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Urban areas are significant sources of anthropogenic carbon dioxide (CO2), which elevates
air pollution. However, urban greenery has a positive effect on mitigating air pollution and
the impact of CO2 on the climate. Quantifying the benefits of greenery for urban
environments involves complex calculations and requires significant resources. Such a
quantifying exercise is not cost-effective. The satellite remote sensing method can analyze
current and near-present carbon-stock dynamics through spectral band imaging. In this
research study, field measurements determine above-ground carbon (AGC) stock. The
field measurements are derived from three types of land use, comprising public parks and
gardens, institutional parks, and street and avenue greenery in selected locations in Doha
city in Qatar. These field measurements are then correlated with results from satellite
images. Linear and non-linear regression models are established between AGC and five
vegetative spectral indices (VIs) derived from the Landsat 8 Operational Land Imager (OLI).
The AGC stock for the selected locations in Doha in 2014 is evaluated using the highest
coefficient of determination with the highest accuracy expected. The results of the analysis
reveal that both the normalized difference vegetation index (NDVI) (R2 � 0.64) and the
relative ratio vegetation index (R2 � 0.71) significantly correlate with the AGC in public
parks. In avenue vegetation, all the VIs exhibit high R2, but the best fit is NDVI (R2 � 0.87).
The CO2 equivalent range evaluated from the AGC in the plots studied in Doha is measured
as 650.6 tons for the period between 2014 and 2020, with an annual sequestration rate of
108.4 tons per year. This CO2 equivalent storage amount has the social value of USD
42,286, which is the equivalent of QR 155,192. The AGC-VI correlation in land-use groups
may be influenced by the turf grass and impervious surfaces in the background of the
images. Further study of urban landscapes and vegetation with high biomass is likely to
show its positive effects for cities and that it can improve carbon dioxide abatement,
resulting in more sustainable societies. This improvement in CO2 abatement in Qatar can
be useful for various environmental estimations for the upcoming mega event of World
Cup 2022.
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INTRODUCTION AND BACKGROUND

Greenhouse gases (GHGs) have global warming potential that
directly affects global climate change. Increased carbon dioxide
(CO2) concentrations in the atmosphere, along with other GHGs
result in degradation of climate quality. According to the 2015
United Nations Climate Conference (UNFCCC, 2015), the
mitigation of atmospheric CO2 is vital to reduce the associated
environmental problems. Elevated CO2 concentration is
dangerous for biodiversity. Key strategies for reducing the level
of CO2 in cities are urban vegetation and urban forests because
they contribute effectively toward the sustainability of towns
(McPherson et al., 1994; Nowak and Crane, 2002; McPherson
and Muchnick, 2005). Trees play a significant role in combating
climate change. They absorb CO2 and some air pollutants, purify
rainwater, guard against landslides, and absorb water pollutants
(nitrate and phosphate runoff). The photosynthesis process in
vegetation allows the absorption and utilization of atmospheric
CO2 and transforms it into energy stored in biomass (Nowak and
Crane, 2002; Nowak et al., 2008; McPherson et al., 2011;
Larondelle and Haase, 2013).

The changes that happen to the biomass of vegetation during a
certain period within a specific area are the biomass growth rate.
This variable is needed to establish a quantitative measurement of
carbon sequestration and emission rate between the atmosphere
and terrestrial ecosystems. Therefore, the term “biomass” applies
to the biomass density of plants, which is mass per unit of living
and dead plant content (Nowak et al., 2003; Iwata, 2007; Assefa
et al., 2013). By increasing the biomass density in urban areas,
there is a high potential for climate change mitigation and air
quality improvement through enhancing carbon sequestration
(DeFries et al., 2000; Global Forest Resources Assessment, 2020;
Strohbach and Haase, 2012; Nyamugama and Kakembo, 2015;
Bottalico et al., 2016). How to establish adaptation strategies for
biodiversity evaluation and tracking and controlling of carbon is a
key focus since these factors are necessary for meeting national
climate change commitments. In land-cover areas, forests play a
fundamental role as carbon sinks, contributing approximately
80% of global terrestrial above-ground biomass (AGB). However,
information on these carbon sinks is difficult to obtain and there
is uncertainty concerning their significance and role (Saatchi
et al., 2007; Ometto et al., 2014). Most of this uncertainty derives
from the absence of adequate information on the spatial
distribution of carbon biomass (Durante et al., 2019).

Above-ground biomass (AGB) refers to all live biomass that
resides above the soil including seeds, branches, stems, bark,
stumps, and foliage. Measurement methods for AGB include
harvesting (destructive), estimation (non-destructive), or a
combination of these two methods (double sampling) (Natural
Resources Conservation Service and Grazing Lands Technology
Institute, 2000). Destructive harvesting requires the harvesting of
a live tree to gain measurements of its actual weight and water
content (Thevathasan and Gordon, 2004; Miller and Fujii, 2011;
Wotherspoon et al., 2014; Thomas et al., 2020). Dimensional
analysis (non-destructive) involves measuring the dimensions of
leaves, trunk diameter, tree height, and crown diameter.
Individual tree biomass can be predicted by studying the

regularity of the disproportionate growth relationship between
the plant’s height and diameter at breast height (DBH) and the
biomass of a species or group of species (Clark et al., 1986;
Nowak, 1993; McPherson et al., 1994). Overall, individual
measurements are taken since they depend on the condition of
the area of the plantation [climate zone, soil, water, surroundings
(rural or urban)]. To gain large-scale (global) measurements, the
generalized data need to be collected from different areas for
optimization based on consistency and to account for
uncertainty. In terms of equation configurations, input data
requirements, and component designations, dimensional
analysis (i.e., allometric equations) can help in estimating the
biomass carbon anywhere on a broad scale and allowing for
consistency.

Although field measurements are usually the most reliable
method for providing accurate data on biomass and carbon
values, this method becomes less efficient and more expensive
when applied to large areas and forests. This method requires the
expenditure of significant labor and time (De Gier, 2003;
Pandapotan Situmorang and Sugianto, 2016). Therefore,
broad-ranging research mainly focuses on remote sensing
technology. For decades, this technology has been developed
and employed to collect data related to many types of biomass
in various conditions (Franklin and Hiernaux, 1991; Jianya et al.,
2008; Kumar et al., 2015; Pandapotan Situmorang and Sugianto,
2016; Roy and Ravan, 1996). Satellite data are easily collected and
used for estimating carbon stocks derived from spatio-temporal
geographical and global dimensions (Gonzalez et al., 2010; Ko
et al., 2017; Myeong et al., 2006; Xiao et al., 2015; Yao et al., 2015).
Experiments employing remote sensing are used to generate
regression models focusing on the relationships between field
observations and satellite picture vegetation indicators for
estimating above-ground carbon (AGC) stocks (Yao et al.,
2015). A vegetation index (VI) is an index obtained through
mathematical operations (subtraction, addition, and ratio
fraction) between specific spectral bands of satellite imagery
and can be mathematically related to vegetation [red, green,
blue, and near-infrared (NIR) bands] (Yao et al., 2015).
Furthermore, VIs are usually used to test and verify the
carbon-stock data in the field in many urban carbon-stock
studies (Issa et al., 2020; Pandapotan Situmorang and
Sugianto, 2016; Vashum, 2012). These indices are commonly
used to estimate the biomass level, density changes, and
enhancements. In most tropical and temperate climates, the
normalized difference vegetation index (NDVI) is generally
considered to be the key vegetation index provided by the
fitted model to allow for a satisfactory output for better
biomass prediction from different satellite images (Durante
et al., 2019; Xue and Su, 2017). The NDVI is the most
appropriate and commonly used vegetative index for the study
of carbon dynamics (Amoatey et al., 2018; Amoatey and
Sulaiman, 2020; Durante et al., 2019; Issa et al., 2019; Myeong
et al., 2006; Yao et al., 2015). NDVI is the most relevant for
biomass and field measures as it offers information regarding the
net primary production (vegetation) over time (Bayat et al., 2012;
Neigh, 2008; Parece and Campbell, 2017; Xu et al., 2012; Zhu
et al., 2017). However, NDVI saturation is observed in regions
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with high biomass as the link between biomass and NDVI is
smaller. The enhanced vegetation index (EVI) is equivalent to the
NDVI for quantifying green vegetation. However, EVI corrects
background noise for certain ambient environments and the
background of the canopy, which are more responsive to thick
plants (Huete et al., 1999). These improvements enable index
measurement to relate the factors between the R to NIR ratio,
reduce background noise, saturation, and atmospheric
interference (Amoatey et al., 2018). There are many other
vegetative indices, including differential vegetative indices
(DVI), ratio vegetative index (RVI), and soil adjusted
vegetative index (SAVI) (Bausch, 1993; Payero et al., 2004; Qi
et al., 1994). Several previous studies have shown that SAVI is the
most appropriate VI in sparse foliage as it can minimize
background influences (Barati et al., 2011; Bausch, 1993; Qi
et al., 1994). Forest AGB assessments can further be combined
and optimized with the same method of plot-level ground-based
measurements and bio-geophysical spectral variables (Figure 1).
In this study VIs variables were extracted from the Landsat 8
Operational Land Imager (OLI) satellite imagery system that was
computed at different time ranges from 2014 to 2020. These
methods are typically undertaken to spatially predict biomass and
the related uncertainty (Ahmad, 2012; Tuanmu and Jetz, 2014;
Xu et al., 2018). The urban vegetation in Doha city, Qatar was
studied thoroughly to assess the effect of vegetation in improving
Doha’s climatic conditions by abating CO2 from the atmosphere
during the assigned period of 6 years.

This study presents an estimation of the potential of carbon
stock in green areas established in Doha in the last decade. Doha
is an arid city with minimal vegetation and primarily man-made,
cultivated land. The government is pursuing a project of planting
one million trees around the city (Ataullah, 2019). Therefore,
assessing the effect of biomass increase on the absorption of CO2

is vital for Doha as a city. The assessment was carried out by
measuring the AGC (storage and sequestration potential). The

research combined direct field measurement with remote sensing
analysis through the application of vegetation indices formulas
for the targeted plot areas. Further measurements of the rate of
change in the vegetation density from 2014 to 2020 were carried
out. This paper assesses the carbon sequestered or to be
sequestered from these urban landscapes. This investigation
contributes to an understanding of the importance of
atmospheric CO2 abatement in increasing the sustainability
and resilience of these societies. Figure 1 illustrates a road
map of the methodology applied in this study.

METHODS AND PROCEDURES

Study Area
This study was conducted in Doha city, which is the capital of
Qatar. Qatar is a gulf state in the Middle East. Doha is at latitude
25°17′12″N to 25°28′0″N and longitude 51°32′0″E to 51°52′0″E,
on the Arabian Gulf, as shown in Figure 2. The elevation of Qatar
ranges from 0 m near the coastal areas and a maximum of 100 m
above sea level in the hills. The general climate of the area is arid.
The climate ranges from mild with spring-like winters (lowest
temperature of 7°C) to very hot humid summers (highest
temperature 50°C). Rainfall provides a significant source of
fresh water. The annual average rainfall can reach 100 mm
and rain mostly occurs in winter. Qatar is experiencing
substantial socioeconomic growth, which is associated with a
significant increase in urbanization and industrialization. The
population in Qatar increased from 592,468 in 2000 to 2,807,805
in 2020 (Ministry of Development Planning and Statistics, 2019).
In Qatar, over the last 10°years, the importance of vegetation in
urban landscapes has been emphasized as an essential part of
sustainable urbanization. This emphasis has encouraged a rapid
increase in plantings and the number of trees everywhere in the
country, and especially in the capital. Doha has many parks and

FIGURE 1 | The road map of the methodology applied in this study.
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gardens distributed across the city and managed by the Ministry
of Municipality and Environment. There are also several non-
governmental parks in the city that are managed by private
institutions.

Identification of Urban Greenery
The selected parks and streets examined in this study were among
the main green spaces found in Qatar. These green city areas were

selected for study due to their significant social and
environmental value. A field survey and Google Earth Pro
software (images of the spaces in 2020) were used to identify
green urban landscapes in Doha for the study. The types of land
use for this study were selected based on functional and location-
based classification and significance contribution to the green
areas in Doha. Three main types of land use were found to be
major elements in respect of vegetation in Doha city: public parks

FIGURE 2 |Qatar, Doha city map, at latitude 25°17′12″N and longitude 51°32′0″E. The pins in the map refer to the land investigated in this study: 1) Albidaa Park,
2) Aspire Park, 3) MIA Park, 4) Oxygen Park, 5) Alkhafji Street, and 6) Tarfa Street (USGS, 2019).

TABLE 1 | The land-use types and the selected parks and areas.

Land-use types Selected parks and areas

Public parks and gardens (PP) 1- Albidaa park 2- Aspire park
Institutional parks (IP) 3- Museum of islamic art (MIA) park 4- Oxygen park
Street and avenue plantation (AP) 5- Alkhafji street 6- Tarfa street

TABLE 2 | Field data and land-use types.

Land-use type Total plots
(n)

Total area
(m2)

Total percent
of sampled
area (%)

Total sampled
area in

squared meter
(m2)

Total sampled
area in

hectares (ha)

PP 25 2,760,000 0.80 22,500 2.25
IP 15 255,000 5.30 13,500 1.35
AP 12 — — 1,445 0.15
Total 52 3,015,000 1.24 37,445 3.75

PP, public parks and gardens; IP, institutional parks; AP, avenue and street plantings.
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and gardens (PP), institutional parks and greeneries (IP), and the
streets and avenues trees and plantings (AP) (Table 1). The
randomly selected areas for the study contributed only 1.24% of
the total land area (Table 2). Even though the sampled area is
small, it contains the main planted area of all the land. (There is
hard and soft land in the total parks area and the samples were all
green lands with concentrated trees.)

Public Parks and Gardens
Public parks and gardens are usually all the vegetation found in
public areas managed by the government rather than by business
or commercial authorities. These areas are well-known for their
benefits to the public through the provision of shade, picnic areas,
and peaceful atmospheres. Maintenance procedures, such as

watering, fertilizing, mowing, and leaf litter removal, are
regularly carried out. The selected parks in this study were the
two largest parks in Doha: Albidaa Park (ABP) and Aspire Park
(ASP) (Figures 3A,B). The tree species in the two parks were
mainly Phoenix sp (palm tree), Conocarpus lancifolius,
Eucalyptus, Ficus benghalensis, Ficus altissima, Albizia lebbeck,
Adansonia gregorii (Boab tree), Ceiba speciosa, Nilotica sp.
Tamarindus indica, Azadirachta indica, Ficus religiosa,
Vachellia nilotica, Acacia arabica (Arabic Gum tree), and
Ceratonia siliqua.

Institutional Parks
Institutional vegetation consists of landscapes found in
institutions (which are usually open to the public but with

FIGURE 3 | Locations assigned for the selected land-use types.
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some restrictions), such as primary ministries, hospitals,
universities, or museums. Institutional parks provide relaxing
and shaded areas for visitors, students, or attendees. Intensive
maintenance in these green areas is similar to the PP and involves
regular irrigating, mowing, fertilizing, and pruning. The parks
studied were Oxygen Park, managed by the Qatar Foundation
Authority in Education City and MIA Park belonging to the
Museum of Islamic Art institution (Figures 3C,D). Trees and
shrubs varied, and the main species found were Acacia tortilis,
Alstonia scholaris (L.), Nilotica sp. Tamarindus indica, Vachellia
nilotica, Acacia arabica (Arabic Gum tree), Azadirachta indica,
Pithecellobium dulce, Phoenix dactylifera, Olea europaea,
Conocarpus lancifolius, and Ziziphus spina-christi.

Street Plantings and Trees
Trees, shrubs, palm trees, and other plantings are found on the
sides of streets, avenues, and highways. They provide protection
from sand, winds, floods, and soil erosion, and provide a buffer
for car accidents. Unlike the other two green areas outlined above,
the maintenance of this vegetation is rather moderate and
involves regular irrigating and pruning. The streets selected for
study were Alkhafji and Tarfa Streets (Figures 3E,F). Alkhafji
Street contained several types of trees, whereas the trees in Tarfa

Street were mainly one type of tree. These trees were principally
Azadirachta indica, Conocarpus lancifolius, and Acacia farnesiana.

Field Survey and Data Collection
A stratified sampling approach was used to collect field data in
the selected strata (the three land-use types). This sampling
approach was chosen to abate the uneven distribution of
vegetation and to reduce the uncertainty of the
measurements in total (biomass and carbon-stock
calculations) (Stoffberg et al., 2010). In this study, 52 plots
were studied in the six locations selected for three land-use

FIGURE 4 | Field survey methods used for various land-use.

TABLE 3 | Specified biomass equations based on general allometric equations.

Biomass equations Notes References

AGB � 42.69 − 12.80 (DBH) + (DBH)2 DBH (at 1.3 m for trees) Brown (1997)
Ln (AGB) � −3.35 + 2.75 × ln (DBH)* Stem height > 3 m, 6 ≤ DBH <40 cm (palms) Goodman et al. (2013)
AGB � 0.18 (D)2.487 Tree-like shrubs Yao et al. (2015)
AGB � 10.00 + 6.40 × Total height Palms with total height Brown (1997)

FIGURE 5 | Spectral bands used to assess vegetative indices (in Landsat 8 OLI).

TABLE 4 | Types of spectral vegetative indices used.

Vegetative indices Abbreviation Formulaa

Differential vegetative index DVI NIR − RED

Normalized difference vegetative index NDVI (NIR− RED)
(NIR+RED)

Enhanced vegetative index EVI 2.5 (NIR− RED)(1+L)
(NIR+ 6RED−7.5B+1)

Ratio vegetative index RVI NIR
RED

Soil adjusted vegetative index SAVI (NIR− RED)(1+L)
(NIR+ RED+L) , L � 0.5

aNIR, RED, B, and L represent reflectance of near-infrared band, red, blue, and soil
adjustment factor, respectively.
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types (PP, IP, and AP) with a total area of 37,445 m2. The
sample areas of each plot in the first two land-use types (PP
and IP) were divided into 30 × 30 m quadrats (Figure 4A).
Since the street plantations (AP) form a line, the transect line
method was applied, measuring trees randomly at intervals of
50 m for each 100 m path within a street line of 1 km length
(Figure 4B) (Ramsey, 1979; Jensen and Meilby, 2012). The
coordinates of each located plot were taken by a geographical
coordinates app with an accuracy of 5–10 m in diameter. The
collected data taken from these plots were mainly the diameter
of trees at breast height (DBH at 1.3 m), the diameter (D) of
shrubs and tree-like shrubs, and the height of palms (stem
height Hstem). The measurements of the diameter were carried
out using fiberglass measuring tape (20 m, Juneng JN080203,
China). For the heights, the triangular method was applied

with the aid of measuring tape (10 m, Juneng JN080117,
China).

Biomass and Carbon-Stock Estimations
Biomass Calculations
Allometric equations were used to estimate the biomass values of
the trees and the vegetation in the field. However, the variance of
the tree types and difficulties in gaining specific regression models
for each species (some species did not have allometric equations)
resulted in some limitations to the effectiveness of this method.
However, overall, using allometric regression equations has
proved a reliable and non-destructive method for estimating
AGC stocks. The formulation of allometric equations in this
research focused on the subtropical thicket vegetation
characteristics present in the study region together with those

TABLE 5 | Total amount of biomass and above-ground carbon in the selected land-use types.

Land-use type Total plots
(n)

Total no.
of trees

Total biomass
(kg)

Total carbon
stock (kg)

Estimated biomass
per hectare

(kg/ha)

PP 25 215 559,219 278,720 248,542
IP 15 261 294,701 147,028 218,297
AP 12 127 214,045 107,579 1,486,424
Total 52 603 1,067,965 533,327 1,953,263

TABLE 6 | The regression model applied to estimate carbon stock in public parks (PP).

Vegetative index Model Constant Coefficient R2 p-value

NDVI 693.4 e3.94 x 693.4 3.94 0.640 0.0000050
EVI 2133.6 + 4441 x 2,133.6 4,441 0.384 0.0020000
DVI 2374.4 e0.0003 x 2,374.4 0.0003 0.579 0.0002500
RVI 588.4 + 2970 x 588.4 2,970 0.708 0.0000005
SAVI 2828.7 e1.64 x 2,828.7 1.64 0.509 0.0001320

TABLE 7 | The regression model applied to estimate carbon stock in institutional parks (IP).

Vegetative index Model Constant Coefficient R2 p-value

NDVI −25661 + 49844 x −25,661 49,844 0.692 0.000119
EVI −6034 + 6972 x −6,034 6,972 0.779 0.000029
DVI −104811 + 13874 log(x) −104,811 13,874 0.189 0.120,000
RVI −4860 + 3504 x −4,860 3,504 0.653 0.000470
SAVI −11995 + 24949 x −11,995 24,949 0.603 0.001000

TABLE 8 | The regression model applied to estimate carbon stock in avenue and street plantings (AP).

Vegetative index Model Constant Coefficient R2 p-value

NDVI 853.75 e5.23 x 853.75 5.23 0.867 0.000011
EVI 4698.13 e0.51 x 4,698.13 0.51 0.522 0.008000
DVI 3242.36 e0.0006 x 3,242.36 0.0006 0.822 0.000048
RVI 1585.35 e0.98 x 1,585.35 0.98 0.868 0.000011
SAVI 3224.59 e2.52 x 3,224.59 2.52 0.842 0.000026
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used by Amoatey et al. (2018), Myeong et al. (2006), Yao et al.
(2015). A standard form of general equation was used based on
the specific associated zone (temperate zone) (Table 3) (Nowak
and Crane, 2002; Chave et al., 2005; Stoffberg et al., 2010; Liu and
Li, 2012; Yao et al., 2015). Accordingly, DBH, Hstem, and Dshrubs

were used, based on the assigned equation to estimate the AGB

(Nowak and Crane, 2002; Myeong et al., 2006; Liu and Li, 2012).
The AGB calculations were assigned to provide the nearest
estimation of the AGC-stock values. Based on the type of land
use, the biomass models might differ from one to another
(depending on maintenance and land resources variations). All
the selected locations were human-made landscapes, and the trees

FIGURE 6 | NDVI map of the selected land-use types based on the images acquired from Landsat 8 OLI on May 23, 2020.
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were planted rather than being self-seeding. This factor may affect
the estimation of the biomass and, thus, the calculation of the
carbon-stock values based on the growth rate and girth of each
type of tree and palm. Therefore, to reduce this uncertainty and

compensate the values with the closest estimations carried out
with forest trees, any area with different conditions from naturally
grown trees received a factor of 0.8 multiplied by the biomass
value. Nevertheless, no changes were applied for the remaining
areas where resemblance in environmental conditions was certain
(McPherson, 1998; McPherson et al., 1999; Peper et al., 2001;
Nowak et al., 2013).

Carbon-Stock Estimation From the Field Data
The percentage of carbon in a tree biomass is approximately 50%.
Hence, the carbon-stock values were evaluated by multiplying the
total biomass (BM) by 0.5 (Eq. 1) (Nowak et al., 2003; Stoffberg
et al., 2010; Liu and Li, 2012). A diagnostic procedure took place
in which the tree condition might be significant in the assessment
of carbon and biomass values. A health condition evaluation
could be undertaken on a tree by rating it as excellent (1.0), poor
(0.75), critical (0.42), dying (0.15), and dead (0.0). These
calculations were based on the assigned factors of tree health
(Nowak et al., 2013). The landscapes in this study exhibited
higher growth rates than natural trees in normal conditions as
they received intensive care and maintenance (irrigating,
pruning, fertilizing, and applying pesticides). The evaluation of
the trees’ conditions delivered ratings of excellent conditions and
1.0 health factors. Lastly, to evaluate the atmospheric CO2 weight
fixed in the biomass, carbon weight (in kg or tons) was multiplied
by the ratio of the CO2 molecular weight to the atomic carbon
weight: 44/12 or 3.67 (Stoffberg et al., 2010; Assefa et al., 2013;
Amoatey and Sulaiman, 2019).

AGC (ton/ha) � 0.5 × BM(ton/ha) (1)

Remote Sensing and Data Acquisition
Remote sensing analysis was carried out to gain an accurate
estimation of the carbon stock above the ground in the selected
landscapes. The map images and spectral data were obtained
through Earth Explorer, which is operated by the U.S. Geological
Survey (USGS) (USGS, 2019). Satellite images were acquired
from the Landsat 8 OLI. These images, with full multispectral
and thermal analysis, were used to estimate the vegetation indices
(VI) with a resolution of 30 × 30 m (medium resolution). Landsat
8 OLI was launched in 2013 and collects approximately 11
spectral bands. Four spectral bands were relevant for this
study: blue, green, red, and infrared (as shown in Figure 5).
Additionally, two images were acquired from May 23, 2014 and
May 23, 2020 and field measurements were carried out. These
field measurements estimated carbon-stock changes and relative
sequestration throughout this period. Environment Visualizing
Images software (ENVI 5.3) was used to establish the VI
evaluations. Relative radiometric and atmospheric corrections
were applied to the two selected images using the ENVI 5.3
software. Radiometric correction was applied to eliminate the
multitemporal images associated with the conditions of the
atmosphere in the image. Atmospheric correction was carried
out using the FLAASH (fast line-of-sight atmospheric analysis of
spectral hypercubes) method. No adjustments were applied in the
geometric analysis as the images from Landsat 8 OLI are

FIGURE 7 | Pearson correlation analysis of the estimated AGC from the
field and the predicted values related to NDVI and extracted regression
equation.
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corrected by NASA, using a digital elevation model (DEM) with
ground control (L1T).

Carbon-Stock and Vegetative-Indices Correlation
Models
The vegetation indices (VIs) used in this study were the
primary types of index (Table 4). These indices are
frequently used to verify AGC stock estimations. All the VI
equations were calculated through the software with their
specified equations (see Table 4). Regression equations were
created (linear and non-linear) to correlate the relationship
between the value of the VIs with the corresponding field
measured carbon-stock values. These values depended mainly
on two spectral bands: NIR and red. Linear and non-linear
regression models have traditionally been the method of
choice for predicting vegetation quantities (Dungan, 1998).
The regression model was developed based on each plot
studied and its corresponding VI values acquired from the
ENVI 5.3 software. The values of the VIs were proposed as the
independent variables and carbon-stock values were the
dependent ones. The unit of carbon stock was taken as
kg C per plot or pixel. The resulting graphs show a
considerable coefficient of determination (R2) in the
relationship between VI and AGC. These findings were
then used to provide the best estimation of the total carbon
stock in the total area under study at the present time and in a
previous year (2020 and 2014, respectively). The regression
model analyses were completed using IBM SPSS
software V.26.

RESULTS AND DISCUSSION

Estimating Above-Ground Biomass and
Carbon Stock
The field measurements were carried out for three land-use types
with 52 plots (30 × 30 m2) and 603 trees were investigated
(Table 5). The DBH values varied significantly in each
selected park or street, based on the type of trees planted.
These values ranged from 20 up to 150 cm. Some
circumferences reached up to 500 cm in ASP for some Ficus
religiosa and Ficus benghalensis tree types. Regardless of the tree
types, the general forms of allometric equations were used. The
AGB and carbon values were estimated with 215, 261, and 127
trees measured in PP, IP, and AP and found to have
approximately 279, 147, and 108 tons, respectively. With the
assumption of an area occupied by trees or greeneries, the total
biomass can reach up to 250 tons and around 125 tons of carbon
per hectare (Eq. 2). These values were further used for the AGC-
VIs modeling in which each specified plot has its carbon values
estimated.

Total biomass per hectare:

W � ∑
n
i�1Wi
A

× 10.000 (2)

Where: W � total biomass per hectare (ton/ha); Wi � biomass
of tree (ton); A � plot size a rea (m2); N � number of trees.

Modeling Vegetative Indices Based on
Remote Sensing Landsat 8 Operational
Land Imager to Predict Above-Ground
Carbon
To predict the values of AGC, statistical models were built to
relate the values measured in the field to the values of VIs
calculated from the satellite images (NDVI, EVI, DVI, RVI,
and SAVI). Linear and non-linear statistical regression models
were constructed and optimized between each VI and the field
survey data. The regression lines were plotted and the equations
of the graphs with their coefficients of determination R2 and
p-values were analyzed through IBM SPSS. Based on the lowest

FIGURE 8 | Comparison of regression coefficients of vegetative indices
in urban greenery types.

FIGURE 9 | The Pearson correlation values and coefficients of
determination for each land-use type. The comparison Illustrates the R2 of the
regression model with the R2 of the correlation of the predicted data.
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values of p-value, the highest R2 were selected to relate the models
(regression equations) of the VIs and extract the most reliable
equations to correlate the estimated AGC values with the
predictions from Landsat 8 OLI images for each land-use type
(Tables 6, 7, 8). Based on the statistical evaluation, all VIs showed
very close results with good R2, but the highest values with the
least relative deviation of determination coefficient was to the
NDVI followed by SAVI. This outcome concurred with the
findings in the literature where the exponential model was the
most reliable in the case of NDVI-AGC (Bright et al., 2012; Ko
et al., 2017; Myeong et al., 2006; Yao et al., 2015). With the
regression modeling, the best-fitting model was the exponential
model of AGC-NDVI for PP and AP with R2 (0.64, 0.87) and a
p-value of less than 0.05% (0.005% for PP, and 0.001%

respectively). Aspire Park exhibited higher NDVI results with
the AGC values due to its tree types with one DBH reaching
120 cm. The high urban greenery biomass of Aspire Park may,
therefore, affect the evaluation of VIs due to decreased soil and
rock NIR reflections. Aspire Park has been similarly linked to
large trees with significant diameter at breast height values and
wide tree branches such as Ficus religiosa and Ficus benghalensis.
The NDVI values showed slight differences, and when the curve
was plotted, these small changes in NDVI value fitted with a
significant increase in carbon values. In the case of the IP type,
MIA and Oxygen Parks (OP) were chosen as models for
institutional properties receiving intensive care. However, there
were significant variations between them in planting types,
greenery distribution, canopy cover, and biomass density.

FIGURE 10 | Normalized difference vegetation index (NDVI) maps for Doha city in 2014 and 2020.
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Oxygen Park has a lower biomass density and less turf grass
compared to MIA Park. The trees in OP varied significantly in
type, size (trees were mainly native and local and, thus, had small
canopies, leaves, and DBH), and there was less vegetation
surrounding the trees, with minimum turf grass and shrubs.
These factors resulted in much lower AGC values in OP

compared to MIA. Accordingly, the best-fitted model for
NDVI was in the quadratic form rather than the exponential
with R2 � 0.69 and p-value � 0.01%. In case of the avenue and
streets plantings (AP), the NDVI model fitted in the exponential
form with the relatively highest coefficient with an R2 � 0.87 and a
p-value of 0.001%. The results in the high values of determination

FIGURE 11 |Normalized difference vegetation index (NDVI) maps of the selected land-use types based on the images acquired from Landsat 8 OLI onMay 23, 2014.
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coefficient occurred because of the consistency in the relation
between the AGC and NDVI values. This uniform behavior was
due to the similarity in tree types, distribution, and canopy cover
(together with the fact that Tarfa Street contained only one tree
type, whereas Alkhafji Street contained four to five tree types with
close DBH values). Since EVI is more accurate in denser canopy
cover and compacted plantation (Huete et al., 1999; Pandapotan
Situmorang and Sugianto, 2016), the regression analysis between
EVI and AGC stock values showed lower determination coefficients
than those of NDVI (R2 � 0.38, 0.78, and 0.52 for PP, IP, and AP
respectively). Coefficients of determination of DVI values for the
land-use types were PP � 0.56, IP � 0.19, and AP � 0.82. In
comparison, R2 was not very reliable in representing the relation
between AGC-DVI with IP. The DVI reflects the difference between
the spectral bands only and the inconsistency of the high values
increases the standard deviations, allowing considerable gaps
between the points. The R2 values of all VIs were high for AP
(Table 8) because of the consistency of AGC-VIs values, which
helped to provide smooth curves with relatively low deviations. The
RVI and SAVI presented relatively reasonable R2 values.
Nevertheless, SAVI was more suitable for considering the soil
and it might be affected by the hard landscapes around the green

spaces. Overall, NDVI showed a relatively optimal correlation with
the field measurements and AGC estimations. The AGC-NDVI
model could represent consistent results with high R2 values, which
match the findings of previous investigations and studies, including
those using different satellite imagery (Bright et al., 2012; Yao et al.,
2015; Lavista et al., 2016; Amoatey et al., 2018). Thus, this model was
chosen as the most fitting vegetation index to interpret the
correlation study for predicting AGC stock in urban green space.
Figure 6 shows the NDVImaps of the selected land-use types, based
on the images gained from Landsat 8 OLI on May 23, 2020 for A)
Albidaa Park, B) Aspire Park, C) MIA Park, D) Oxygen Park, E)
Alkhafji Street, and D) Tarfa Street.

To validate the regression models applied, some estimated AGC
stock data from the field measurements were correlated with the
predicted AGC values from the NDVI maps, using the extracted
equations for each land-use type (Figure 7). The correlation
analysis of PP, IP, and AP showed high Pearson correlation and
determination coefficient (R2) values. Pearson correlation
coefficients of PP, IP, and AP were 0.92, 0.89, and 0.92, and
their coefficients of determination were 0.83, 0.78, and 0.84
respectively (Figures 8,9). These findings can provide reliable
information on the total biomass of these areas with reference
to the NDVI map and regression equations. These high values
indicate the considerable reliability of the generated equations and,
thus, can provide a clear evaluation of AGB and AGC stock for any
vegetation area in Doha with similar variables to the measured
landscapes with an accuracy level of 80–90%.

Timeline Comparison of Carbon Stock
Between 2014 and 2020
Maps for the NDVI in Doha in 2014 and 2020 are shown in
Figure 10. The color legend shows the improvement in vegetation
through this period as the value of NDVI increased significantly
in various areas around Doha city. Changes and variation
between NDVI values in the surveyed plots were thoroughly
investigated (Figures 11,12 and Table 9). The 603 trees inspected
in this study were from only 52 plots among all the parks of which
215, 261, and 127 trees belonged to PP, IP, and AP respectively.
The areas covered from these parks combined were only 1.2% of
their total area. For the year in which this study was conducted
(2020), the total AGC stock for these trees in the selected plots
was 533.33 tons. For 2014, the total carbon stock for these plots

FIGURE 12 | Carbon-stock and CO2 sequestration values of the
selected urban green spaces in Doha between 2014 and 2020.

TABLE 9 | A comparison of total carbon stock in the selected areas measured from vegetative indices and above-ground carbon between the years 2014 and 2020.

Land-use type Total trees Carbon sequestration
(tons CO2/year)

Carbon stock
2014 (tons)

Carbon stock
2020 (tons)

CO2 eq
range (2014–2020)

(tons)

CO2 social
value USD/QR

(65 $/tons
CO2) (Newbold et al.,

2013)

PP 215 56.47 186.40 278.72 338.81 22,022 $\80,820 QR
IP 261a 33.31 92.58 147.03 199.83 12,988 $\47,669 QR
SP 127 18.66 77.08 107.58 111.94 7,276 $\26,703 QR
Total 603 108.44 356.06 533.33 650.58 42,286 $\155,192 QR
Mean overall growth rate % 45.97%

aOxygen Park was included in the calculation although measurements were not available in 2014 and the NDVI values showed impervious surfaces (Figure 11).
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was calculated from the NDVI equations and was 356.1 tons.
These figures indicate a significant growth of the trees’ biomass
with a mean overall growth rate of 46%, proving substantial
absorption of atmospheric CO2. Total calculated CO2 absorbed
from the atmosphere is 650.6 tons with a CO2 sequestration rate
of 108.4 tons/year. These improvements in NDVI values and
AGC were associated with the increase of vegetation around the
selected areas. For instance, in 2014, Oxygen Park had not been
established and its trees had not been planted. The establishment
of Oxygen Park affected the value of AGC. Albidaa Park was

under construction, and, therefore, new areas were established
and replanted and greeneries were increased. In the streets, Tarfa
Street has young trees that were planted less than 10 years ago so
the carbon-stock change was more significant. Young trees build
more biomass with faster processes due to their growth rate. In
the cases of Aspire Park, Alkhafji Street, andMIA Park, the values
showed slight increases compared with the other study subjects,
but the carbon stock increased based on the growth of biomass.
The social importance of removing CO2 from the atmosphere is
demonstrated by the fact that the social value of the evaluated

TABLE 10 | Rough estimations of the AGB, AGC, and CO2 sequestration values of the trees nursed and planted for the FIFA World Cup Qatar 2022.

Qatar 2022 stadiums

No. of trees 16,000
Mean DBH (cm) 20 (2016) to 50 (2020)
Biomass equation 42.69 − 12.8 (DBH) + (DBH)2 Brown (1997)
Predicted biomass value 1902.7 kg/tree Total � 30,443,200 kg (30,443 tons)
Predicted carbon stock 2020 951.4 kg/tree Total � 15,222,400 kg (15,222 tons)
Predicted CO2 abatement 55,866,000 kg 55,866 tons
CO2 sequestration in 4 years 12,592,800 kg/year 12,593 tons/year

FIGURE 13 | Calculated land surface temperature for May 23, 2014 and May 23, 2020 (using Landsat 8 images) for Al Bayt Stadium. The visual image of the
stadium shows the substantial greenery surrounding the stadium.
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CO2 removed from the atmosphere for only the surveyed plots
(52 plots) cost around USD 42,286 (which is approximately
equivalent to 155,192 QR). This finding is based on a study
showing that 1 kg of CO2 can be considered equal to USD 56 (QR
205) (Newbold et al., 2013). Nevertheless, this evaluation may not
be precise due to the current increases in CO2 emissions and the
concomitant increasing social cost. The benefits of reducing
atmospheric CO2 through vegetation are increasingly important.

Impact of QatarWorld Cup 2022 onBiomass
and Carbon Stocks
Growing trees is one of the significant factors associated with the
carbon neutrality missions and visions for the International
Federation of Football Association (FIFA) 2022. According to
FIFA, a key environmental requirement for the Mondial (World
Cup) is the carbon neutral plans and projects accomplished by the
local organizing committee (LOC). The LOC of the FIFAWorld Cup
2022 in Qatar is the Supreme Committee for Delivery and Legacy.
This committee has highlighted the importance of natural carbon
dioxide sequestration projects and emphasized the application of the
best technologies to ensure a significant abatement of CO2 levels in
Qatar and the accumulated atmospheric CO2 worldwide. Therefore,
the committee has planned to plant approximately 16,000 trees of 60
types, 279,000 shrubs, and the equivalent of 1.2 millionm2/year of
turf grass around the stadiums hosting the event (FIFA, 2016; Sachin
Kumar, 2018). The committee began the tree planting project in 2016
(8 years ahead of the FIFA 2022 event and four years from the time
that this study was conducted) (Table 10). The land surface
temperature (LST) was considerably decreased after the building
of the stadium infrastructures because of the associated greenery
around the stadiums. All the new stadiums are surrounded by
massive areas of greenery and plantation with wisely selected
trees and shrubs. This greenery contributes to lowering the
overall temperature of the surroundings. Figure 13 (Al Bayt
Stadium) presents an example of how the newly established
stadiums are showing a reduction in LST due to their associated
greenery. Furthermore, from the calculated LST for May 23, 2014
and May 23, 2020, it is evident that the vegetation has reduced the
surface temperature and provided a positive impact on the
environment (CO2 sequestration - Table 10).

The rough estimation of AGB, AGC, and CO2 sequestration
values of the trees nursed and planted (16,000 trees) for the Qatar
2022 stadiums are shown in Table 10. Based on the assumptions
outlined above, the predicted carbon stock accruing from the planted
trees calculated for 2020 is close to 951.4 kg/tree, which could result
in a reduction of up to 12,593 tons/year of atmospheric CO2 solely
from this project. In 2022, the total CO2 sequestered from the
atmosphere can be predicted to reach 75,558 tons CO2. From the
estimated values, it can be assumed that the planted trees are likely to
have a significant impact on CO2 abatement, which is likely to
increase the environmental sustainability visions for Qatar and the
FIFA World Cup 2022. The urban greenery irrigation is using
recycled water, further reducing CO2 emission by avoiding the
use of desalinated water (12.7 kgCO2eq/m

3 DW, 0.67 kgCO2 eq/
m3 RW) (Birge et al., 2019; Habib and Al-Ghamdi, 2020; Mannan
and Al-Ghamdi, 2020).

CONCLUSION

While the primary purpose of vegetation and greenery in arid
areas and cities is to provide shade and visual appeal, their
importance also comes from their ability to reduce climate
change and environmental impacts through sequencing and
preserving anthropogenic CO2. The current study estimates
the AGC inventory in Doha parks and urban green spaces in
2014 and 2020. Direct and indirect measurements through field
surveys and remote sensing data from Landsat 8 OLI are used to
evaluate and quantify the major contribution of urban green
spaces in reducing CO2 emissions and increasing the city’s
sustainability. Findings reveal that NDVI was the most
accurate index to estimate the AGC inventory in three selected
land-use types. The strongest correlation of AGC-NDVI were for
AP with an R2 � 0.87 followed by satisfying results for PP with an
R2 � 0.64. One of the impacting factors that enhanced the
correlation is the presence of turf grass and surrounding
shrubs in the background. Carbon-stock values showed
substantial enhancement from 356 tons in 2014 to 533 tons in
2020 at 108.4 tons CO2/year sequestered from the atmosphere.
This development justifies the intensive attention and care given
to increasing the green spaces and landscapes around Doha city
and its surroundings. According to the estimates carried out by
the U.S. Environment Protective Agency (EPA), the social cost of
the CO2 absorbed by the trees in the period from 2014 to 2020
was approximately QR 155,192 (USD 42,286). This cost can be
considered as an important contribution toward CO2 reduction.
The presence of these lands is of high social value to the people as
these places contribute to public health and wellbeing and social
activities. Furthermore, the cultivation and maintenance of these
places create jobs for local people. This research is Qatar’s first
study on this topic and offers benchmark evidence for a large-
scale national carbon-stock tracking program in Qatar as a
country and arid area.
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