an upward trend. As the weather
becomes cooler and virus activity increases, there are already
signs of a second outbreak of COVID-19 (Gosavi and Marley,
2020). Therefore, assessing the risk of COVID-19 and simulating
the areas at high risk of future COVID-19 outbreaks can
contribute to early prevention and effective containment of a
second outbreak of COVID-19 in advance (Thomas et al., 2020).

Since the outbreak of COVID-19, scholars have conducted
numerous studies from the perspectives of pathological diagnosis
(Xie and Zhu, 2020), drugs and vaccines (Liu et al., 2020),
transmission relationships (Heidari et al., 2020),
spatiotemporal models (Babac and Mornar, 2020), epidemic
prediction (Wang et al., 2020a), transmission simulation
(Werth et al., 2021), risk assessment (Jia et al., 2020), and
epidemic impact (Du et al., 2020), and all of these studies
have played a positive role in the prevention and treatment of
COVID-19. In terms of epidemic risk assessment, Jia proposed a
risk model of population mobility and conducted risk assessment
of an epidemic by analyzing population mobility data (Jia et al.,
2020). Du coupled a population mobility accumulation model
and an exponential growth model (Xu et al., 2020a) to construct
an epidemic model and assessed the epidemic risk using Tencent
positioning data. Moreover, Pan divided the infection risk of
COVID-19 in various states in the United States on the basis of
mobile phone positioning data (Hâncean et al., 2020). Other
scholars have evaluated the risk of COVID-19 in different
countries and regions based on natural and social
environmental factors (Chatterjee et al., 2020), and these
evaluations based on the vulnerability of the region itself could
also play a positive role in assessing the risk of the COVID-19
epidemic (Xu et al., 2020a). The abovementioned studies are
mainly based on population mobility and assess the risk of the
COVID-19 epidemic; however, the risk distribution of COVID-
19 is determined by multiple urban spatial factors (Ribeiro et al.,
2020).

In terms of epidemic prediction, statistical and dynamic
models are often used to estimate future cases and infection
trends. Statistical models include methods such as linear
regression analysis (Chatterjee et al., 2020; Piovella, 2020;
Cartenì et al., 2020), time series analysis and statistical process
control (Feroze, 2020; Zhang et al., 2020b). Statistical models are
generally applied to detect and provide an early warning of
COVID-19 outbreaks. Since infectious disease theory is not
involved here, only short-term predictive analysis can be
performed (Polo et al., 2020). Dynamic models can be divided
into several basic types, such as susceptible-infected (SI),
susceptible-infected-susceptible (SIS), susceptible-infected-
recovered (SIR), and susceptible-exposed-infected-recovered
(SEIR) models, based on the characteristics of pathogens,
infectious agents, post infection immunity, the source of

infection, the route of transmission, and susceptible
populations (Yawney and Gadsden, 2020). Moreover, as
dynamic models take into account the factors influencing
disease transmission and related social factors, they can
effectively reveal the trends of the epidemic and change course
of the disease (Li et al., 2020). However, these basic dynamic
models hardly consider the significant differences among
geographical units and dynamic changes in populations, which
makes it difficult for these models to support refined risk
assessment and simulation by epidemic prevention
departments at all levels from single-scale to multiscale
coordination (Liu and Mesch, 2020).

In-depth studies have been carried out in different countries
and regions on the global spread, modeling and understanding of
COVID-19, among which studies from Italy and Romania have
demonstrated the necessity to develop new routes between EU
countries to contain the spread of the epidemic in the early stages
of the outbreak (Hâncean et al., 2020). Studies from Brazil have
shown that there are differences in morbidity and mortality
between large and small cities and that different age
compositions and distributions of health infrastructure all have
important effects on COVID-19 (Ribeiro et al., 2020). In Kenya,
studies have taken the perspective of household energy and food
security during the COVID-19 period, and a sustainable
development model during the COVID-19 period has been
obtained (Shupler et al., 2021). Norway, on the other hand,
has determined national containment strategies depending on
the characteristics of a given city during similar crises by
analyzing its urban working environment and migration
patterns (Venter et al., 2020). India, currently the country with
the highest risk of COVID-19, has analyzed the impact of a
national lockdown on the urban air quality during COVID-19
(Navinya et al., 2020). Some scholars in the United States have
established an early warning and evaluation model based on the
responsibility system by using city-related indicators of COVID-
19 and performed experimental verification of the epidemic in 17
major cities in the country (Li et al., 2021). Based on the existing
models and understanding of the spread of the pandemic in
different countries and regions, it can be concluded that
developed countries and regions such as the United States and
Europe are more concerned about the impact of COVID-19 on
the existing urban living environment (Kan et al., 2021), while
developing countries and regions such as Southeast Asia and
Africa are more concerned about the impact of the pandemic on
urban public health resources (Zvobgo and Do, 2020), which
illustrates the differences in the level of development among these
different countries and regions. Therefore, as China is the largest
developing country in the world, studies on the transmission,
modeling, and understanding of COVID-19 in China should
explore the urban environmental factors that influence the
distribution and transmission of COVID-19, taking into
account urban public health resources. Such research is likely
to be of great regional value (Hou et al., 2021).

In the studies on the early outbreak of COVID-19 and the
cross-regional transmission of it, location characteristics of
geographical space occupy a large proportion, mainly because
there are huge differences in the spatial variability and
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aggregation degree of COVID-19 infection rate andmortality rate
in different countries (Khavarian-Garmsir et al., 2021). However,
although some studies have analyzed the heterogeneity of the
geospatial distribution of patients with COVID-19, few studies
have considered the spatio-temporal variation of confirmed
patients with COVID-19 in geospatial space (DuPre et al.,
2021). It has been found in previous studies on spatial
epidemiology that urban geospatial factors have a strong
spatiotemporal effect on the transmission of viruses, including
the analysis of the possibility of infectious epidemics from the
perspective of the degree of population aggregation in geographic
space (Hasselwander et al., 2021). Therefore, the study on the risk
distribution of COVID-19 in urban space should carefully
consider its spatial and temporal characteristics (Mansour
et al., 2021), and analyze the geospatial relationship between
communities with different levels of infection and population
agglomeration (Hassan et al., 2021), so as to reveal the
spatiotemporal changes of COVID-19 in geographical space
(Kwok et al., 2021). Spatiotemporal geographic epidemiological
data, including cellular signaling data (Xiao et al., 2019), (Zhan
et al., 2021), population flow data (He et al., 2020; Zhang and
Yuan, 2021), and urban point of interest (POI) data, etc. (He et al.,
2021; Mahajan et al., 2021). In a word, these spatiotemporal
geographic data can represent the characteristics of epidemic risk
in urban space, providing a new research perspective and solution
to problems related to epidemic risks in relation to urban
geography (Bachir et al., 2019; Sharifi and Khavarian-Garmsir,
2020). Compared with statistical survey data about the epidemic,
spatiotemporal geographic epidemiological data have
spatiotemporal continuity, and their strong data volume,
analysis and processing mode, display capability and other
advantages greatly compensate for the insufficient amount of
statistical survey data in research on epidemic analysis (Silva
et al., 2018 ; Alsunaidi et al., 2021). Therefore, spatiotemporal
geographic epidemiological data can play an important auxiliary
role in assessing and simulating COVID-19 risk (Hu et al., 2021).

In recent years, with the development of computer technology,
machine learning and deep learning have gradually been applied
to relevant research on cities and have achieved good results
(Milojevic-Dupont and Creutzig, 2021 ; Wang et al., 2020b). The
goal of machine learning is to obtain patterns from existing data
samples and to then analyze and predict based on the patterns
obtained. Logistic regression (LR) models are among the classic
models of machine learning (Cao et al., 2020), and they have
advantages related to the objective methods and rigorous
calculations involved. Compared with linear regression (Yuchi
et al., 2019; Sharifi and Khavarian-Garmsir, 2020), gradient
neural network-convergence analysis (GNN-CA) (Aarthi and
Gnanappazham, 2018), cellular automata and other simulation
algorithms (Zhou et al., 2020), LR is simpler and more efficient in
terms of the variables and normality assumptions, and it provides
a new solution path for studies on urban decision-making and
simulation (Siddiqui et al., 2018).

Accurately assessing and predicting the distribution of high
and low risks of COVID-19 is crucial for epidemic prevention and
the control of a second outbreak of the epidemic in Guangzhou,
which is one of the cities with the largest permanent population

and floating population in China (Granella et al., 2021). Taking
Guangzhou as an example, this study assesses and simulates the
COVID-19 risk from the perspective of geography using machine
learning and spatiotemporal geographic epidemiological data.
The mechanism and impact of various spatial factors on
COVID-19 are discussed, and the assessment and simulation
results are verified (Yorio and Moore, 2018). Compared with the
existing studies on the epidemic risk, this study has the advantage
of smaller scale by evaluating and simulating the high and low
risk distribution of the epidemic in Guangzhou through machine
learning, which enables the epidemic risk distribution fed back to
geographical units more refined, and the epidemic risk analysis
based on urban geospatial factors can be greatly conducive to
epidemic prevention and control in urban space. At the same
time, using geographic detectors to analyze the primary and
secondary factors affecting the distribution of epidemic risk
level in urban space has important practical significance for
the formulation of epidemic prevention and control policies
and urban public security.

MATERIALS AND METHODS

Study Area
The research area is Guangzhou, Guangdong Province, China
(Figure 1). As one of the most urbanized andmodernized cities in
China, Guangzhou has 11 districts with a total area of 7,434.4
square kilometers. According to the Statistical Bulletin of The
National Economic and Social Development of Guangzhou 2019
released by the Bureau of Statistics of GuangzhouMunicipality on
March 6, 2020, the permanent resident population of Guangzhou
reached 15.3059 million in 2019. Guangzhou is one of the cities
with the largest permanent population and floating population in
China; thus, the assessment of the risk of COVID-19 conducted
in this study can not only help to understand the areas in
Guangzhou at high risk of a COVID-19 epidemic but also
provide a decision-making basis for COVID-19 prevention
and control nationwide.

Study Data
Data Introduction
Spatiotemporal geographic epidemiological data about the
epidemic should be directly or indirectly used to monitor and
analyze this disease. According to the “triangle” theoretical model
of public security (Wang et al., 2020c), public security consists of
four parts: the emergency, the disaster carrier, emergency
management and disaster elements. The emergency is the
disaster itself, the disaster carrier refers to the people and
things affected by the emergency when the emergency occurs,
and the disaster factor is the factor inducing the occurrence of the
emergency. Based on the analysis of the emergency, the disaster
carrier and disaster factors, the whole process of an emergency,
from occurrence and development to disaster formation and
emergency measures, can be controlled.

In this study, the emergency is COVID-19, and the data on
COVID-19 come from the National Health Commission of the
People’s Republic of China. The data mainly include the number
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of people infected with COVID-19 in Guangzhou in 2020 and the
geographic location of the disease as announced by the
committee. The disaster carrier is the entire population of
Guangzhou affected by COVID-19, including the floating
population and permanent population. Here, the data on the
floating population are derived from Guangzhou population heat
map data in January, February, and August 2020, combined with
the average monthly data from January to August obtained from
Tencent-migration data, while the permanent resident data are
obtained from the 2019 Statistical Yearbook of Guangdong
Province. Disaster factors mainly refer to factors that induce
and spread COVID-19, including the main public places where
people communicate and gather in cities, such as hospitals, fever
clinics, life markets, supermarkets, hotels, restaurants, schools,
administrative centers, cultural exchange places, etc. (Stevens
et al., 2021), These places play an important role in the flow
of urban elements, so they have also become the main places for
COVID-19 transmission within cities (Rousseau and Deschacht,
2020). After the outbreak of the COVID-19, Chinese government
implements a strict isolation policy by closing schools,
administrative units, public services and other places, which
restricts the communication and interaction of people in these
public places (Liu et al., 2021). In addition, the development of a
series of online remote interaction modes such as online teaching

and online office has further reduces the level of epidemic risk in
these areas (Wu et al., 2021a). Therefore, combining the existing
literature and China’s current epidemic prevention policy (Chen
et al., 2021), the distance from fever clinic, the distance from
living market, the distribution density of supermarket, the density
of isolated hotel, the distribution density of catering, and the
location distance from traffic station are selected by this study as
the disaster factors, which were all screened through and obtained
from Guangzhou POIs in 2020.

Based on the “triangle” theoretical model of public security, the
following spatiotemporal geographic epidemiological data related to
COVID-19 are determined in this study: the fever clinic distance,
population flow, supermarket distance, COVID-19 distribution,
population density, shopping mall density, restaurant density,
public transit station density, and hotel density. Since this study
analyzes the risk distribution level of the epidemic based on urban
geographic space, the spatial resolution of the data in this study is the
study scale unit (the spatial resolution of the data used in this study is
unified as 25 × 25m). The high-precision research unit scale also
makes the simulated epidemic risk distribution more refined.

Data Preprocessing
1) After cleaning and duplicate checking of the POI data of

Guangzhou obtained from the AMap application

FIGURE 1 | Study area (the study area is Guangzhou City, Guangdong Province, China, which is located on the southern coast of China and is one of the cities with
the highest level of urbanization and modernization in China).
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programming interface (API), it is found that the total
numbers of supermarkets, hotels, shopping malls, public
transit stations and restaurants in Guangzhou in 2020 are
27,738, 16,134, 24,686, 57,882 and 15,009, respectively. There
are 102 fever clinics announced by the government. The
Euclidean distances to fever clinics (Wu et al., 2021b),
public transit stations, and shopping malls and the
densities of supermarkets, hotels and restaurants are
calculated, and the results are shown in Figure 2.

2) Population data preprocessing: The population data are
divided into resident population data and floating
population data. The floating population data comprise
Tencent-migration data as population flow change data.
Tencent-migration data can be obtained from Tencent’s
positioning big data service window (http://heat.qq.com/
index.php). Based on the analysis of the user location
information of the user positioning by Tencent’s multiple
app programs, Tencent-migration data with a spatial
resolution of 25 m × 25 m are obtained. The average
monthly Tencent-migration data for January, February and

August 2020 are obtained from the Tencent API (Figure 3B–D).
The permanent population data come from the 2019 Guangzhou
Statistical Yearbook. In 2019, the permanent population of
Guangzhou was 15.3059 million, which is consistent with the
spatial resolution of the floating population data obtained through
resampling (Figure 3A).

3) COVID-19 data: The COVID-19 data come from the National
Health Commission of the People’s Republic of China (http://
www.nhc.gov.cn/). As of the end of February 2020, there were no
significant cumulative new COVID-19 infections in Guangzhou.
The cumulative number of COVID-19 infections in January and
February 2020 was 137 and 209 cases, respectively, and the spatial
resolution was found to be consistent with the floating population
data through calibration sampling of their incidence locations;
Figure 4 illustrates the results.

Methods
Logistic Regression
As one of the classic methods of machine learning (Lai et al.,
2021), LR can build a linear regression based on the sigmoid

FIGURE 2 | POI data preprocessing results [(A–F) are Catering density, Market distance, Hotel density, Quotient hyperdensity, Traffic density, and Fever outpatient
distance of the spatiotemporal geographic epidemiological data of Guangzhou; the color in the figure ranges from blue to red, indicating density and distance value
ranges from low to high].
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function, and with the help of an LR model, it is possible to
further explore the relation between independent and dependent
variables and to quantitatively analyze the probability of disaster
events. Compared with models such as support vector machines
(SVMs) and neural networks, LRmodels have great advantages in
training and recognition time, with probability results ranging
from 0 to 1, which are easier to interpret (Cheng and Masser,
2003). An LR model is meaningful only when the independent
variable is significant. Therefore, the relationship between the
occurrence probability of COVID-19 and explanatory factors can
be expressed as follows:

P � 1

(1 + e−z) (1)

where P represents the occurrence probability of COVID-19 on a
spatiotemporal geographic scale, which is in the range of [0,1].
The closer the value of P is to 1, the higher the probability of
COVID-19 occurring in the area; the closer the value of P is to 0,
the lower the probability of COVID-19 occurring in the area. Z
stands for a linear combination. Therefore, the fitting equation
involved in LR is as follows:

lgp � Z � C + B1X1 + B2X2 +/ + BnXn (2)

FIGURE3 | Population data preprocessing results [(A)Population density represents the permanent population density of Guangzhou in 2019; (B–D) represent the
monthly average data of Tencent population migration in January, February, and August of 2020 in Guangzhou, respectively, and the color in the figure ranges from blue
to red, indicating permanent population density and population migration index value ranges from low to high].
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where C stands for the intercept of themodel and represents the error
value of the occurrence probability of COVID-19 in urban space
under the selected indicator factors; B_1, B_2, . . . B_n stand for the LR
coefficient X_1, X_2, . . . X_n for the index factor.

The technical route of LR model evaluation is shown in
Figure 5.

Geographic Detectors
According to the first law of geography, everything is interrelated,
and the degree of correlation changes with the change in distance
(Luo et al., 2019). In geographic space, it can be assumed that if an
independent variable has a significant influence on the dependent
variable, then the spatial distributions of the independent variable

FIGURE 4 | COVID-19 data preprocessing results [(A, B) Respectively represent the cumulative number and density distribution of COVID-19 infection in
Guangzhou in January 2020, in which COVID-19 represents the incidence location, and the color in the figure ranges from blue to red, indicating the spatial density
distribution of COVID-19 patients varies from high to low].

FIGURE 5 | Technical route of the LR model (modeling process and verification flow chart of LR model).
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and the dependent variable should be similar in geographic
space. A geographic detector is a statistical method based on
the spatial variance analysis theory proposed by Wang
Jinfeng et al (Fan et al., 2020). The detector can be used
to detect the degree of spatial differentiation of different
impact factors in geographic space and to verify the coupling
of the spatial distribution of two variables as well as the
possible causal relationship between the variables (Li et al.,
2017).

1) Factor detector

The spatial differentiation degree of COVID-19 detection
and the extent to which risk factors explain the spatial
differentiation of COVID-19 can be represented by q, and
the expression of the factor detector can be expressed as
follows:

q � 1 −∑L
h�1 Nhσ

h
2

Nσ2
� 1 − SSW

SST
, SSW � ∑L

h�1
Nhσh

2 SST � Nσ2

(3)

where h � 1 . . . L stands for the state of risk factors for COVID-
19, while Nh and N stand for the number of units in layer h and
the whole study area, respectively. σh2 and σ2 represent the
variances in layer h and the risk factors in the whole study
area, respectively. SSW and SST represent the within-sum of
squares and the total sum of squares, respectively. The value
range of q is [0,1], and the larger the value is, the more obvious the
spatial differentiation of COVID-19 in geographic space. In
addition, the larger the value of q is, the stronger the
explanatory power of the risk factor for COVID-19 in
geographic space, and vice versa.

A simple change in the q value satisfies the noncentral F
distribution:

F � N − L
L − 1

q
1 − q

∼ F(L − 1,N − L; ƛ) (4)

ƛ � 1
σ2

[∑L

h�1Y
h
2 −

1
N
(∑L

h�1
���
Nh

√
Y)2] (5)

where ƛ stands for the noncentral parameter and \overline{Y}
stands for the mean value of layer h. Eq. 5 can be used to
determine whether the q value is significant.

2) Interaction detector

To identify the interactions between different risk factors,
Xn assesses whether the explanatory power of the spatial
distribution of COVID-19 will be strengthened or
weakened when the X1 and X2 factors work together; that
is, it assesses whether the impacts of these risk factors on
COVID-19 are independent of each other. After calculating
qX1,X2 and then calculating the value of q(X1∩ X2) of the two
and comparing them with qX1,X2, the relationship between
the two risk factors can be divided into the following
categories (Table 1).

3) Risk detector

Whether there is a significant difference between the mean
value of the attributes of the two subintervals is detected, and the
t\ statistic is used for testing:

tyh�1−yh�2 � Yh�1 − Yh�2

[Var(Yh�1)
nh�1

+ Var(Yh�2)
nh�2 ]1/2

(6)

where Yh stands for the mean value of the attributes in subregion
h, which, here, represents the incidence of COVID-19; nh stands
for the number of samples in subregion h; and Var stands for the
variance. The t statistic approximately obeys Student’s
distribution, and the calculation method of the degrees of
freedom is as follows:

df �
Var(Yh�1)

nh�1
+ Var(Yh�2)

nh�2

1
nh�1−1 [Var(Yh�1)

nh�1 ]2 + 1
nh�2−1 [Var(Yh�2)

nh�2 ]2
(7)

It is assumed that if Yh�1 � Yh�2, there is a significant
difference between the mean value of the attributes of the two
self-fetching parts.

4) Ecological detector

Whether the two impact factors X1 and X2 have significant
differences in the spatial distribution of attribute Y is compared
and measured by the F statistic:

F � NX1(NX2 − 1)SSWX1

NX2(NX1 − 1)SSWX2
, SSWX1 � ∑L1

h�1Nhσ
h
2 , SSWX2

� ∑L1

h�1Nhσ
h
2 (8)

where NX1 and NX2 represent the sample sizes of risk factors X1

and X2, respectively; SSWX1 and SSWX2 represent the sum of the
intralayer variances in the layers formed by X1 and X2,
respectively; and L1 and L2 represent the number of levels of
risk factors for X1 and X2, respectively. If SSWX1 and SSWX2 are
equal, the spatial distribution effects of risk factors X1 and X2 are
significantly different.

RESULTS

Logistic Regression Model Training
On the basis of COVID-19 data from January and February 2020
and floating population data from January, February and August
2020, COVID-19 infection areas were divided, and positive and
negative sample construction data sets were built. Since the nine
spatial factors used in this study may show multicollinearity,
which will cause a serious deviation in the operation results of the
LR model, collinearity diagnosis of different factors should be
carried out first (Saedi et al., 2020). The product of tolerance
(TOL) and the variance inflation factor (VIF) is equal to 1, which
is also a common indicator that reflects the degree of collinearity
of factors. In general, when the VIF is greater than or equal to 10
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TABLE 1 | Detection of interaction.

Graphical representation Description Interaction

q(X1ÇX2) < Min(q(X1), q(X2)) Weakened, nonlinear

Min(q(X1), q(X2)) < q(X1Ç X2) < Max(q(X1)), q(X2)) Weakened, unidirectional

q(X1Ç X2) > Max(q(X1), q(X2)) Strengthened, bidirectional

q(X1Ç X2) � q(X1) + q(X2) Independent

q(X1Ç X2) > q(X1) + q(X2) Strengthened, nonlinear

Min(q(X1), q(X2)): Take the minimum value between q(X1) and q(X2)
Max(q(X1)), q(X2)): Take the maximum value between q(X1) and q(X2)
q(X1)+ q(X2): Sum q(X1) and q(X2); q(X1∩X2): Interact q(X1) and q(X2)

FIGURE 6 |Heat map of the collinearity diagnosis of influencing factors (Collinearity diagnosis of different factors is shown in the figure: the TOL of different factors is
on the left, the VIF of different factors is on the bottom; the value in the figure is the product value of TOL and VIF between different factors; the color in the figure ranges
from blue to red, indicating the corresponding value of TOL and VIF ranges from 0 to 1).
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or the value of TOL is less than or equal to 0.1, there is a high
degree of collinearity among factors, which does not satisfy the
modeling conditions (Zhang et al., 2020c). In this study,
multicollinearity analysis of nine factors was carried out based
on Python, and the results are shown in Figure 6. The VIF and
TOL of all factors are 1, which meets the modeling conditions.
Therefore, the nine spatial factors should be imported for model
training.

Assessment and Prediction of COVID-19
Risk
Assessment of COVID-19 Risk
Based on the model training results, the higher the risk level
is, the higher the probability of COVID-19 occurrence.
Incorporating actual geographical locations, a distribution
map of the risk level of COVID-19 in Guangzhou in January
(Figure 7A), February (Figure 7B), and August (Figure 7C)
2020 is obtained.

The distribution map (Figure 7A) shows that the areas at high
risk of a COVID-19 epidemic in January 2020 were mainly
concentrated in the Yuexiu, Haizhu, Tianhe and Liwan
Districts. Comparing Figure 2 and Figure 4 reveals that in
January, there was a large number of new COVID-19 patients
in these regions. Guangzhou is a city with a high concentration of
the floating population and permanent resident population, and
Guangzhou is also an area with a relatively high distribution
density of other spatial factors, such as hotels, shopping malls,
and supermarkets. All of these factors increase the risk of
COVID-19 outbreaks in these four regions.

The areas at high risk of a COVID-19 epidemic in February
2020 were mainly concentrated in Yuexiu District and Tianhe
District. Figure 2 shows that although the Yuexiu and Tianhe
Districts are relatively densely populated with permanent

residents, the “home quarantine” policy not only greatly
restricted the mobility and interaction of people but also
reduced the transmission routes and pathways of COVID-19.
The “home quarantine” policy effectively curbed the spread of the
virus, bringing the cumulative number of new COVID-19
infections under control.

The areas at high risk of a COVID-19 epidemic in August 2020
were mainly concentrated in the Yuexiu, Haizhu, Liwan, Baiyun
and Panyu Districts as well as external transportation hubs,
including Baiyun Airport and high-speed railway stations. The
COVID-19 epidemic was effectively controlled after February,
and population activities and urban interactions began to return
to normal starting in May 2020. However, with the large-scale
mobility and interaction of the population, the risk areas of the
epidemic changed from the previous low-risk areas to high-
risk areas.

Comparing the high-risk distribution map of the COVID-19
epidemic in January, February and August 2020 reveals that
in general, the level of risk experienced a rapid decline and
then a slow rise, with the risk reaching its lowest point in
February. In addition, in terms of the cumulative number of
new patients, there were basically no new local patients
after February, which suggests that the “home quarantine”
policy was a positive and effective means of epidemic
prevention. Additionally, comparing the distribution of
regions with a high risk of an epidemic in the 3 months
above shows that in February, the areas with a high risk of
an epidemic were mainly concentrated in the areas with a
dense permanent population, while in January and August,
these areas were mainly concentrated in areas with a
dense floating population and a dense permanent
population, demonstrating that controlling the flow and
interaction of the population is the best means of epidemic
prevention.

FIGURE 7 | Distribution map of the risk level of COVID-19 in (A) January, (B) February, and (C) August 2020 [(A–C) are the high- and low-risk distributions of
COVID-19 in Guangzhou in January, February and August of 2020, respectively. The color in the figure ranges from blue to red, indicating that the risk level of COVID-19
ranges from low to high. In addition, the areas with high risk in January, February and August of 2020 are more concentrated].
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Prediction of COVID-19 Risk
The COVID-19 risk levels in January, February and August 2020
were reintroduced into the model to simulate and predict the
COVID-19 risk distribution in February 2021. As shown in
Figure 8, the distribution of COVID-19 risk in February 2021
is roughly similar to that in August 2020; that is, the high-risk
areas are mainly concentrated in the Yuexiu, Haizhu, Tianhe,
Liwan, Baiyun and Panyu Districts, but the epidemic risk value is
higher than that in August 2020. Since these areas have always
been areas where the resident population and the floating
population are highly concentrated, without corresponding
epidemic prevention measures, the mobility and interaction of
the population will continuously promote the spread of COVID-
19. Therefore, in the event of a second COVID-19 outbreak, these
areas will be more likely to spread the virus.

Compared with August 2020, external transportation hubs
such as Baiyun Airport and the Guangzhou South Railway
Station, which have been important regions for population
mobility and interaction, have a significantly higher risk of an
outbreak in February 2021. The permanent population of
Guangzhou will not increase significantly in February 2021;
however, February 14, 2021, is the Chinese Lunar New Year.
Thus, the whole month falls within the Spring Festival travel
season. During the 2019 Chinese Lunar New Year, the population

mobility across all of China exceeded 3,000,000,000 individual
trips (Zhang et al., 2020c). Therefore, during the Spring Festival
travel season of 2021, the population mobility in Guangzhou is
bound to reach a new peak, and a large number of population
movements are likely to exacerbate the risk of COVID-19
transmission.

Analyzing the risk distribution of COVID-19 between
February 2021 and 2020 intuitively shows that the risk of
COVID-19 is most directly related to the population
concentration and mobility. Therefore, the risk of COVID-19
transmission can be greatly reduced if the population
concentration and mobility can be inhibited to a certain extent.

Preliminary Accuracy Test Model
Verification of the risk level of COVID-19 is an important
condition for the generalization of research results. Therefore,
in order to test the accuracy of the risk assessment of COVID-19
based on spatio-temporal geoepidemiological data, confusion
matrix and ROC curve verification are used in this study to
verify the accuracy of the results (Shu et al., 2020). Firstly, the
dataset of epidemiological data is classified into training data and
validation data through the Sklearn module, in which the training
data accounts for 70% and validation data accounts for 30%
(Abedini et al., 2017). Then, cross-validation is conducted for
training data and verification data of different classifications, and
the obtained verification indexes are accuracy, precision and
recall. Finally, the verification indexes obtained from the
training data and test data of different classifications are
returned in the form of array to get the final accuracy
verification results.

Verification of the Confusion Matrix
The preliminary accuracy test is a crucial step in verifying the
reliability and predictability of the model (Kranji et al., 2019). In
this study, a confusion matrix (the average value of verification
indexes obtained from different training data and verification
data) is used to conduct a preliminary accuracy test of the
prediction of COVID-19 in February 2021. Confusion matrix
test results are shown in Figure 9. The preliminary accuracies of
the risk areas and risk-free areas are 0.9932 and 0.8949,
respectively. Both of these values are greater than 0.85,
demonstrating that the model has high accuracy in its
prediction of epidemic risk, but the accuracy of the risk-free
areas is relatively low, which may be due to the smaller number of
risk-free areas and samples. The precision and recall are 0.9439
and 0.8995 for the risk areas and 0.9392 and 0.8849 for the risk-
free areas, respectively. From the perspective of precision, recall
and accuracy, the LR model for COVID-19 prediction has
relatively high accuracy.

Verification of the Receiver Operating Characteristic
Curve
The area under the curve (AUC) value was used to
comprehensively test and evaluate the predictive accuracy of
the LR model for receiver operating characteristic (ROC)
curve validation (Chirisa et al., 2020). When the AUC value is
greater than 0.5, the closer it is to 1, the higher the predictive

FIGURE 8 | Distribution map of the risk level of COVID-19 in February
2021 (the forecast of COVID-19 risk level in February 2021 is shown in the
figure, in which the color ranges from black to white, indicating the predicted
value of COVID-19 risk level ranging from low to high).
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accuracy of the model. Figure 10 shows that the after logistic
regression, the average AUC values of the cross-checking of
training samples, verification samples and all data of different
categories are 0.9934, 0.9932 and 0.9933, respectively. All of these
values are higher than 0.99 and close to 1, showing that the model
has fairly high predictive accuracy and further illustrating the
important role of LR models in predicting the COVID-19 risk
distribution.

Analysis of Influencing Factors
1) Risk factor detector

The factor test results in Table 2 show that in COVID-19 risk
assessment, population mobility is the most important factor
determining COVID-19 infections in cities, followed by the
density of the resident population. This finding is not only

consistent with previous COVID-19 risk assessments and
predictions but also demonstrates that the most effective way
to prevent COVID-19 is to avoid the mobility and excessive
agglomeration of people. On the other hand, the densities of
public transit stations, shopping malls, and restaurants and the
distance to supermarkets have similar influences. That is, the
influences of these factors are all slightly lower than those of
population mobility, indicating that to prevent the population
from being exposed to the public environment for a long period of
time, reducing population mobility and interaction in population
agglomeration areas is a reasonable means of epidemic
prevention. The factors that have the lowest impact on the
risk level of COVID-19 are the distance to fever clinics and
hotel density because, on the one hand, even if someone tests
positive for COVID-19, he or she can be promptly transferred to a
fever clinic for treatment; on the other hand, hotels mainly play a
role in isolation. During an epidemic, more people choose home
isolation, and there is less time to go to a hotel, which makes the
population density of the hotel very low; as a result, hotels have
little influence as a spatial factor.

2) Interaction detector

The results of the interaction test of different factors are shown
in Table 3. The results showed that the risk level of the epidemic
in Guangzhou could be best explained by the interaction between
the permanent population density and the floating population.
When the Q value is 0.67, the effect of the epidemic risk is
interpreted to be greater than that of a single impact factor after
the interaction of the two indicators, illustrating that epidemic
prevention and control can achieve the maximum effect if the
floating population and permanent resident population can be
effectively controlled.

The ecological test results (Table 4) are obtained based on the
assumption that the test value of F is 0.05, where Y represents a
significant difference and N represents no significant difference.
In the risk distribution of a COVID-19 epidemic, the results for
the densities of the permanent population and floating
population are significantly different from the results for other

FIGURE 9 | Heat map of the verification of the confusion matrix of the logistic regression model (the verification result of the logistic regression confusion matrix is
shown in the heat map. The color in the figure ranges from black to white, indicating that the verification result value ranges from 0 to 5. The higher the thermal value is, the
more accurate the verification result of the confusion matrix).

FIGURE 10 | ROC curve verification results (the verification results of the
ROC curve include the test ROC curve, train ROC curve and total ROC curve,
and the three values together determine the accuracy of the results. The closer
the area under different curves is to 1, the higher the accuracy will be).
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influencing factors, indicating that the densities of the permanent
population and floating population are the most important
factors affecting the risk of COVID-19. Moreover, the floating
population has a greater impact on the risk of COVID-19 than the
permanent population. Compared with the population factor,
there is no significant difference in other factors, including the
distributions of supermarkets, hotels and shopping malls.
Therefore, under the premise of reasonably and safely
controlling population factors, the distribution of other urban
facilities can reasonably provide basic life services for urban
residents.

In order to avoid the interaction between influencing factors
caused by repeated calculation of the algorithm, this study carries
out a second cross-validation of the results obtained by the

Interaction Detector and Ecological Detector, which shows
that there are no significant differences between final
verification result and the first one. In other words, the index
calculation results between Interaction Detector and Ecological
Detector are reasonableness and interdependency.

DISCUSSION

This study proposes a risk assessment and prediction model of
COVID-19 based on spatiotemporal geographic epidemiological
data, an LR model and geographic detectors. The risk levels of
COVID-19 in January, February and August 2020 are obtained,
and the areas at high risk of COVID-19 in February 2021 are

TABLE 2 | Risk factor detector.

Population density Fever clinic distance Restaurant density Public transit station density

q statistic 0.61 0.20 0.43 0.50
p value 0.000 0.000 0.000 0.000

Hotel density Supermarket distance Shopping mall density Population flow

q statistic 0.27 0.38 0.03 0.90
p value 0.000 0.000 0.000 0.000

TABLE 3 | Interaction detector.

Population
density

Fever
clinic

distance

Restaurant
density

Public
transit
station
density

Hotel
density

Supermarket
distance

Shopping
mall

density

Population
flow

Population density 0.6051
Fever clinic distance 0.6065 0.0208
Restaurant density 0.6680 0.4366 0.4329
Public transit station
density

0.6073 0.0609 0.4472 0.0451

Hotel density 0.6478 0.2750 0.5615 0.2874 0.2728
Supermarket distance 0.6420 0.3814 0.5720 0.3980 0.5643 0.3786
Shopping mall density 0.6080 0.0474 0.4370 0.0594 0.2839 0.3834 0.0347
Population flow 0.6717 0.1285 0.5262 0.1935 0.4044 0.5271 0.1715 0.911

TABLE 4 | Ecological detector.

Population
density

Fever
clinic

distance

Restaurant
density

Public
transit
station
density

Hotel
density

Supermarket
distance

Shopping
mall

density

Population
flow

Fever clinic distance Y
Restaurant density Y Y
Public transit station
density

Y N N

Hotel density Y Y N Y
Supermarket distance Y Y N Y Y
Shopping mall density Y N N N N N
Population flow Y Y Y Y Y Y Y

Frontiers in Environmental Science | www.frontiersin.org July 2021 | Volume 9 | Article 63415613

He et al. COVID-19 Assessment and Prediction

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


predicted. The spatial variability and attribute associations
among different influencing factors are also analyzed to
identify the main factors influencing the spread of COVID-19.

After the outbreak of COVID-19, the assessment of COVID-
19 risk transmission based on the geographical perspective were
initially mainly focused on the macro scale, including regional,
national and global epidemic assessments (Chakraborty and
Maity, 2020). With the popularization of epidemiological data
applications for population mobility, the risk assessment of
COVID-19 has taken the meso and micro perspectives. That
is, studies have started to explore the reasons for the spread of the
epidemic from the perspective of the population mobility
between communities (Ouyang et al., 2020; Yan et al., 2021).
However, such studies continue to place greater emphasis on
discussing the impact of population mobility on epidemic risk,
and they do not objectively assess and predict the current
epidemic risk from the spatiotemporal perspective (Chen
et al., 2021). In this study, using multisource spatiotemporal
geographic epidemiological data, machine learning-based
simulations were conducted, taking into account the resident
population, the floating population and all urban spatial factors
that may affect the spread of the epidemic in geographical space.
Finally, the primary and secondary factors affecting the risk of an
epidemic are discussed, and the verification results show that the
simulation method is quite accurate.

The areas at high risk of COVID-19 are mainly concentrated
in areas with resident populations and floating populations, and
this result is basically similar to that of previous studies on
COVID-19 (Cokun et al., 2021). Since humans are the main
carriers of COVID-19 and other infectious diseases, the mobility
and interaction of the population are the most important factors
contributing to the high risk of COVID-19 (Nguyen et al., 2020;
Xu et al., 2020b). Compared with current studies related to
epidemic risk assessment and prediction, this study focuses on
the analysis of the impact of urban spatial factors on epidemic risk
from the perspective of spatial-temporal geography, allowing the
spread of the epidemic to be expressed in terms of geographical
location, which is conducive to preventing and controlling the
epidemic in the community at the micro scale.

Finally, this study leaves some areas that require further
exploration. Guangzhou, China, was selected as the case for
analysis in this study (Peirlinck et al., 2020). To better prevent
and control the global pandemic, it is necessary to conduct
further assessments and simulations of specific epidemics in
cities with severe outbreaks around the world.

CONCLUSION

Risk assessment and prediction of the COVID-19 epidemic and
analysis of the main influencing factors hold great practical value
for the construction of urban public health safety spaces. In this
study, spatiotemporal geographic epidemiological data such as
Tencent-migration data and POI data as well as LR and
geographical detector models are used to assess the risk of

COVID-19 in Guangzhou in January, February and August
2020 and to predict the risk distribution of COVID-19 in
February 2021. In addition, the main factors affecting the
areas at high risk of COVID-19 are analyzed, and the
following conclusions are drawn:

1) The risk of COVID-19 in 2020 mainly exhibited a downward
trend and then an upward trend. Although the “home
quarantine” policy implemented by the Chinese
government has effectively contained the spread of
COVID-19 and further reduced the risk of the epidemic
for a short time, with the increase in population mobility
and interaction degree as well as the recovery of production
and the activities of daily life, regional epidemic risk is
beginning to show an upward trend.

2) The prediction results of the epidemic situation in February
2021 show that the COVID-19 risk of major external
transport hubs in Guangzhou increased significantly due to
the arrival of the Spring Festival travel rush, except for areas
with dense population movement and interaction. The
accuracy of the risk prediction of COVID-19 is greater
than 99%, which indicates that the prediction of COVID-
19 is highly reliable.

3) The main factors affecting the epidemic risk level are the
distribution of the floating population and resident
population, and the interaction between the floating
population and the resident population also explains the
risk distribution of the epidemic to the greatest extent.
Therefore, if population agglomeration is limited, then the
rational distribution of other urban spatial factors will not
have an important impact on the risk of the epidemic.

On the basis of using spatiotemporal geographic
epidemiological data, the risk assessment and prediction
models for COVID-19 are highly practical and accurate. This
study objectively and accurately assesses and predicts areas at
high risk of COVID-19, which is conducive to not only
preventing and controlling a second outbreak but also
providing solutions to urban public security problems for
epidemic prevention agencies.
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