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This paper investigates whether the macroeconomic uncertainty factors can explain and
forecast China’s INE crude oil futures market volatility. We use the GARCH-MIDAS model
to investigate the explaining and predicting power of themacroeconomic uncertainties. We
considered various geopolitical risk (GPR) indices, economic policy uncertainty (EPU)
indices, and infectious disease pandemic (IDEMV) indices in our model. The empirical
results suggest that the geopolitical risk, the geopolitical act risk, the global economic
policy uncertainty, the economic policy uncertainty from the United Kingdom, and the
economic policy uncertainty from Japan comprehensively integrate the information
contained in the rest factors, and have superior predictive powers for INE crude oil
future volatility. These findings highlight the importance of the impact of macroeconomic
uncertainty factors has on the crude oil futures market, and indicate that the
macroeconomic uncertainties need to be considered when explaining and forecasting
crude oil futures market volatility.
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INTRODUCTION

China is the world’s largest importer and the second largest consumer of crude oil and established its
own crude oil futures market in the Shanghai International Energy Exchange Center (INE) onMarch
26, 2018. Over the past two years since its listing, the INE crude oil futures market has experienced
various extreme events at home and abroad, and now playing a positive role in promoting the
formation of crude oil benchmark prices in Asia. The establishment of the INE crude oil futures
market has the following significance. Firstly, like the petrodollar system, the internationalization of a
country’s sovereign currency must begin with the function of pricing and settlement of commodity
trade. Since the INE crude oil futures price was denominated in RMB, the internationalization of the
INE crude oil futures market has put the process of RMB internationalization at a new historical
starting point. Secondly, it is necessary to use the crude oil futures market for risk management in
China. In the current international environment of deglobalization and anti-free trade, the
probability of extreme events will increase, which will lead to huge fluctuations in crude oil
prices, and the crude oil futures markets can hedge this kind of risk. Thirdly, although Asia is
the world’s largest market for crude oil demand, it does not have its crude oil pricing system, and thus
causes the well-known “Asian Premium.” The development of the INE crude oil market can shed
lights on the formation of benchmark prices in the Asia-Pacific region.
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Along with the establishment of the crude oil futures market in
2018, global macro uncertainty events have generally shown an
upward trend (Sheng et al., 2020), especially for the economic policy
uncertainty (EPU) and the geopolitical risk (GPR). These two
macroeconomic uncertainty factors have long been regarded by
investors as the key factors affecting investment decisions in the
crude oil futures market (Aloui et al., 2016; Antonakakis et al., 2017;
Balcilar et al., 2017; Dees et al., 2017; Escribano and Valdes, 2017;
Wei et al., 2017; Cunado et al., 2019; Plakandaras et al., 2019; Brandt
and Gao, 2019; Geng et al., 2020; Hu et al., 2020). The rising
geopolitical risk and economic policy uncertainty greatly increase
panic among investors (Tsai, 2017; Ji et al., 2018; Ji et al., 2020; Li and
Zhong, 2020), and the rapid transfer of international capital among
countries leads to severe fluctuations in the crude oil futures market.
Furthermore, since crude oil has long been regarded as a political
weapon for many governments (Escribano and Valdes, 2017), it has
a geopolitical nature that distinguishes itself from other commodities
and financial assets (Hu et al., 2020). Numerous studies have shown
that geopolitical risk leads to oil market uncertainty and price
fluctuations (Miao et al., 2017; Caldara and Iacoviello, 2018;
Gkillas et al., 2018; Brandt and Gao, 2019). During our sample
period, the Middle East, as one of China’s largest oil importers,
witnessed several geopolitical events such as the Syrian tensions on
April 01, 2018, the United States-Iran tensions on July 01, 2018 and
the United States—Iran tensions on June 01, 2019. On the one hand,
these geopolitical eventsmight affect China’s crude oil importers and
cause crude oil supply uncertainty and price volatility. On the other

hand, the geopolitical risk would affect economic activity to a certain
extent and thus cause oil demand uncertainty (Liu j. et al., 2019).
Since geopolitical risk could result in expectation differences
about the INE crude oil futures prices, it is reasonable to
consider the role of geopolitical risk in explaining and
forecasting the INE crude oil futures market volatility.
Furthermore, the recent Coronavirus (COVID-19) outbreak
pandemic has further magnified the complexity of the global
economic and political environment (Bai et al., 2020), at the
same time, the surge in Chinese buying also highlighted
China’s importance as a global crude oil price-setter. Thus,
accurately understanding and forecasting the INE crude oil
future volatility is crucial to effectively reduce the impact of
macroeconomic uncertainties on excessive volatility in the INE
crude oil market and promote the steady and healthy
development of the global economy, which is important to
market participants as well as the government policymakers.

Based on the discussion above, we will focus on the following
questions from the perspective of quantitative analysis. Do these
uncertainties matter in explaining crude oil price volatility? If so,
how can we use them to accurately forecast the oil price volatility?
Answering these questions can help investors and decision
makers better understand China INE crude oil futures market
and provide some inspiration for different market participants.

We address the above issues as follows. First, we analyze the
impact of economic policy uncertainty, geopolitical, and public
infectious disease pandemic on the crude oil volatility by
constructing the GARCH-MIDAS model that incorporates
several macroeconomic uncertainty factors, respectively.
Concerning the economic policy uncertainty, we use two
GEPU indices and six country-specific EPU indices. These
countries are three major crude oil consumers, United States,
China and Japan, and three major crude oil exporters,
United Kingdom, Canada and Russia. Concerning the
geopolitical risk, we use the GPR index and its variation, the
GPT index, and the GPA index. In addition, Liu J. et al. (2019)
found that the effect of common geopolitical risk on crude oil
price volatility is limited because it does not constantly attract
investors’ attention. However, the serious geopolitical risk may
cause oil supply disruptions and result in serious oil price
fluctuation. Thus, we also construct a serious geopolitical risk
(GPRS) index by filtering the GPR index for values larger than the
average. Concerning the public infectious disease pandemic, we
use the IDEMV index. We also consider the serious public
infectious disease pandemic factor and construct the IDEMVS
index as mentioned in Section GARCH-MIDAS Models with
Macroeconomic Uncertainty. Second, in the out-of-sample
analysis, we forecast the crude oil futures volatility based on
these extended GARCH-MIDAS models and then evaluate the
model’s predictive ability by employing the approved model
confidence set (MCS) (Hansen et al., 2005). The MCS allows
us to examine these macroeconomy uncertainties’ predicting
ability of crude oil future volatility and makes a comparison
with each other.

We make the following contributions. First, although Asia is
the world’s largest market for crude oil demand, it has not
established its own crude oil pricing system yet (Shi and Sun,

TABLE 1 | Descriptive statistics.

Mean Max Min Std Skewness Kurtosis

PR 434.528 597.300 210.600 76.524 −1.116 3.830
RETURN −0.058 9.732 −11.203 2.254 −0.291 6.397
RV 1.608 7.115 0.477 0.792 2.119 9.920
GPR 133.239 285.756 63.554 41.849 1.196 6.082
GPRS 15.409 152.517 0 29.088 3.201 14.833
GPA 52.112 264.458 15.627 41.621 3.891 20.106
GPT 188.565 408.964 72.725 69.771 0.759 4.016
GEPUGDP 244.088 411.959 150.749 60.022 0.806 3.429
GEPUPPP 259.433 423.313 157.958 61.142 0.544 3.105
EPUCanada 358.443 678.817 250.537 101.208 1.494 4.801
EPUChina 331.636 649.073 195.706 101.162 1.007 4.420
EPUJapan 123.666 204.657 76.567 32.064 1.012 3.418
EPURussia 323.784 793.635 69.941 187.206 1.281 3.788
EPUUK 188.181 309.972 102.287 54.663 0.378 2.410
EPUUS 156.143 350.460 98.737 60.664 1.672 5.170
IDEMV 6.025 50.215 0.112 13.253 2.297 6.940
IDEMVS 4.515 44.191 0 11.384 2.457 7.788

Notes: PR is the daily price of the INE crude oil futures. RETURN is the daily returns of the
INE crude oil futures. RV is the realized variance. GPR is the geopolitical risk index. GPRS
is a serious geopolitical risk index calculated by Eq. 10. GPT is the geopolitical threat risk
index. GPA is the geopolitical act index. GEPUGDP is the global economic policy
uncertainty weighted as current-price GDP. The GEPUPPP is the global economic policy
uncertainty weighted and that with purchasing power parity (PPP) adjusted GDP
weights. EPUCanada, EPUChina, EPUJapan, EPURussia, EPUUK , and EPUUS are the economic
uncertainty policy index in Canada, China, Japan, Russia, United Kingdom.,
United States. IDEMV is the Infectious Disease Equity Market Volatility Tracker index.
IDEMVS depicts the serious infectious disease pandemic calculated by Eq. 11. For the
sake of numerical stability, we multiply the log returns and the realized volatility by 100,
and all these macroeconomic uncertainty factors are normalized.
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2017). This causes the well-known “Asian Premium” (Zhang
et al., 2018). Therefore, the quantitative analyses on the
macroeconomic uncertainty contributions on the INE crude
oil futures volatility process can help provide important
reference information for establishing the pricing system for
Asia crude oil market. Second, as an important way to help
different market participants understand the China crude oil
futures market, the influence of macroeconomic uncertainties
have on INE crude oil futures market has not been studied by
scholars. By using the currently available information of the INE
crude oil futures market, we conduct a first ever analysis on the
uncertainty determinants of INE crude oil futures volatility. The
results, yet to be improved with more data though, hope to shed
light on the effects of macroeconomic uncertainties have on
China’s new crude oil futures for investors, regulators, and
academia. Third, to the best of our knowledge, we are the first
to consider various GPR indices, and we analyze the different
impacts of GPT and GPA have on the China crude oil futures
volatility. In addition, we also consider various EPU indices, such
as the two version GEPU indices (GEPUGDP and GEPUPPP) and
the country-specific EPU indices from major oil consumers and
exporters, and we test the infectious disease pandemic’s impact
on permanent volatility of crude oil volatility.

The empirical results of this paper present solid evidence of the
influence and predictability of macroeconomic uncertainty
factors on crude oil volatility. The in-sample estimation results
show that the economic policy uncertainty, the geopolitical risk,
and the public infectious disease pandemic factors have a
different impact on the crude oil volatility. First, the EPU
from China has a significantly negative impact on the long-
term volatility, whereas the EPUs from United States,
United Kingdom, Japan, Canada, and Russia have a
significantly positive effect on the long-term volatility. In
addition, the EPU from the United Kingdom. has the largest
average effect on the long-term volatility of oil futures prices
among all of the EPU indices, whereas EPUs in the United States

and Russia are less informative in determining oil futures
volatility. Second, with regard to the geopolitical factors, the
GPRS and the GPT indices have a significant negative impact
on the long-run component of INE crude oil futures volatility,
whereas the GPA’s impact is significantly positive. Third, the
public infectious disease pandemic factors IDEMV and IDMMVS
indices also have a positive effect on long-term volatility. The out
of sample evaluation results suggest that the GARCH-MIDAS
models with macroeconomy uncertainty factors can provide a
more accurate prediction. Specifically, the models with the GPR
index, the GPA index, the global EPU index, the EPU index from
the United Kingdom, and the EPU index from Japan pass the
MCS test under MSFE and MASE criterion with both statistics.
This implies that these macro-level uncertainty factors contain
useful information that the government decision makers and
investors need to pay attention to, and have superior ability to
predict the crude oil futures volatility.

The rest of this paper is structured as follows. Section
Literature Review presents a brief literature review.Section
Econometric Methodology describes the GARCH-MIDAS
model and its extensions, as well as the forecast evaluation.
Section Data discusses the data. Section Empirical Results
analyzes the empirical results. Section Robustness Check
reports a series of robustness tests. Section Conclusion
concludes this study.

LITERATURE REVIEW

In this section, we will review the literature on the subject and laid
the foundation for analyzing the determinants of INE crude oil
volatility. From the perspective of economic relations between
commodity supply and demand and the oil prices, previous
literature have shown that demand, supply, and speculation
are the driving forces of oil price volatility (Narayan and
Narayan, 2007; Mu and Ye, 2011; Kilian and Murphy, 2014;

FIGURE 1 | Key oil contract settlements in 2020 (dollars/Barrel).
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FIGURE 2 | The trends of INE crude oil futures volatility, the GPR index, the GEPU index and the IDEMV index. Panel (A) The trends of INE crude oil futures volatility
and the GPR index. Panel (B) The trends of INE crude oil futures volatility and the GEPU index. Panel (C) The trends of INE crude oil futures volatility and the IDEMV index.
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Pan et al., 2017; Yi et al., 2018; Liao et al., 2019). However, as a
commodity that is traded globally, the crude oil market faces a
much more complicated economic environment and might be

driven by other macroeconomic factors beyond its supply and
demand. After the economic policy uncertainty (EPU) index was
constructed by Baker et al. (2016), many studies have turned their
attention to the EPU’s explanatory power and forecasting power on
the crude oil market when modeling oil market volatilities. Existing
literature provides some arguments explaining the possible relation
between EPU and oil price volatility, and states that the uncertainty
of economic policy affects the economic conditions, and then causes
oil price volatility as well (Aloui et al., 2016; Hailemariam et al.,
2019). Balcilar et al. (2017) show that EPU has significant predictive
power for oil price volatility, Wei et al. (2017) also confirm the
EPU’s predictive power on crude oil volatility and argue that EPU
may be a comprehensive reflection of various economic
information such as global oil demand and supply shocks,
financial crisis, and political events.

Since crude oil has long been regarded as a political weapon for
many governments (Escribano and Valdes, 2017), it has a
geopolitical nature that distinguishes itself from other
commodities and financial assets. After the geopolitical risk
(GPR) index and its variation, geopolitical threat risk index
(GPT) and geopolitical act index (GPA) was proposed by
Caldara and Iacoviello (2018), various studies have found that
the changes in GPR index generally have a significant impact on
oil returns (Antonakakis et al., 2017; Demirer et al., 2018b;
Cunado et al., 2019; Plakandaras et al., 2019). Existing
literature found that GPR indices also have a significant
impact on other aspects of crude oil price movement. Brandt
and Gao (2019) found that geopolitical events can strongly affect
the oil prices in a short period, Liu J. et al. (2020) found that the

TABLE 3 | Estimation GARCH-MIDAS models with economic policy uncertainty.

GEPUGDP GEPUPPP EPUChina EPUUS EPUUK

μ 0.011 0.015 0.004 -0.008 -0.002
(0.103) (0.104) (0.105) (0.102) (0.104)

α 0.059 0.066 0.091* 0.035 0.048
(0.048) (0.049) (0.047) (0.044) (0.040)

β 0.105 0.096 0.072 0.108 0.056
(0.130) (0.133) (0.193) (0.126) (0.385)

c 0.460** 0.460** 0.399** 0.462** 0.434**
(0.187) (0.190) (0.200) (0.182) (0.181)

m −1.143 −0.882 2.532* −0.299 −5.611**
(1.604) (1.530) (1.406) (0.372) (2.666)

θ1 0.808*** 0.826*** 0.735*** 0.642*** 0.756***
(0.161) (0.166) (0.153) (0.142) (0.133)

ω1 10.261* 9.812* 11.728* 15.776 11.435
(5.504) (5.456) (6.089) (10.188) (7.758)

θ2 0.005 0.004 -0.007* 0.004** 0.029**
(0.007) (0.006) (0.004) (0.002) (0.013)

ω2 1.467*** 1.062*** 2.547*** 95.937*** 2.187***
(0.523) (0.299) (0.587) (11.764) (0.269)

Log_Lik −688.874 −689.022 −687.035 −686.138 −685.695
BIC 1429.692 1429.988 1426.012 1424.220 1423.334
VR 57.885 57.941 62.698 61.862 65.336

Notes: The numbers in parentheses are the standard errors of the estimated parameters.
The Asterisks indicate statistical significance at the 1% (***), 5% (**) or 10% (*) level.
Log_Lik is the logarithm maximum likelihood function value. BIC is the Bayesian
information criterion. The variance ratio VR(X) � var(log(τXM))/var(log(σXM)) is calculated
on monthly aggregates.

TABLE 4 | Estimation GARCH-MIDAS models with economic policy uncertainty
and infectious disease pandemic.

EPUCanada EPURussia EPUJapan IDEMV IDEMVS

μ −0.006 −0.010 0.001 −0.004 0.044
(0.104) (0.107) (0.104) (0.102) (0.101)

α 0.058 0.051 0.050 0.053 0.097*
(0.041) (0.041) (0.045) (0.050) (0.056)

β 0.071 0.010 0.139 0.136 0.428*
(0.158) (0.283) (0.097) (0.117) (0.245)

c 0.462** 0.448** 0.487** 0.440** 0.451**
(0.193) (0.210) (0.192) (0.184) (0.224)

m −1.834 −0.684 −0.693 0.441 2.941***
(1.211) (0.536) (0.537) (0.493) (0.687)

θ1 0.737*** 0.709*** 0.690*** 0.500 −1.071**
(0.146) (0.139) (0.140) (0.314) (0.454)

ω1 12.411** 14.925 13.800* 24.675 1.000***
(6.216) (9.437) (7.147) (61.107) (0.356)

θ2 0.006* 0.003* 0.008** 0.025* 0.090**
(0.004) (0.002) (0.004) (0.013) (0.039)

ω2 1.000*** 1.769*** 94.997*** 97.278*** 10.550
(0.320) (0.389) (10.808) 22.283 (8.778)

Log_Lik −687.234 −687.329 −686.953 −685.161 −689.812
BIC 1426.411 1426.600 1425.849 1422.265 1431.568
VR 60.226 64.166 57.336 62.470 39.229

Notes: The numbers in parentheses are the standard errors of the estimated parameters.
The Asterisks indicate statistical significance at the 1% (***), 5% (**) or 10% (*) level.
Log_Lik is the logarithm maximum likelihood function value. BIC is the Bayesian
information criterion. The variance ratio VR(X) � var(log(τXM))/var(log(σXM)) is calculated
on monthly aggregates.

TABLE 2 | Estimation GARCH-MIDAS models with geopolitical risk.

RV GPR GPRS GPT GPA

μ 0.200 0.006 0.000 −0.001 0.004
(0.213) (0.101) (0.099) (0.099) (0.110)

α 0.100* 0.065 0.065 0.066* 0.086**
(0.055) (0.044) (0.040) (0.040) (0.052)

β 0.840*** 0.137 0.113 0.108 0.000
(0.061) (0.084) (0.084) (0.085) (0.474)

c 0.120 0.538** 0.544** 0.546** 0.321*
(0.085) (0.213) (0.219) (0.224) (0.184)

m −1.099 0.923 0.150* 1.621* −1.280
(1.401) (0.659) (0.338) (0.916) (0.800)

θ1 −0.475 0.796*** 0.841*** 0.819*** 0.590***
(0.564) (0.155) (0.149) (0.149) (0.164)

ω1 1.000 11.112** 10.874** 11.287** 15.469
(2.864) (4.803) (4.504) (4.641) (13.085)

θ2 −0.005 −0.008* −0.008* 0.034*
(0.003) (0.005) (0.004) (0.018)

ω2 11.898** 4.470*** 4.277*** 1.349***
(5.449) (1.620) (1.505) (0.364)

Log_Lik −673.560 −687.146 −686.308 −685.867 −685.869
BIC 1387.024 1426.235 1424.559 1423.677 1423.680
VR 9.558 54.425 56.421 56.788 71.612

Notes: The numbers in parentheses are the standard errors of the estimated parameters.
The Asterisks indicate statistical significance at the 1% (***), 5% (**) or 10% (*) level.
Log_Lik is the logarithm maximum likelihood function value. BIC is the Bayesian
information criterion. The variance ratio VR(X) � var(log(τXM))/var(log(σXM)) is calculated
on monthly aggregates.
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serious geopolitical risk can improve the model fitting and
forecasting performance concerning crude oil volatility.

In addition to the uncertainty caused by the abovemacroeconomic
policy environment and geopolitical risk, public health events can also
cause uncertainty to the macroeconomy. Notably, the COVID-19
outbreak in December 2019 has brought shock to global financial
markets. Intuitively, the crude oil market may also react to the shock
of such a public health event (Demirer et al., 2018a). The COVID-19
pandemic did cause server distortions and fluctuations in the crude oil
markets. In April 2020, the benchmark price for crude oil of the May
futures in theUnited States even fell to negative $37.63. In this context,
Baker et al. (2020) constructed the Infectious Disease Equity Market
Volatility Tracker index (IDEMV) index to quantitativelymeasure the
magnitude of an infectious disease pandemic, which is available from
January 1985 to the present. This helps investors and academia better
understand the impact of the epidemic panic on economic
fundamentals. Based on the IDEMV index, recent literature
confirms that the eruption of COVID-19 causes greater price
fluctuations in commodities and financial assets such as stock,
gold, and cryptocurrency, than in days before that (Corbet et al.,
2020; Haroon and Rizvi, 2020; Ji et al., 2020; Zhang et al., 2020).
Therefore, this paper also considers the uncertainty brought from the
public health events, and to observe how the INE crude oil futures
market reacts to this uncertainty.

Previous efforts have been made to predict the volatility of oil
prices by employing GARCH-class models (Sadorsky, 2006;
Nomikos and Pouliasis, 2011; Wang and Wu, 2012; Chan and
Grant, 2016) and realized GARCH-class models (Haugom et al.,
2014; Sévi, 2014). However, the imputing data of both GARCH-
class models and realized GARCH-class models are strictly
restricted at the same frequency. They are all failed to
explaining the macroeconomic determinants at different
sampling frequencies, which is crucial for investors and

government policymakers to understand the market (Engle
and Rangel, 2008). Ghysels et al. (2004) proposed mixed data
sampling (MIDAS) regression models, and Colacito et al. (2011)
and Engle et al. (2013) applied the MIDAS technique into the
GARCHmodel and constructed the GARCH-MIDASmodel, and
the GRACH-MIDASmodel successfully addresses the problem of
mismatching data frequency. After that, many macroeconomic
factors have been applied to investigate underlying economic
factors of asset volatility (Conrad et al., 2014; Liu J. et al., 2020;
Sheng et al., 2020), and verified the superiority of predictive
ability of GARCH-MIDAS model (Ghysels et al., 2019).
Therefore, we construct the benchmark GARCH-MIDAS
model with realized volatility (RV) and 15 individual
GARCH-MIDAS models with various macroeconomy
uncertainty determinants.

To compare the forecast performance of different models, we
use the MCS test proposed by Hansen et al. (2005) to identify the
most informativeness factor among our macro uncertainties. The
current research has not yet considered the relation between
macro uncertainty factors and INE crude oil market, to the best of
our knowledge, we are the first to consider the effect of various
macro uncertainty factors on the INE crude oil market. With the
rising international status of China and the expanding scale of its
crude oil market, it is necessary to understand and forecast the
movement of INE crude oil futures price.

ECONOMETRIC METHODOLOGY

The GARCH-MIDAS Model
Since the MIDAS technique allows using macroeconomic
fundamental data at lower frequencies, the GARCH-MIDAS
model is widely used to predict daily crude oil futures

TABLE 5 | MCS test with monthly RVs.

MFSE MASE

Tmax TR Tmax TR

GPR 1.000 1.000 1.000 1.000
GPRS 1.000 0.890 1.000 0.000
GPT 0.510 0.417 0.867 0.120
GPA 1.000 1.000 1.000 1.000
GEPUGDP 1.000 1.000 0.962 0.591
GEPUPPP 0.423 0.356 0.951 0.249
EPUChina 0.664 0.417 0.880 0.201
EPUUS 0.000 0.000 0.000 0.000
EPUUK 1.000 1.000 1.000 1.000
EPUCanada 0.000 0.000 0.000 0.000
EPURussia 0.000 0.000 0.000 0.000
EPUJapan 1.000 1.000 1.000 1.000
IDEMV 0.000 0.000 0.000 0.000
IDEMVS 0.000 0.000 0.000 0.000
RV 0.802 0.574 0.983 0.347

Note: We use bold number stands for p-values of the model that larger than 0.25,
indicating that the corresponding model passes the MCS test under the MAFE loss
function and theMSFE loss function, with the Tmax and TR statistic. The p-value of 1.000
indicates that a model has the best performance among all the testing models. MSFE
refers to the mean squared forecast error and MAFE refers to mean absolute forecast
error. The lags of the RV are set to 22.

TABLE 6 | MCS test with bimonthly RVs.

MFSE MASE

Tmax TR Tmax TR

GPR 1.000 0.956 1.000 1.000
GPRS 1.000 0.047 1.000 0.000
GPT 0.839 0.278 1.000 0.004
GPA 1.000 1.000 1.000 0.965
GEPUGDP 0.374 1.000 1.000 0.126
GEPUPPP 1.000 0.028 1.000 0.911
EPUChina 0.635 0.246 1.000 0.495
EPUUS 0.000 0.000 1.000 0.515
EPUUK 1.000 0.943 1.000 0.907
EPUCanada 0.253 0.047 1.000 0.017
EPURussia 1.000 1.000 0.425 0.007
EPUJapan 1.000 1.000 1.000 1.000
IDEMV 0.000 0.000 0.283 0.938
IDEMVS 0.000 0.000 0.000 0.000
RV 0.998 0.647 1.000 0.495

Note: We use bold number stands for p-values of the model that larger than 0.25,
indicating that the corresponding model passes the MCS test under the MAFE loss
function and theMSFE loss function, with the Tmax and TR statistic. The p-value of 1.000
indicates that a model has the best performance among all the testing models. MSFE
refers to the mean squared forecast error and MAFE refers to mean absolute forecast
error. The lags of the RV are set to 44.
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volatility. Therefore, this paper uses the benchmark GARCH-
MIDAS model (Liu J. et al., 2019) and extends it by incorporating
macroeconomic uncertainty factors as our explanatory variable.

The GARCH-MIDAS model is composed of two parts: one is
to model the short-term component of volatility, and the other is
to model the long-term component of volatility. The short-term
component is a GARCH (1,1) process, while the latter is
determined by the history of the realized volatility or
macroeconomic variables weighted by the MIDAS
polynomials. The GARCH-MIDAS model is constructed as
follows. Suppose the return of the crude oil future is written as

ri,t � μ + ����
τtgi,t

√
εi,t , ∀i � i, . . . ,Nt (1)

εi,t
∣∣∣∣Φi−1,t ∼ N(0, 1) (2)

where rit refers to INE crude oil futures return on day i in month t,
Φi−1,t is the information set, μ refers to the conditional mean of
returns on day i-1. The volatility component,

����
τtgi,t

√
, of Eq. 1 is

divided into t a short-term component, gi,t , and a long-term
component, τt . Following Liu J. et al., 2019, gi,t is assumed to
follow a mean-reverting unit-variance GJR-GARCH (1,1) process
(Glosten et al., 1993) as:

gi,t � (1 − α − c/2 − β) + (α + c1{ �����
τt−1gi,t−1

√
εi,t−1 < 0})

(ri,t−1 − μ)2
τt

+ βgi−1,t
(3)

The long-term component τt , is defined as Eq. 4,

τt � m + θ∑
K

k�1
φkVt−k (4)

wherem is the intercept, and θ refers to the weighted effects, with
the weighting scheme function as (∑K

k�1φk), of lagged variables,
Vt−k, on the long-term oil volatility. Following Engle et al. (2013),
we use the log transformation to guarantee the nonnegativity of
the conditional variances in our estimation and prediction.

We define the benchmark model when lagged variable Vt−k
equals RVt−k, and its logarithmic form as follows:

log(τt) � m + θ∑
K

k�1
φk(ω1,ω2)RVt−k (5)

RVt � ∑
Nt

i�1
r2i,t (6)

Where RV is the realized volatility calculated by intraday high-
frequency data using Eq.6, k is the lagged value of the RV, the lags
of the RV are set to 224,466 in Section Out-of-Sample Evaluation
and Section Robustness Check following Engle et al. 2013 and Liu
J. et al. (2019). The weighting scheme (Ghysels et al., 2004; Engle
et al., 2013) used in Eq. 4 and Eq. 5 are the unrestricted Beta
function defined as below:

φk(ω) �
(k/K)ω− 1

∑K
j�1(j/K)ω−1

(7)

φk(ω1,ω2) � (k/ K)ω1− 1(1 − k/K)ω2− 1

∑K
j�1j/Kω1−1(1 − j/K)ω2−1 (8)

where the parameter ω1 is the weighting scheme, and ω2 is the
decaying rate of the Beta function.

GARCH-MIDAS Models With
Macroeconomic Uncertainty
To investigate the effect of macroeconomic uncertainty have on
oil future market volatility, we add the macroeconomic
uncertainty factors (MU) we mentioned above into Eq. 5.
Therefore, we get the GARCH-MIDAS-MU model. The long-
term component, log(τt), can be updated as

log(τt) � m + θ1 ∑
K

k�1
φk(ω1,ω2)RVt−k + θ2 ∑

K

k�1
φk(ω1,ω2)MUt−k

(9)

Where the MU we choose the geopolitical risk indices
(Antonakakis et al., 2017; Plakandaras et al., 2019), economic
policy uncertainty indices (Balcilar et al., 2017), and infectious
disease pandemic indices as the determinants.

To further examine whether serious geopolitical risk and
infectious disease pandemic is informative to improve the
predictive accuracy for oil futures volatility, we define the
GPRS and IDEMVS as follows:

GPRSt−k � GPRt−k × I(GPRt−k >GPRmean) (10)

EMVSt−k � EMVt−k × I(EMVt−k >EMVmean) (11)

TABLE 7 | MCS test with quarterly RV.

MFSE MASE

Tmax TR Tmax TR

GPR 1.000 0.980 1.000 1.000
GPRS 1.000 0.132 1.000 0.001
GPT 1.000 0.816 1.000 1.000
GPA 1.000 1.000 1.000 0.969
GEPUGDP 1.000 0.461 1.000 0.926
GEPUPPP 1.000 0.236 1.000 0.297
EPUChina 1.000 0.308 1.000 0.288
EPUUS 1.000 0.355 0.952 0.153
EPUUK 1.000 1.000 1.000 1.000
EPUCanada 1.000 0.002 1.000 0.005
EPURussia 1.000 0.003 0.500 0.001
EPUJapan 1.000 0.995 1.000 1.000
IDEMV 1.000 0.904 0.234 0.918
IDEMVS 0.377 1.000 0.000 0.000
RV 1.000 0.533 1.000 0.697

Note: We use bold number stands for p-values of the model that larger than 0.25,
indicating that the corresponding model passes the MCS test under the MAFE loss
function and theMSFE loss function, with the Tmax and TR statistic. The p-value of 1.000
indicates that a model has the best performance among all the testing models. MSFE
refers to the mean squared forecast error and MAFE refers to mean absolute forecast
error. The lags of the RV are set to 66.
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Forecast Evaluation
To make a comparison of forecasting performance with the
different GARCH-MIDAS-MU models, we use MCS test with
two popular loss functions as our evaluation criteria. The loss
functions are the mean squared forecast error function (MSFE)
and the mean absolute forecast error function (MAFE), and are
defined as follow:

MSFE � M−1 ∑
M

t�1
(yt − ŷt)2 (12)

MAFE � M−1 ∑
M

t�1

∣∣∣∣yt − ŷt
∣∣∣∣ (13)

where yt is the actual daily crude oil futures volatility on day t, and
we use RV in day t that measures the actual daily crude oil futures
volatility, ŷt is the predicted value obtained from different
GARCH-MIDAS models and M is the number of predicted
values.

DATA

The sample data used in this paper are as follows: the intraday INE
crude oil high-frequency data, the daily INE crude oil futures prices,
and the monthly macroeconomic uncertainty factors of oil futures
price volatility. Following Sévi (2014), we use the 5-minute data as our
sample data to calculate the RV, and get the intraday 5-min high-
frequency data from the Shanghai International Energy Exchange.
Themonthly dataset consists of threeGPR indices, twoGEPU indices,
six country-specific EPU indices and the IDEMV and IDEMVS
indices. The monthly GPR1 indices were proposed by Caldara and
Iacoviello (2018), and are the key indicators that demonstrate risk
from geopolitical events such as wars and terrorism. To isolate the
effects of pure geopolitical risk, we also consider the two related

FIGURE 3 | The fitting value of total volatility and long-term volatility by different GARCH-MIDAS models.

1The GPR index can be downloaded from http://www.policyuncertainty.com/gpr.
html.
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indexes: the geopolitical threats index (GPT) and the geopolitical acts
(GPA) index. The GPT index depicts the geopolitical threat, while the
GPA index depicts the geopolitical adverse events. With regard to the
economic policy uncertainty factors, we use the EPU2 indices
constructed by Baker et al. (2016). The GEPU indices have two
versions with different calculations: one is calculated by current-price
GDP measures (denoted as GEPUGDP) and the other is calculated by
PPP-adjusted GDP (denoted as GEPUPPP). We selected three major
oil consumers (i.e., the United States, China, and Japan) and three
major oil exporters (Russia, Canada, and the United Kingdom) as our
country-specific EPU indices. With regard to the infectious disease
pandemic of public health events, we use the monthly data is of the
Infectious Disease Equity Market Volatility Tracker (IDEMV)
index constructed by Baker et al. (2020). For model comparison
of fitting and forecasting performance, we make all these
macroeconomic uncertainty indices have the same monthly
frequency. We obtain the INE crude oil futures high-
frequency data from the CSMAR database and the monthly
macroeconomic uncertainty indices from the Economic Policy
Uncertainty website. The data covered from 27th March 2018 to
24th June 2020 with 305,004 intraday 5-min observations, 545
daily observations, and 28 monthly observations.

Table 1 shows the descriptive statistics of the variables. First,
compared with the standard deviation, the sample mean of the
INE crude oil futures return is relatively small, suggesting that we
can use a constant when we modeling the volatility of crude oil
futures prices (Sadorsky, 2006; Narayan and Narayan, 2007). The
RV of the crude oil futures price is skewed to the right and exhibit
high kurtosis. Second, among the GPR indices, the standard
deviation of GPT and the GPA is either larger and smaller
than the GPR index, indicating that the GPT changes more
frequently and violently and GPA is relatively stable. Third,
the mean of IDEMV and IDEMVS is relatively small
compared with their standard deviation, indicating that they
are both volatile.

Figures 1–3 show the time series of INE crude oil futures and
the GPR, EPU, and IDEMV factors. Due to the impact of the
epidemic and the international political and economic
situation, the overnight trading of INE futures in China was
suspended on February 3, 2020, and resumed on May 6, 2020,
the shade is the period that the oil futures are suspended from
overnight trading.

Figure 2 shows the general relationship among the crude oil
futures volatility, the GPR index, the GEPU index, and the IDEMV
index. As can be seen from panel (A), before the COVID-19 broke
out, changes in GPR index and RV tend to be consistent, presenting
potential co-movements there.However, during theCOVID-19 broke
out periods, the GPR index is relatively stable, and the investors are
shocked by the wild swings of the crude oil futures market. With
regard to theGEPU indices, there are obvious co-movements between
the crude oil future RV and the twoGEPU indices.With regard to the
IDEMV index, the crude oil future volatility is co-movement with the

IDEMV index only during the COVID-19 broke out periods. This
indicates that when GEPU and IDEMV would increase the volatility
of the crude oil futures market, the GPR index might decrease the
volatility of the crude oil futures market.

EMPIRICAL RESULTS

In-Sample Estimation Results
Before estimating the impact of macro uncertainty indicators on
crude oil futures volatility, the variations of the benchmarkGARCH-
MIDAS model with long-run RVs were estimated as a comparative
reference for the extended models and then we further apply the
macro uncertainty indicators in our extended models.

Tables 2–4 show the benchmark GARCH-MIDAS model and
the extensions with geopolitical risk (Antonakakis et al., 2017;
Plakandaras et al., 2019), economic policy uncertainty (Balcilar
et al., 2017), and infectious disease pandemic factors (Baker et al.,
2020) as the determinants. We use the maximum likelihood
estimation method to obtain the parameters of the GARCH-
MIDAS model. The lag length k � 22 for long run RVs, and k
� 12 for monthly macro factors and are following Conrad et al.
(2014) and Gkillas et al. (2018). Interestingly, concerning the
parameter estimates among all these models, the GARCH-
MIDAS models with monthly macroeconomic factors have
lower estimates β than the model with single daily long run
RVs. While for the models with monthly τt the estimates of α
are close to zero. In addition, for all models, α + β< 1, whichmeans
all the GARCH-MIDAS models are stable.

Consistent with previous literature (Conrad and Kleen, 2020),
the c parameter is statistically significant and provides strong
evidence for the asymmetry effect of the volatility movement.
Based on the loglikelihood value and the BIC value, the models
with macro factors have better fitting performs than the
benchmark GARCH-MIDAS model. These are in line with
findings in the previous literature.

Since the main focus of our paper is to investigate whether the
macroeconomic uncertainties have an impact on the long-term
volatility of the crude oil futures, we pay more attention to the
value of parameters θ1 and θ2 in Eq. 9. The parameters θ1 and
θ2 stand for the effect of monthly macroeconomic uncertainties on
the long-term volatility of INE crude oil futures prices. The parameters
θ1 and θ2 reflect the long-term impact of realized volatility andmacro
uncertainty on volatility respectively. If the value of parameters θ1 and
θ2 are positive, then a high level realized volatility and macro
uncertainty factors would cause serious divergence in the
expectations of crude oil market participants and thus affects the
crude oil futures volatility. The parameter ω1 and ω2 are the optimal
estimated coefficients for the constrained weighting scheme function
-BETA functions. According to the coefficients θ and ω, the influence
of low frequency monthly factors on the long-term component of
volatility can be estimated. As in Tables 1–3, except for the
benchmark GARCH-MIDAS model, the θ1 is significantly positive
at 1%, whichmeans higher levels of financial volatility tend to increase
long-term volatility of the crude oil futures market. While the θ2
among these models are different, and we will discuss it as follow.

2The EPU index can be found at http://www.policyuncertainty.com/global_
monthly.html.
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Table 2 reveals the empirical results of the geopolitical risk
factors. First, the results show that geopolitical risk contributes to
the crude oil futures volatility in different ways. In column (2)-
column (3), both the GPR and the GPRS have a negative impact
on the long-run component of INE crude oil futures volatility,
which is consistent with Antonakakis et al. (2017) and Mei et al.
(2020). This indicates that when a geopolitical risk shock occurs,
the crude oil futures market participants synchronize their
trading activity in the same direction by reducing the
volatility. However, the impact of the GPR is not significant,
whereas the impact of GPRS is significant. This can be explained
by Liu J. et al. (2019), that although the government policymakers
and the oil market participants concern about the geopolitical
risk, they are used to common geopolitical risk and are only
sensitive to the serious geopolitical risk. Second, we further
investigate the categorical GPR index. In column (4)–(7), both
the threat related index and the act related index have a significant
impact on the crude oil futures volatility. The GPT is significantly
negative whereas the GPA is significantly positive. This indicates
that although the geopolitical threat makes market participants
synchronize their trading behavior, the geopolitical act causes
divergence in the expectations of oil futures market participants
and increases the crude oil futures volatility.

Tables 3, 4 reveal the empirical results of the EPU indices and
the infectious disease pandemic factors. As shown in Tables 3, 4,
two GEPU indices do not have statistically significant impacts on
long-term volatility, whereas the country-specific EPU indices do
have impacts on the long-term volatility in different ways. The EPU
in China has a significantly negative impact on the long-term
volatility, whereas the EPUs in Unted States United Kingdom,
Japan, Canada, and Russia have a significantly positive effect on the
long-term volatility. Specifically, the EPUs from the
United Kingdom. with a θ2 value of 0.029, indicates that
compared with other major crude oil trading countries, the
economic policy uncertainty in the United Kingdom has the
greatest impact on the volatility of China’s crude oil futures.
Besides, EPUs from Canada and Japan also have a great
influence on the crude oil futures volatility followed by the
United Kingdom. However, the EPUs in the United States and
Russia do not have a statistically significant impact on the crude oil
futures volatility. Table 3 column (4)–(5) shows that both the
IDEMV and IDEMVS have a positive effect on the long-term
volatility. The IDEMV with a θ2 value of 0.025, whereas the
IDEMVS with a θ2. value of 0.09, indicates that the market
participants are more sensitive to the serious public health events.

Figure 3 plots the fitting value of total daily volatility and long-
term volatility of the 12 GARCH-MIDAS models. Since the trend of
GPRS and IDEMV is similar to that of GPR and IDMEVS, so this
paper will not show the figures for them. The orange dashed line
represents the total daily volatility and the blue line represents the
long-term volatility calculated by the GARCH-MIDAS model with
different macroeconomic uncertainty factors. It is clear that the daily
total volatility in all 12 subfigures of Figure 3 are similar, but the long-
term volatilities with different monthly macroeconomic uncertainty
factors are quite different. Figure 3 suggests that GPR indices, EPU
indices, and infectious disease pandemic have different influences on
long-term oil volatility. In the next section, we mainly discuss which

macroeconomic uncertainty factors are most informative in
forecasting the daily volatility of crude oil futures prices.

Out-of-Sample Evaluation
In this section, we employed the out-of-sample rolling method to
evaluate the predictability of the above models. Considering the
sample sized of our data and to ensure that our conclusions are
reliable, we set out window size as 430 days3, and we get 115 out of
sample predicted values. This paper compared the models’ out-of-
sample predictability by using the MCS test.

The p-values of loss functions in the MCS test are the
indicator of the models’ forecasting performance. If the p-values
greater than a specific threshold, which is also called MCS alpha, the
corresponding model is supposed to have better predictability than
the others (Hansen et al., 2005). However, there is no consensus on
the specific value of the threshold p-value inMCS tests, and different
literatures set the different MCS alpha values (Tian and Hamori,
2015; Pu et al., 2016). Table 5 reports the p-values of the MCS tests
for GARCH-MIDAS-MU models. To clearly distinguish the most
informative macroeconomic uncertainty factor contributing the
long-term volatility, we follow the most related studies of Liu J.
et al. (2019), which investigate the oil market volatility and set the
threshold p-value to be 0.25 in Tables 5–7.

First, Table 5 shows the results of out-of-sample forecasting
performance with the monthly RVs. Under the MSFE criterion, the
model with GPR, GPRS, GPT, GPA, GEPUGDP, GEPUPPP , EPUChina,
EPUUK , EPUJapan, pass the MCS test with p-values larger than 0.25 for
both test statistics. Under the MAFE criterion, the models with GPR,
GPA, GEPUGDP, EPUUK and EPUJapan also pass the MCS test under
both statistics. Overall, the model with GPR, GPA, GEPUGDP , EPUUK ,
EPUJapan pass the MCS test under MSFE and MASE criterion with
both statistics.

Interestingly, whereas the GARCH-MIDAS-GPRS model fails to
predict more accurately in our sample, the GARCH-MIDAS-GPRS
model’s predictability is proved to be superior in forecasting oil prices
(Liu J. et al., 2019). After including the GPR and GPA indices, the
forecast accuracy of GARCH-MIDASmodel is significantly improved.
This indicates that government policymakers and INE crude oil futures
market participants pay attention to geopolitical risk and the
geopolitical adverse events, which cause increased oil price volatility.
However, our results show that the GPRS index is not informative in
predicting the volatility.

The results in Table 5 also show that EPU indices, in general, are
more informative than the rest of the macroeconomic uncertainties
when predicting the volatility of crude oil futures. Furthermore,
among all kinds of EPU in our sample, the GEPUGDP , the EPUUK ,
and the EPUJapan indices are the most informative macroeconomic
uncertainty factors in forecasting crude oil futures volatility. First, we
find that GEPUGDP is more informative than the GEPUPPP in
predicting the volatility of crude oil futures price. This indicates
that the crude oil futures market participants are paying more
attention to nominal economic indicators than to real ones.
Second, among the six major crude oil consumers and exporters,

3The data covered from 27th March 2018 to 31st December 2019.
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EPUUK , and the EPUJanpan indices are themost informative. It might
be the following reasons. First, the origin of crude oil in China and
United Kingdom. is similar. Both China’s crude oil and Brent’s crude
oil comes mainly from the Middle East and North Africa, thus
China’s crude oil spot pricing mainly refers to the Brent crude oil
price4. A previous study shows that China’s crude oil market is more
correlated with the Brentmarket compare with othermajor crude oil
markets (Zhang and Ma, 2020), Yang et al. (2020) shows that Brent
markets have a unidirectional Granger causality relationship with
the INE crude oil futures market. Furthermore, Antonakakis et al.
(2014) shows that there are spillover effects between oil prices
changes and EPU index, Ma et al. (2019) shows that the EPU
from Europe, which including the United Kingdom., increases the
volatility in Brent futures, which is the benchmark of the China’s
crude oil spot price. Thus, the EPU in United Kingdom. might
contain more information concerning the supply and demand of the
INE crude oil market. Second, EPU from Japan might contain more
information about the supply and demand of its importers and
global crude oil demand. Similar to China, Japan’s crude oil comes
mainly from the Middle East, followed by the United Arab Emirates
and Saudi Arabia, and Rehman (2018) shows that oil specific
demand shock has a significant impact on EPU from Japan
compared with other countries. The similarity of the crude oil
importers between China and Japan, and the sensitivity of
EPUJapan to the global oil demand shock might contribute to the
superior predictive power of EPUJapan compared with other
countries. Third, compared with other countries, previous
literature shows the EPU from Japan and United Kingdom are
closely related to Chinese economic conditions such as the financial
conditions (Liu Z. et al., 2019; Li and Zhong., 2020; Ahmadi et al.,
2020), monetary aggregate (Han et al., 2016), exchange rate (Chen
et al., 2020; Zheng and Kaizoji, 2019), and market uncertainty (Ji et
al., 2020; Smales, 2020). These factors are closely related to the crude
oil market (Ahmadi et al., 2020; Yousefi and Wirjanto, 2004; Ratti
andVespignani, 2013), thus it is reasonable that the EPUs from these
two counties may contain information of the future volatility of the
INE crude oil futures market. The superior predictive power of
EPUUK , and the EPUJapan also suggest that INE crude oil futures
market is not only following the international crude oilmarket, it also
reflecting the special characters in Asia. It is interesting that EPUChina

does not pass theMCS testwithMASE criterionwithTR statistic, even
though China is where China’s Shanghai crude oil futures market is
located at. As the world’s second largest economy and crude oil
consumer country, the economic conditions in China should
influence crude oil future prices. Previous literatures also found
empirical evidence that China’s economic condition plays a crucial
role in the global oilmarketwith respect to crude oil prices (Yuan et al.,
2008) and oil price variation (Liu et al., 2016). However, in our results,
the EPU in China do not have superior predictive power than other
macroeconomic uncertainty factors. Wei et al. (2017) provide some

insights for our results. China’s priority, for now, is to maintain stable
economic growth, especially under the recent complex environment.
Thus, the fiscal and monetary policy, in this case, is unlikely to cause
severe volatility in crude oil futures price.

ROBUSTNESS CHECK

Since different lags of RV (RVt−k) in Eqs 4, 5 may result in different
accuracy in forecasting the volatility and further affect the predictive
power of exogenous macroeconomic uncertainty factors. Previously
study of Engle et al. (2013) addresses this issue with the monthly,
biannual, and quarterly lags of RV in the GARCH-MIDAS models.
Following Engle et al. (2013), this paper also considers the bimonthly
and quarterly lags of RV instead of the monthly RV in Eqs 4, 5 in
robustness check.We investigatewhethermacroeconomic uncertainty
factors could still have a more accurate forecast of RV with different
lags of RV.Tables 6, 7 present theMCS testing results with bimonthly
RVs, the p-values of the GPR, GPA, GEPUGDP , EPUUK , EPUJapan ,
pass the MCS test with p-values larger than 0.25 for all four test
statistics. Thus, our results are robust with different lags of RVs.

CONCLUSION

As a political commodity, crude oil is closely bound up with the
national strategy, global politics, and national economic strength
and China’s rise is playing an increasingly important role in the global
crude oil market. Therefore, it is important for policymakers and
investors to accurately understand and predict China crude oil futures
volatility. Recent literature have found that many macroeconomic
uncertainty indicators have great effects on crude oil volatility. Among
the various uncertainty factors, the geopolitical risk and the economic
policy uncertainty have traditionally been considered the most
powerful. In addition, the Coronavirus (COVID-19) outbreak in
December 2019 has brought great pains to the global economy and
financial markets. Thus, we analyze the impact of uncertainty factors
have on the futures volatility such as traditional uncertainty factors
GPR and EPU, and also consider the IDEMV, that the uncertainty
comes from the public health event. We use the GARCH-MIDAS
model with these macroeconomic uncertainties respectively, and we
identified which macroeconomic uncertainty factor is more
informative when predicting the crude oil futures volatility.

With regard to the model fitting results, first, we find that
geopolitical risk significantly influences the crude oil futures market
prices. Especially, the GPR and the GPRS have a significant negative
impact on the long-run component of INE crude oil futures volatility,
and the GPT is significantly negative whereas the GPA is significantly
positive. Second, the EPU in China has a significantly negative impact
on the long-term volatility, whereas the EPUs in United States,
United Kingdom, Japan, Canada, and Russia have a significantly
positive effect on the long-term volatility. Specifically, the EPU from
the United Kingdom. makes the largest contribution to the long-term
volatility of oil futures prices among all of the EPU indices, whereas
EPUs in the U.S. and Russia are less informative in determining oil
volatility. Third, the infectious disease pandemic factor also has a
positive effect on long-term volatility.

4In 2008, the National Development and Reform Commission issued
“Administrative Measures for Oil Prices (For Trial Implementation),” the
program rules that China domestic crude oil prices are base on the price in
Brent, Dubai and Minas, coupled with the domestic cost of import tariffs, refining,
distribution of costs and profits.
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With regard to the model forecasting results, the model with GPR,
GPA, GEPUGDP , EPUUK , EPUJapan pass the MCS test under MSFE
and MASE criterion with both statistics. This implies that these
macroeconomic uncertainty factors contain useful information and
the government policymakers and oil market investors pay attention
to these factors, which cause increased oil price volatility.

DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to
the corresponding author.

AUTHOR CONTRIBUTIONS

AYmade substantial contributions to the conception of the work.
YL acquired the data. MY analyzed and interpreted the data for

the work, and drafted and revised the work it critically for
important intellectual content.

FUNDING

This research was funded by the National Natural Science
Foundation of China (NSFC) and Economic and Social
Research Council of UK (ESRC) (71661137006), National
Social Science Foundation of China (SSFC) (19ZDA159).

ACKNOWLEDGMENTS

The authors sincerely thank the editor and the reviewers of
this paper.

REFERENCES

Ahmadi, M., Bashiri Behmiri, N., and Manera, M. (2020). The theory of storage in
the crude oil futures market, the role of financial conditions. J. Fut. Mark. 40 (7),
1160–1175. doi:10.1002/fut.22113

Aloui, R., Gupta, R., and Miller, S. M. (2016). Uncertainty and crude oil returns.
Energy Econ. 55, 92–100. doi:10.1016/j.eneco.2016.01.012

Antonakakis, N., Chatziantoniou, I., and Filis, G. (2014). Dynamic spillovers of oil
price shocks and economic policy uncertainty. Energy Econ. 44, 433–447.
doi:10.1016/j.eneco.2014.05.007

Antonakakis, N., Gupta, R., and Kollias, C. S. (2017). Geopolitical risks and the oil-
stock nexus over 1899–2016. Finance Res. Lett. 23, 165–173. doi:10.1016/j.frl.
2017.07.017

Bai, L., Wei, Y., Wei, G., Li, X., and Zhang, S. (2020). Infectious disease pandemic
and permanent volatility of international stock markets: a long-term
perspective. Finance Res Lett. 2020, 101709. doi:10.1016/j.frl.2020.101709

Baker, S. R., Bloom, N., and Davis, S. J. (2016). Measuring economic policy
uncertainty. Q. J. Econ. 131 (4), 1593–1636. doi:10.1093/qje/qjw024

Baker, S. R., Bloom, N., Davis, S. J., et al. (2020). The unprecedented stock market
reaction to COVID-19. Rev. Asset. Pricing. Stud. 10, 742, doi:10.1093/rapstu/raaa008

Balcilar, M., Bekiros, S., and Gupta, R. (2017). The role of news-based uncertainty
indices in predicting oil markets: a hybrid nonparametric quantile causality
method. Empir. Econ. 53 (3), 879–889. doi:10.1007/s00181-016-1150-0

Brandt, M. W., and Gao, L. (2019). Macro fundamentals or geopolitical events? a
textual analysis of news events for crude oil. Empir. Financ. 51, 64–94. doi:10.
1016/j.jempfin.2019.01.007

Caldara, D., and Iacoviello, M (2018). Measuring geopolitical risk. Int. Finance
Discuss. Pap. 1222, 1. doi:10.17016/IFDP.2018.1222

Chan, J. C. C., and Grant, A. L. (2016). Modeling energy price dynamics: GARCH versus
stochastic volatility. Energy. Econ. 54, 182–189. doi:10.1016/j.eneco.2015.12.003

Chen, L., Du, Z., and Hu, Z. (2020). Impact of economic policy uncertainty on
exchange rate volatility of China. Finance Res. Lett. 32, 101266. doi:10.1016/j.frl.
2019.08.014

Colacito, R., Engle, R. F., and Ghysels, E. (2011). A component model for dynamic
correlations. J. Econometrics. 164 (1), 45–59. doi:10.1016/j.jeconom.2011.
02.013

Conrad, C., and Kleen, O. (2020). Two are better than one: volatility forecasting
using multiplicative component GARCH-MIDAS models. J. Appl. Econ. 35 (1),
19–45. doi:10.1002/jae.2742

Conrad, C., Loch, K., and Rittler, D. (2014). On the macroeconomic determinants
of long-term volatilities and correlations in U.S. stock and crude oil markets.
J. Empir. Finance. 29, 26–40. doi:10.1016/j.jempfin.2014.03.009

Corbet, S., Larkin, C., and Lucey, B. (2020). The contagion effects of the COVID-19
pandemic: evidence from gold and cryptocurrencies. Finance Res. Lett. 35,
101554. doi:10.1016/j.frl.2020.101554

Cunado, J., Gupta, R., Lau, C. K. M., and Sheng, X. (2019). Time-varying impact of
geopolitical risks on oil prices. Defence. Peace. Econ. 31, 692–706. doi:10.1080/
10242694.2018.1563854

Dees, S., Karadeloglou, P., Kaufmann, R. K., and Sánchez, M. (2007). Modelling the
world oil market: assessment of a quarterly econometric model. Energ. Policy.
35 (1), 178–191. doi:10.1016/j.enpol.2005.10.017

Demirer, R, Gupta, R., Suleman, T., and Wohar, M. E. (2018a). Time-varying rare
disaster risks, oil returns and volatility. Energy Econ. 75, 239–248. doi:10.1016/j.
eneco.2018.08.021

Demirer, R., Gupta, R., Ji, Q., and Tiwari, A. K. (2018b). Geopolitical risks and the
predictability of regional oil returns and volatility. OPEC Energ. Rev 43 (3),
342–361. doi:10.1111/opec.12160

Engle, R. F., Ghysels, E., and Sohn, B. (2013). Stock market volatility and macroeconomic
fundamentals. Rev. Econ. Stat. 95 (3), 776–797. doi:10.1162/REST_a_00300

Engle, R. F., and Rangel, J. G. (2008). The spline-GARCHmodel for low-frequency
volatility and its global macroeconomic causes. Rev. Financ. Stud. 21 (3),
1187–1222. doi:10.1093/rfs/hhn004

Escribano, G., and Valdés, J. (2017). Oil prices: governance failures and geopolitical
consequences.Geopolitics 22 (3), 693–718. doi:10.1080/14650045.2016.1254621

Geng, J. B., Chen, F. R., Ji, Q., and Liu, B. Y. (2020). Network connectedness
between natural gas markets, uncertainty and stock markets. Energ. Econ. 2020,
105001. doi:10.1016/j.eneco.2020.105001

Ghysels, E., Santa-Clara, P., and Valkanov, R. (2004). The MIDAS touch: mixed
data sampling regression models. Available at: https://EconPapers.repec.org/
RePEc:cir:cirwor:2004s-20. (Accessed May 01, 2004)

Ghysels, E., Plazzi, A., Valkanov, R., Rubia, A., and Dossani, A. (2019). Direct
versus iterated multiperiod volatility forecasts. Annu. Rev. Financ. Econ. 11,
173–195. doi:10.1146/annurev-financial-110217-022808

Gkillas, K., Gupta, R., and Wohar, M. E. (2018). Volatility jumps: the role of
geopolitical risks. Financ. Res. Lett. 27, 247–258. doi:10.1016/j.frl.2018.03.014

Glosten, L. R., Jagannathan, R., and Runkle, D. E. (1993). On the relation between
the expected value and the volatility of the nominal excess return on stocks.
J. Finance. 48 (5), 1779–1801. doi:10.1111/j.1540-6261.1993.tb05128.x

Hailemariam, A., Smyth, R., and Zhang, X. (2019). Oil prices and economic policy
uncertainty: evidence from a nonparametric panel data model. Energy. Econ. 83,
40–51. doi:10.1016/j.eneco.2019.06.010

Han, L., Qi, M., and Yin, L. (2016). Macroeconomic policy uncertainty shocks on
the Chinese economy: a GVAR analysis. Appl. Econ. 48 (51), 4907–4921. doi:10.
1080/00036846.2016.1167828

Hansen, P. R. (2005). A test for superior predictive ability. J. Bus. Econ. Stat. 23 (4),
365–380. doi:10.1198/073500105000000063

Haroon, O., and Rizvi, S. A. R. (2020). COVID-19: media coverage and financial
markets behavior-a sectoral inquiry. J. Behav. Exp. Finance. 27, 100343. doi:10.
1016/j.jbef.2020.100343

Haugom, E., Langeland, H., Molnár, P., et al. (2014). Forecasting volatility of the
U.S. oil market. J. Bank. Financ. 47, 1–14. doi:10.1016/j.jbankfin.2014.05.026

Frontiers in Environmental Science | www.frontiersin.org March 2021 | Volume 9 | Article 63690312

Yi et al. Macroeconomic Uncertainty and Oil Volatility

https://doi.org/10.1002/fut.22113
https://doi.org/10.1016/j.eneco.2016.01.012
https://doi.org/10.1016/j.eneco.2014.05.007
https://doi.org/10.1016/j.frl.2017.07.017
https://doi.org/10.1016/j.frl.2017.07.017
https://doi.org/10.1016/j.frl.2020.101709
https://doi.org/10.1093/qje/qjw024
https://doi.org/10.1093/rapstu/raaa008
https://doi.org/10.1007/s00181-016-1150-0
https://doi.org/10.1016/j.jempfin.2019.01.007
https://doi.org/10.1016/j.jempfin.2019.01.007
https://doi.org/10.17016/IFDP.2018.1222
https://doi.org/10.1016/j.eneco.2015.12.003
https://doi.org/10.1016/j.frl.2019.08.014
https://doi.org/10.1016/j.frl.2019.08.014
https://doi.org/10.1016/j.jeconom.2011.02.013
https://doi.org/10.1016/j.jeconom.2011.02.013
https://doi.org/10.1002/jae.2742
https://doi.org/10.1016/j.jempfin.2014.03.009
https://doi.org/10.1016/j.frl.2020.101554
https://doi.org/10.1080/10242694.2018.1563854
https://doi.org/10.1080/10242694.2018.1563854
https://doi.org/10.1016/j.enpol.2005.10.017
https://doi.org/10.1016/j.eneco.2018.08.021
https://doi.org/10.1016/j.eneco.2018.08.021
https://doi.org/10.1111/opec.12160
https://doi.org/10.1162/REST_a_00300
https://doi.org/10.1093/rfs/hhn004
https://doi.org/10.1080/14650045.2016.1254621
https://doi.org/10.1016/j.eneco.2020.105001
https://EconPapers.repec.org/RePEc:cir:cirwor:2004s-20
https://EconPapers.repec.org/RePEc:cir:cirwor:2004s-20
https://doi.org/10.1146/annurev-financial-110217-022808
https://doi.org/10.1016/j.frl.2018.03.014
https://doi.org/10.1111/j.1540-6261.1993.tb05128.x
https://doi.org/10.1016/j.eneco.2019.06.010
https://doi.org/10.1080/00036846.2016.1167828
https://doi.org/10.1080/00036846.2016.1167828
https://doi.org/10.1198/073500105000000063
https://doi.org/10.1016/j.jbef.2020.100343
https://doi.org/10.1016/j.jbef.2020.100343
https://doi.org/10.1016/j.jbankfin.2014.05.026
https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Hu, M., Zhang, D., Ji, Q., and Wei, L. (2020). Macro factors and the realized
volatility of commodities: a dynamic network analysis. Resour. Pol. 68, 101813.
doi:10.1016/j.resourpol.2020.101813

Ji, Q., Liu, B.-Y., Nehler, H., and Uddin, G. S. (2018). Uncertainties and extreme
risk spillover in the energy markets: a time-varying copula-based CoVaR
approach. Energ. Econ. 76, 115–126. doi:10.1016/j.eneco.2018.10.010

Ji, Q., Bahloul, W., Geng, J.-B., and Gupta, R. (2020). Trading behaviour connectedness
across commodity markets: evidence from the hedgers’ sentiment perspective.
Resear. Int. Bus. Financ. 52, 101114. doi:10.1016/j.ribaf.2019.101114

Ji, Q., Zhang, D., and Zhao, Y. (2020). Searching for safe-haven assets during the COVID-
19 pandemic. Int. Rev. Financ. Anal. 71, 101526. doi:10.1016/j.irfa.2020.101526

Kilian, L., and Murphy, D. P. (2014). The role of inventories and speculative trading in
the global market for crude oil. J. Appl. Econ. 29 (3), 454–478. doi:10.1002/jae.2322

Li, Z., and Zhong, J. (2020). Impact of economic policy uncertainty shocks on ’China’s
financial conditions. Financ. Res. Lett. 35, 101303. doi:10.1016/j.frl.2019.101303

Liao, G., Li, Z., Du, Z., and Liu, Y. (2019). The heterogeneous interconnections
between supply or demand side and oil risks. Energies 12 (11), 2226. doi:10.
3390/en12112226

Liu, J., Ma, F., Tang, Y., and Zhang, Y. (2019). Geopolitical risk and oil volatility: a
new insight. Energy. Econ. 84, 104548. doi:10.1016/j.eneco.2019.104548

Liu, L., Wang, Y., Wu, C., and Wu, W. (2016). Disentangling the determinants of
real oil prices. Energy. Econ. 56, 363–373. doi:10.1016/j.eneco.2016.04.003

Liu, Z., Ding, Z., Zhai, P., Lv, T., Wu, J. S., and Zhang, K. (2019). Revisiting the
integration of China into the world crude oil market: the role of structural
breaks. Front. Energy Res. 7, 146. doi:10.3389/fenrg.2019.00146

Ma, R., Zhou, C., Cai, H., and Deng, C. (2019). The forecasting power of EPU for crude
oil return volatility. Energ. Rep. 5, 866–873. doi:10.1016/j.egyr.2019.07.002

Mei, D., Ma, F., Liao, Y, and Wang, L. (2020). Geopolitical risk uncertainty and oil
future volatility: evidence from MIDAS models. Energy. Econ. 86, 104624.
doi:10.1016/j.eneco.2019.104624

Miao, H., Ramchander, S., Wang, T., and Yang, D. (2017). Influential factors in
crude oil price forecasting. Energy Econ. 68, 77–88. doi:10.1016/j.eneco.2017.
09.010

Mu, X., and Ye, H. (2011). Understanding the crude oil price: how important is the
China factor? Energ. J. 32 (4), 69–91. doi:10.5547/ISSN0195-6574-EJ-Vol32-No4-5

Narayan, P. K., and Narayan, S. (2007). Modelling oil price volatility. Energ. Policy.
35 (12), 6549–6553. doi:10.1016/j.enpol.2007.07.020

Nomikos, N. K., and Pouliasis, P. K. (2011). Forecasting petroleum futures markets
volatility: the role of regimes and market conditions. Energy Econ. 33 (2),
321–337. doi:10.1016/j.eneco.2010.11.013

Pan, Z., Wang, Y., Wu, C., and Yin, L. (2017). Oil price volatility and
macroeconomic fundamentals: a regime switching GARCH-MIDAS model.
J. Empir. Financ. 43, 130–142. doi:10.1016/j.jempfin.2017.06.005

Plakandaras, V., Gupta, R., andWong, W. K. (2019). Point and density forecasts of
oil returns: the role of geopolitical risks. Resour. Policy. 62, 580–587. doi:10.
1016/j.resourpol.2018.11.006

Pu, W., Chen, Y., and Ma, F. (2016). Forecasting the realized volatility in the
Chinese stock market: further evidence. Appl. Econom. 48 (33), 3116–3130.

Ratti, R. A., and Vespignani, J. L. (2013). Crude oil prices and liquidity, the BRIC
and G3 countries. Energ. Econo. 39, 28–38. doi:10.1016/j.eneco.2013.04.003

Rehman, M. U. (2018). Do oil shocks predict economic policy uncertainty? Physica
A: Stat. Mech. App. 498, 123–136. doi:10.1016/j.physa.2017.12.133

Sadorsky, P. (2006). Modeling and forecasting petroleum futures volatility. Energy.
Econ. 28 (4), 467–488. doi:10.1016/j.eneco.2006.04.005

Sévi, B. (2014). Forecasting the volatility of crude oil futures using intraday data.
Eur. J. Oper. Res. 235 (3), 643–659. doi:10.1016/j.ejor.2014.01.019

Sheng, X., Gupta, R., and Ji, Q. (2020). The impacts of structural oil shocks on
macroeconomic uncertainty: evidence from a large panel of 45 countries.
Energy Econ. 91, 104940. doi:10.1016/j.eneco.2020.104940

Shi, X., and Sun, S. (2017). Energy price, regulatory price distortion and economic growth:
a case study of China. Energy. Econ. 63, 261–271. doi:10.1016/j.eneco.2017.02.006

Smales, L. A. (2020). Examining the relationship between policy uncertainty and market
uncertainty across theG7. Int. Rev. Financ. Anal. 71, 101540. doi:10.1016/j.irfa.2020.101540

Tian, S., and Hamori, S. (2015). Modeling interest rate volatility: a realized GARCH
approach. J. Bank. Financ. 61, 158–171. doi:10.1016/j.jbankfin.2015.09.008

Tsai, I. C. (2017). The source of global stock market risk: a viewpoint of economic
policy uncertainty. Econ. Model. 60, 122–131. doi:10.1016/j.econmod.2016.09.002

Wang, Y., and Wu, C. (2012). Forecasting energy market volatility using GARCH
models: can multivariate models beat univariate models? Energ. Econ. 34 (6),
2167–2181. doi:10.1016/j.eneco.2012.03.010

Wei, Y., Liu, J., Lai, X., and Hu, Y. (2017). Which determinant is the most informative in
forecasting crude oil market volatility: fundamental, speculation, or uncertainty?
Energy. Econ. 68, 141–150. doi:10.1016/j.eneco.2017.09.01610.1016/j.eneco.2017.09.016

Yang, C., Lv, F., Fang, L., and Shang, X. (2020). The pricing efficiency of crude oil futures in
the Shanghai international exchange. Finance Res. Let. 36, 101329. doi:10.1016/j.frl.2019.
101329

Yi, Y., Ma, F., Zhang, Y., and Huang, D. (2018). Forecasting the prices of crude oil
using the predictor, economic and combined constraints. Econ. Model. 75,
237–245. doi:10.1016/j.econmod.2018.06.020

Yousefi, A., and Wirjanto, T. S. (2004). The empirical role of the exchange rate on
the crude-oil price formation. Energy. Econ. 26 (5), 783–799. doi:10.1016/j.
eneco.2004.06.001

Yuan, J. H., Kang, J. G., Zhao, C. H., and Hu, Z. G. (2008). Energy consumption and
economic growth: evidence from China at both aggregated and disaggregated levels.
Energy. Econ. 30 (6), 3077–3094. doi:10.1016/j.eneco.2008.03.007

Zhang, D., Hu, M., and Ji, Q. (2020). Financial markets under the global pandemic
of COVID-19. Financ. Res. Lett. 36, 101528. doi:10.1016/j.frl.2020.101528

Zhang, D., Shi, M., and Shi, X. (2018). Oil indexation, market fundamentals, and
natural gas prices: an investigation of the Asian premium in natural gas trade.
Energy. Econ. 69, 33–41. doi:10.1016/j.eneco.2017.11.001

Zhang, Y. J., and Ma, S. J. (2020). Exploring the dynamic price discovery, risk transfer
and spillover among INE, WTI and Brent crude oil futures markets: evidence from
the high-frequency data. Int. J. Finance. Econ. 2020, 1914. doi:10.1002/ijfe.1914

Zheng, N., and Kaizoji, T. (2019). Bitcoin-based triangular arbitrage with the Euro/
U.S. dollar as a foreign futures hedge: modeling with a bivariate GARCHmodel.
Q. Econ. Financ. 3 (2), 347–365. doi:10.3934/QFE.2019.2.347

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Yi, Yang and Li. This is an open-access article distributed under
the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not
comply with these terms.

Frontiers in Environmental Science | www.frontiersin.org March 2021 | Volume 9 | Article 63690313

Yi et al. Macroeconomic Uncertainty and Oil Volatility

https://doi.org/10.1016/j.resourpol.2020.101813
https://doi.org/10.1016/j.eneco.2018.10.010
https://doi.org/10.1016/j.ribaf.2019.101114
https://doi.org/10.1016/j.irfa.2020.101526
https://doi.org/10.1002/jae.2322
https://doi.org/10.1016/j.frl.2019.101303
https://doi.org/10.3390/en12112226
https://doi.org/10.3390/en12112226
https://doi.org/10.1016/j.eneco.2019.104548
https://doi.org/10.1016/j.eneco.2016.04.003
https://doi.org/10.3389/fenrg.2019.00146
https://doi.org/10.1016/j.egyr.2019.07.002
https://doi.org/10.1016/j.eneco.2019.104624
https://doi.org/10.1016/j.eneco.2017.09.010
https://doi.org/10.1016/j.eneco.2017.09.010
https://doi.org/10.5547/ISSN0195-6574-EJ-Vol32-No4-5
https://doi.org/10.1016/j.enpol.2007.07.020
https://doi.org/10.1016/j.eneco.2010.11.013
https://doi.org/10.1016/j.jempfin.2017.06.005
https://doi.org/10.1016/j.resourpol.2018.11.006
https://doi.org/10.1016/j.resourpol.2018.11.006
https://doi.org/10.1016/j.eneco.2013.04.003
https://doi.org/10.1016/j.physa.2017.12.133
https://doi.org/10.1016/j.eneco.2006.04.005
https://doi.org/10.1016/j.ejor.2014.01.019
https://doi.org/10.1016/j.eneco.2020.104940
https://doi.org/10.1016/j.eneco.2017.02.006
https://doi.org/10.1016/j.irfa.2020.101540
https://doi.org/10.1016/j.jbankfin.2015.09.008
https://doi.org/10.1016/j.econmod.2016.09.002
https://doi.org/10.1016/j.eneco.2012.03.010
https://doi.org/10.1016/j.eneco.2017.09.01610.1016/j.eneco.2017.09.016
https://doi.org/10.1016/j.frl.2019.101329
https://doi.org/10.1016/j.frl.2019.101329
https://doi.org/10.1016/j.econmod.2018.06.020
https://doi.org/10.1016/j.eneco.2004.06.001
https://doi.org/10.1016/j.eneco.2004.06.001
https://doi.org/10.1016/j.eneco.2008.03.007
https://doi.org/10.1016/j.frl.2020.101528
https://doi.org/10.1016/j.eneco.2017.11.001
https://doi.org/10.1002/ijfe.1914
https://doi.org/10.3934/QFE.2019.2.347
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles

	Macroeconomic Uncertainty and Crude Oil Futures Volatility–Evidence from China Crude Oil Futures Market
	Introduction
	Literature Review
	Econometric Methodology
	The GARCH-MIDAS Model
	GARCH-MIDAS Models With Macroeconomic Uncertainty
	Forecast Evaluation

	Data
	Empirical Results
	In-Sample Estimation Results
	Out-of-Sample Evaluation

	Robustness Check
	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References


