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Land use patterns and vegetation coverage in semi-arid areas of the Loess Plateau
have undergone great changes due to the implementation of the “Grain for Green”
project. The introduction of legume pasture species, such as alfalfa (Medicago sativa
L.) and sweet clover (Melilotus officinalis L.), is one of the most efficient methods of
vegetation restoration and reconstruction in this region. However, there is a need for
an effective assessment of the root system distribution and its interaction with soil after
long-term introduction. An experiment involving the introduction of alfalfa and sweet
clover on abandoned farmlands was initiated in 2003 to assess the long-term effects.
After 17 years, root and soil samples at depths of 0–20 and 20–60 cm were collected
to characterize the root biomass, root carbon (C), nitrogen (N), and phosphorus (P),
soil microbial biomass carbon (MBC) and nitrogen (MBN), soil organic carbon (SOC),
and soil N and P. The results showed that the root biomass density of alfalfa in the
0–20 and 20–60 cm layers (63.72 and 12.27 kg m−3, respectively) were significantly
higher than for sweet clover (37.43 and 8.97 kg m−3, respectively) and under natural
abandonment (38.92 and 9.73 kg m−3, respectively). The SOC, total nitrogen (TN), total
phosphorus (TP), available phosphorus (AP), nitrate-nitrogen (NO3

−-N), MBC and MBN
in the 0–20 and 20–60 cm layers were higher after alfalfa introduction compared with
sweet clover introduction and natural abandonment, although the ammonia-nitrogen
(NH4

+-N) concentration in the 0–20 cm layer was lower. There were significantly
positive correlations between root biomass density and both soil nutrients and microbial
biomass, while there was a negative correlation between the soil NH4

+-N and root
biomass density. These results indicate that alfalfa root growth improved soil organic
matter accumulation and nutrient mineralization. The accumulation and mineralization
of soil nutrients also guaranteed root and microorganism growth. Therefore, it was
concluded that alfalfa introduction will promote soil nutrients immobilization and
mineralization and may enable sustainable land use in the semi-arid region of the Loess
Plateau, China.
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INTRODUCTION

Soil contains the largest carbon (C) pool in the terrestrial
ecosystem, being 3.3 times larger than the atmospheric pool and
4.5 times larger than the biotic storage (Lal, 2004). It plays a vital
role in regulating climate warming (Melillo et al., 2002; Zhou
et al., 2012). In addition, soil nitrogen (N) and phosphorus (P)
are essential elements for vegetation growth (Westheimer, 1987;
Azziz et al., 2012; Yamashita et al., 2020). The soil C, N, and
P cycles are strongly coupled with biological processes (Elser
et al., 2000; Reed et al., 2015). Land use changes due to either
natural or anthropogenic activities, can induce changes in the C
balance and nutrient flow, thereby altering ecosystem functions
(Post and Kwon, 2000; Deng et al., 2016). Slight changes in C
and N exchanges between the soil ecosystem and atmosphere
could have a significant impact on global climate change (Classen
et al., 2015). Therefore, it is essential to assess the effects of
land use on soil biogeochemical cycles in the future under
global climate change.

The Loess Plateau in China is an ecologically fragile zone,
with serious soil erosion issues (Fu, 1989; Chen et al., 2007;
Zhao et al., 2013), and is also sensitive to climate change (He
et al., 2006; Liu and Sang, 2013; Miao et al., 2016; Fang et al.,
2017; Fang et al., 2018; Gong et al., 2020). Revegetation of
degraded land is one of the principal strategies used to control
soil erosion and recover ecosystem function, which has had
significant effects on soil quality (Yuan et al., 2019), and even on
socioeconomic development (Fu et al., 2011; Zhao et al., 2013).
The “Grain for Green” project (converting steep farmlands to
forest or grassland) was initiated by the Chinese government
in 1999 to undertake ecological restoration (Feng et al., 2005;
Deng et al., 2014). In this process, legumes such as alfalfa,
sweet clover, and Caragana species are widely used as pioneer
species to restore damaged or degenerated ecosystems due to
their strong environmental adaptability, N fixation benefits, and
rapid formation of continuous vegetation cover (An et al., 2013;
Yuan et al., 2016b; Yao et al., 2020). Vegetation succession
may affect the input and decomposition processes of soil C
or N; thus, affecting its storage (Fujii et al., 2020). Carbon
sequestration requires a large amount of N, resulting in the soil
N concentration being one of the limiting factors for soil C
storage (van Groenigen et al., 2017). Legumes have the potential
to increase the N input into ecosystems, while promoting C and
N accumulation in vegetation and soil (Vitousek et al., 2013; Hu
et al., 2016). Phosphorus is considered to be a stable element in
the soil ecosystem (Vitousek et al., 2010); thus, the process of
P fixation and mineralization should also be considered when
assessing the introduction of legumes. Vegetation change has a
profound impact on the soil biogeochemical cycles of ecosystems
at regional and global scales (Yu et al., 2018). In addition, there
is a lag effect in the response of soil to vegetation restoration
(Knops and Tilman, 2000). Therefore, it is essential to assess
the long-term effects of land use change on soil C, N, and
P in this region.

How the aboveground biomass responds to the extent of
vegetation restoration or stand age has been extensively studied
(Liu et al., 2015; Zhang et al., 2017). Land use change can

affect the functional composition of plant communities (Hoelzle
et al., 2012; Turner et al., 2019), and would finally influence the
chemical characteristics of roots and root biomass in the long-
term (Mokany et al., 2006; Qiu et al., 2012). However, there
have been few studies of the changes in belowground biomass.
Land-use changes could alter the magnitude of C inputs into
soil by changing the biomass of plant residues, including both
aboveground and belowground biomass (Frasier et al., 2019). The
input of aboveground litter, fine root turnover, and root exudates
increases the C, N, and P concentration in the surface soil, while
roots and root exudates are the main sources of organic matter
in the deep soil (Rumpel and Kogel-Knabner, 2011; Schmidt
et al., 2011). However, roots store SOC and N more efficiently
than shoots (Kong and Six, 2010; Jackson et al., 2017; Sokol and
Bradford, 2019) and a specific relationship has been observed
between root biomass and SOC accumulation (Fornara and
Tilman, 2008). In addition, roots not only directly affect the SOC
concentration, but also form aggregates with the soil particles
(Gale et al., 2000), driving the physical-chemical stabilization of
SOC (Six et al., 2000; Six et al., 2004). Although P is derived
from the weathering of parent material and ecosystems exist with
a constant P content (Walker and Syers, 1976), root exudates
can directly or indirectly affect P availability in the rhizosphere
(Schilling et al., 1998; Gransee, 2001). Legume introduction
extends the rhizosphere in both the horizontal and vertical
directions, leading to a change in the distribution of soil C, N, and
P (Pransiska et al., 2016). However, exactly how roots regulate soil
C, N, and P after legume introduction still remains unclear.

Land-use change is the main factor that affects plant litter
input, root turnover, and exudation, all of which make a large
contribution to microbial activity and community composition
(Campbell et al., 1997; Pandey et al., 2010; Singh and Ghoshal,
2014). Soil microorganisms are the main source of soil enzymes,
which have a key role in C, N, and P transformation, playing
an important part in the biogeochemical cycles of terrestrial
ecosystems (Kiss et al., 1975). Microbial associations with
roots in the soil are complex and can enhance the ability
of plants to acquire nutrients from soil through the turnover
of microbial biomass within the rhizosphere (Vanveen et al.,
1989; Boyrahmadi and Raiesi, 2018). It is therefore necessary
to consider the root-microorganism relationship in the process
of revegetation.

The impact of land use change on soil properties, root systems,
and soil microorganisms is of great importance in ecosystem
management and policy making. Therefore, an experiment was
conducted in the semi-arid region of the Loess Plateau to
determine the long-term effects of legume introduction on
soil properties [SOC, total nitrogen (TN), total phosphorus
(TP), microbial biomass carbon (MBC) and nitrogen (MBN),
mineral N, available phosphorus (AP)] at depths of 0–20
and 20–60 cm and their inter-relationship. We hypothesized
that: (1) legume introduction increases the root biomass of
communities and microorganisms (i.e., the MBC and MBN),
leading to an increase in the concentrations of mineral nutrients;
and (2) legume introduction improves soil C and N storage,
but has no significant effect on the TP concentration due
to its stability.
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FIGURE 1 | Root biomass density (A), carbon (B), nitrogen (C), and phosphorus (D) distributions at different soil depths under different revegetation treatments in
2019 (17 years after revegetation). Data represents the mean value ± standard error (n = 9), and the different letters indicate significant differences at the p < 0.05
level.

MATERIALS AND METHODS

The Study Area
The study was conducted at the Gansu Dryland Agroecology
Observation and Research Station on the Loess Plateau (36◦02′N,
104◦25′E, 2,400 m above sea level), Lanzhou University, where a
long-term revegetation experiment was established in 2003. The
station is located in the northern mountain region of Yuzhong
County, Gansu Province, China. This region is characterized
by a semi-arid climate, with a mean annual temperature and
precipitation of 7.5◦C and 378.4 mm, respectively, during the
experiment (2003–2019). Most of the precipitation occurred in
June to September. The soil had a mean soil bulk density of 1.28 g
cm−3, pH of 8.2, and calcium carbonate (CaCO3) concentration
of 146 g kg−1. The soil was classified as a Heima [a calcic
Kastanozems, according to the World Reference Base for Soil
Resources (WRB)], with a field water holding capacity of 23% and
a permanent wilting point of 4.5% (Shi et al., 2003). This area is
subjected to both wind and soil erosion.

To address the pressure caused by the expanding human
population since the 1950s, cropland became the main land use
in this region, even in sloping areas. After livelihood conditions
improved, croplands with a slope greater than 15◦ were converted
into grasslands as part of the “Grain for Green” project, which was
beneficial to both the environment and animal husbandry.

Experimental Settings and Design
In April 2003, three hillside fields were selected for revegetation,
following the cultivation of spring wheat. The three fields had
different landscape aspects, one was north–east facing, with a
slope of 10–14◦, and the other two were south-east facing with
slopes of 12–16◦ and 4–8◦, respectively. The distance between
each site was less than 1,000 m and they all had the same
elevation. We divided each field into three plots. The size of
each plot was 35 m × 45 m, and they were located next to
each other. The three plots were treated randomly with: (i)
fallow conditions, (ii) alfalfa (Medicago sativa L.) (perennial
legume species) introduced at a seed density of 22.5 kg ha−1,
and iii) sweet clover (Mentha suaveolens L.) (biennial legume
species) introduced at a seed density of 11.3 kg ha−1. These
densities were optimal for planting based on local farming
practices. The plant community succeeded naturally with no
further management practices, such as grazing (fencing), tillage,
fertilization, or harvesting after legume introduction (Yuan et al.,
2016a). A plant community survey was conducted in August
every year, taking care to avoid disturbance (Yuan et al., 2015).

Root and Soil Sampling
After 17 years of vegetation restoration, root biomass was
measured in the most vigorous vegetation-growing period in
August 2019. Root biomass was measured using a root drill
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FIGURE 2 | Soil organic carbon (SOC) (A), TN (B), TP (C), AP (D), NO3--N (E), and NH4+-N (F) distributions at different soil depths under different revegetation
treatments in 2019 (17 years after revegetation). Data represents the mean value ± standard error (n = 9), and the different letters indicate significant differences at
the p < 0.05 level. (SOC, soil organic carbon; TN, total nitrogen; TP, total phosphorus; AP, available phosphorus; NO3

--N, nitrate nitrogen; NH4
+-N, ammonium

nitrogen).

FIGURE 3 | MBC (A), and MBN (B) distributions at different soil depths under different revegetation methods in 2019 (17 years after revegetation). Data represents
the mean value ± standard error (n = 9), and the different letters indicate significant differences at the p < 0.05 level. (MBC, microbial biomass carbon; MBN,
microbial biomass nitrogen).

(70 mm inner diameter; 100 mm height, Kezheng Instrument
Co. Ltd., Shangyu, Shaoxing). The sample points were 3 m from
the margin so avoiding “Edge effects.” Three random samplings
were conducted at the upper, middle, and lower sites in each
sample plot, with sampling increments at soil depths of 0–20 and
20–60 cm. We got 3 soil samples and mixed them as a sample
each site. So, 54 root samples were obtained (3 replication, 3

treatments, 3 landscapes, and 2 soil layers). A root mesh bag, with
a 0.15 mm mesh size, was used to wash the soil attached to the
roots. Then, the roots were dried to a constant mass at 75◦C and
root biomass was measured.

In April 2019, i.e., the initiation of the growing season, soil
samples were collected in the 0–20 and 20–60 cm soil layers
using a soil auger, with an inner diameter of 4 cm. The sampling
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FIGURE 4 | Relationships of root biomass density with soil properties (data were collected in 2019, 17 years after revegetation). NO3
--N, nitrate nitrogen; NH4

+-N,
ammonium nitrogen; TIN, total inorganic nitrogen; MBC, microbial biomass carbon; MBN, microbial biomass nitrogen; SOC, soil organic carbon; TN, total nitrogen;
TP, total phosphorus; AP, available phosphorus.

principle is consistent with the root sample. Three soil cores were
collected and mixed together in each plot. All the visible litter and
roots were removed by hand, soil samples were sieved through a
2-mm aperture screen (plant residue on the sieve was discarded).
Each soil sample was then divided into two parts. One was stored
at 4◦C to determine soil moisture, MBC and MBN, and inorganic
N at the field moisture level. The other was air dried for the
determination of SOC, TN, and P.

The Determination of Root and Soil
Properties
The dried plant samples were crushed by an ultra-centrifugal
mill to enable the determination of C, N, and P in the root
system. The root C was determined by the potassium dichromate
oxidation method, and root N and P were measured after
digestion in a H2SO4-H2O2 mixture using the Auto-Kjeldahl
and the molybdenum-antimony spectrophotometry methods
(Thomas et al., 1967).

Soil samples were soaked in a 2 M KCl solution, shaken in a
concentrator at 200 rpm for 1 h and then filtered into centrifugal

tubes. An auto-flow injection system (Skalar, Breda, Netherlands)
was then used to measure nitrate-N (NO−3 -N) and ammonium-
N (NH+4 -N). The fumigation—extraction method was used to
determine MBC and MBN. The soil samples were extracted by
0.5 M K2SO4, shaking 1 h at 200 rpm. And then, MBC and MBN
were directly measured using a CHN Analyzer (LECO CHN–
1000, Michigan, United States). The difference between total
organic C and TN extracted with 0.5 M K2SO4 was determined
through chloroform-fumigated and non-fumigated soil samples.
Factors of 0.45 and 0.54 were applied to adjust the recovery of
MBC and MBN (Brookes et al., 1985; Beck et al., 1997). The
values were calculated based on air-dry soil.

Air-dry samples (<0.15 mm) were used for the measurement
of SOC by the Walkley and Black dichromate oxidation method
(Nelson and Sommers, 1982), TN by the K2SO4–CuSO4–Se
(100:10:1) distillation method (Bremner and Mulvaney, 1982),
and TP by a colorimetric method at 700 nm (UV-1800,
Mapada, Shanghai, China) after soil digestion in an HClO4-
H2SO4 mixture (O’Halloran and Cade-Menun, 2006). Available
phosphorus (<2.00 mm) was extracted with NaHCO3 according
to the Olsen method (Olsen, 1954).
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FIGURE 5 | Structural equation model (SEM) showing the relationship between soil total nutrients, mineralized nutrients, microbial composition, and root
characteristics (Df = 23, NFI = 0.952, CFI = 0.999, RMSEA = 0.022, p = 0.427). All variables are observed variables. Solid and dashed lines represent significant and
non-significant pathways, respectively. Single-headed arrows represent the direction of causality and double-headed arrows indicate correlations between variables.
The numbers adjacent to the arrows are standardized path coefficients. The proportion of variance explained (R2) is shown alongside each response variable (data
were collected in 2019, 17 years after revegetation). TIN, total inorganic nitrogen; MBC, microbial biomass carbon; MBN, microbial biomass nitrogen; SOC, soil
organic carbon; TN, total nitrogen; TP, total phosphorus; AP, available phosphorus.

Statistical Analyses
Before analysis, the data were analyzed for normal distribution
by the Shapiro–Wilk test. If not normally distributed, the
data were transformed by log10 before analysis. A one-way
analysis of variance (ANOVA, in randomized blocks) was
applied to test the differences in root biomass density, root
C, N, and P, MBC and MBN, SOC, TN, and TP among
the fallow, alfalfa, and sweet clover treatments using the
Genstat18.0 software (VSN International, Hemel Hempstead,
United Kingdom). The landscape was set as a block. Significant
differences were compared by Tukey test at P < 0.05. A Pearson’s
correlation analysis was used to evaluate the correlations among
root biomass density and soil nutrients. Principal Component
Analysis (PCA) was conducted using CANOCO 4.5 (Plant
Research International, Wageningen, Netherlands). Structural
equation modeling (SEM) was performed using AMOS 21.0
(Amos Development Corporation, Chicago, IL, United States)
to quantify the relative importance of the potential direct
and indirect pathways, which could affect root biomass based
on the Pearson’s correlation analysis, conceptual modeling
(Supplementary Figure A), the goodness of model fit, and
logical reasoning. The Origin 9.0 was used to drawn all graphs
(OriginLab OriginPro 2015, United States).

RESULTS

The C, N, and P Concentrations in the
Root Biomass
Both the root biomass density and its C, N, and P concentration
varied throughout the soil profile among the revegetation
methods (Figures 1A–D). The concentrations of all three
elements decreased with soil depth. Seventeen years after legume
introduction, the root biomass density in the alfalfa field was
significantly higher than in the fallow and sweet clover fields
(Figure 1A). In the 0–20 cm layer, root C and N in the
alfalfa field were significantly higher than in the fallow and
sweet clover fields (Figures 1B,C). The root P concentration
was lowest in the alfalfa field, but the differences in the 0–
20 cm layer were not significant (Figure 1D). In the 20–
60 cm layer, the root N concentration in the alfalfa field
showed no differences from the fallow field, but were much
higher than in the sweet clover field (Figure 1B). The root C
and P concentrations in the 20–60 cm layer had intermediate
values and displayed the same tendency as N (Figures 1A,C),
but the root C concentration in the alfalfa and sweet clover
fields was much lower than in the fallow field. There were no
differences in the root P concentration in the 0–20 cm layer

Frontiers in Environmental Science | www.frontiersin.org 6 April 2021 | Volume 9 | Article 649346

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/environmental-science#articles


fenvs-09-649346 March 29, 2021 Time: 10:50 # 7

Song et al. Alfalfa Accelerates Soil Nutrients Transformation

FIGURE 6 | Principal component analysis (PCA) results, showing the relationships for root biomass with soil properties in different soil layers (data were collected in
2019, 17 years after revegetation). NO3

--N, nitrate nitrogen; NH4
+-N, ammonium nitrogen; TIN, total inorganic nitrogen; MBC, microbial biomass carbon; MBN,

microbial biomass nitrogen; SOC, soil organic carbon; TN, total nitrogen; TP, total phosphorus; AP, available phosphorus.

in the alfalfa field compared with the fallow and sweet clover
fields (Figure 1D).

The SOC, TN, TP, Nitrate-Nitrogen
(NO3

−-N), Ammonia-Nitrogen (NH4
+-N),

and AP Concentrations in Soils
The SOC, TN, and TP concentrations generally declined with
soil depth. The highest SOC concentration in the 0–20 and 20–
60 cm layers were observed in the alfalfa field, with average
values of 12.38 and 9.77 g kg−1, respectively, followed by fallow
(9.73 and 6.01 g kg−1, respectively) and sweet clover (10.76 and
4.94 g kg−1, respectively) (Figure 2A). The tendency of TN
was similar to that of SOC (Figure 2B). There was little change
in TP compared with SOC and TN, but the concentration in
the alfalfa field was significantly higher than in the other two
treatments (Figure 2C).

The changes in the NO3
−-N and NH4

+-N concentrations in
the 0–20 and 20–60 cm layers are presented in Figures 2E,F.
The lowest NH4

+-N concentration was observed in the 0–
20 cm layer in the alfalfa field and increased with soil depth.
Total inorganic nitrogen (TIN: NO3

−-N + NH4
+-N) in the

alfalfa field was still significantly high. Compared with the fallow
field, the AP concentration in the 0–20 and 20–60 cm layers
also increased after legume introduction (Figure 2D). Alfalfa

introduction resulted in an increase in the AP concentration in
both soil layers, while sweet clover introduction had little effect.

Soil Microbial Properties
The highest MBC and MBN values were observed in the 0–20 cm
layer in the alfalfa field (402.72 and 48.32 mg kg−1, respectively).
There was no significant difference in MBC or MBN between the
fallow and sweet clover fields. Both MBC and MBN decreased
with soil depth in all three treatments (Figures 3A,B).

The Relationship Between Root Biomass
and Soil Properties
There were significant positive correlations between soil nutrients
and root biomass density (p < 0.05), while there was a negative
correlation between soil NH4

+-N and root biomass density
(r =−0.25, p = 0.07) (Figure 4). The SEM showed that the organic
matter of the soil substrates could affect the available nutrients
(AP and TIN) and further affect TN and TP by affecting the MBC
and MBN. On the other hand, the AP and TIN directly affected
the belowground biomass. Together, these indicators explained
44% of the belowground variance in root biomass. In addition,
MBN had a direct effect on the root N concentration. MBC
indirectly affected the belowground root biomass by affecting AP,
further affecting root C and N concentrations (Figure 5).
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DISCUSSION

Our first hypothesis that legume introduction would increase
the root biomass of communities and the soil MBC and MBN
concentrations, leading to an increase in the TIN and AP
concentrations was supported by the results under alfalfa fields.
After 17 years, alfalfa introduction significantly increased root
biomass, which was in line with previous reports of aboveground
biomass (Yuan et al., 2016a). The root system plays an essential
role in changing SOC and N storage following land use change
(Fornara and Tilman, 2008; Cong et al., 2015). Alfalfa is a
perennial leguminous plant, with a large root biomass density
(Figure 1A) (Honde et al., 2020), increasing the C input to
soil. Soil organic matter is mineralized by microorganisms
to form mineral nutrients (Pearce et al., 2015). In semi-arid
areas, organic matter is beneficial to water retention and soil
permeability, which could provide more suitable environmental
conditions for microbial activities. Available phosphorus and
TIN were the main factors affecting root biomass (Figure 5). In
addition, there was competition between microorganisms and
plant roots for the acquisition of soil nutrients (Hodge et al.,
2000; Winkler et al., 2010), which could affect the root C and
N concentrations. Microorganisms could decompose plant roots
(Kusliene et al., 2014; Lupascu et al., 2014), releasing nutrients
into the soil (de Kroon et al., 2012). An increase in the supply of
organic substrates may alter the competitive relationship between
different microbial functional groups (Zak et al., 2003; Waldrop
et al., 2006). In this experiment, the highest MBC and MBN
was observed in the alfalfa field (Figures 3A,B), indicating that
the microorganisms in the alfalfa field were more active. There
was a significant positive correlation between the microbial index
(MBC and MBN) and soil properties (SOC and TN) (Figure 6),
implying that microbial biomass is one of the sources of soil
nutrient elements. Therefore, microbial activity is the driving
factor that mediates the plant-soil relationship in this region
and regulates the soil biogeochemical cycling process. It plays an
important role in the mineralization of soil C and N.

The second hypothesis that legume introduction would
promote soil C and N accumulation was supported in alfalfa
fields, and legumes introduction have no effect on soil TP
was supported by the results only in sweet clover fields.
Consistent with our hypothesis, the introduction of legumes
(alfalfa) increased the SOC and TN concentrations, which was
in agreement with previous research results (Post and Kwon,
2000; Guo and Gifford, 2002; Wang et al., 2015; Han et al., 2018).
In our study, the highest SOC concentration was observed in
both the 0–20 and 20–60 cm layers after alfalfa introduction,
followed by sweet clover and fallow (Figure 2A). Revegetation
after farmland abandonment can rapidly improve vegetation
coverage (Zheng et al., 2019), which is beneficial to soil erosion
control on sloping cropland. Vegetation restoration can also
promote the input of litter and root exudates (Zhang et al.,
2011), which are conducive to an increase in soil C storage.
A “priming effect” on the respiration of microorganisms has been
observed with an increase in root biomass; thus, promoting the
decomposition of the old SOC (Kuzyakov et al., 2000; Fontaine
et al., 2003; Kuzyakov, 2010). In this experiment, the “priming

effect” was not taken into consideration, and it should therefore
be further studied. The increase in root biomass could also lead
to a higher root respiration rate (Luo et al., 1996; Pregitzer et al.,
2008), inducing a decline in soil C storage. The combined effect
of these changes in the belowground C cycle eventually led to
more C storage in soils following alfalfa introduction (Figure 2A),
which implies that the loss of SOC caused by the “priming effect”
and respiration may be compensated for by the C input. Changes
in SOC may therefore reflect the balance of accumulation and
degradation rates (Bevivino et al., 2014).

The highest TN was also observed in both the 0–20 and 20–
60 cm layers in the alfalfa field, followed by the sweet clover and
fallow fields. Both alfalfa and sweet clover are legume species,
capable of N-fixation (Sinclair and Serraj, 1995; Carlsson and
Huss-Danell, 2003); therefore, improving N storage. However,
sweet clover is a biennial plant and would therefore disappear
from the plant communities after its 2-year lifespan (Li et al.,
1996). Compared with the perennial alfalfa, the N-fixation effect
of sweet clover may be lower in the long-term. This explains
the lower TN concentration that was observed in the sweet
clover fields (Figure 2B). The increase in the amount of N-fixing
microorganisms could lead to a high TN concentration in alfalfa
fields, alleviating the N limitation of the ecosystem (Wei et al.,
2019). Alfalfa roots had a high N concentration (Figure 1C),
and when they decompose it would be rapidly released (McLaren
and Turkington, 2010; Makkonen et al., 2012). The belowground
environment in alfalfa fields could provide opportunities for
decomposers to obtain water, organic matter, and mineralized N,
which would increase the release of NO3

−-N and NH4
+-N by

decomposition of the root system (Silver and Miya, 2001; Mulder
et al., 2002; Mueller et al., 2013). The alfalfa field had a higher
soil NO3

−-N concentration in the 0–20 and 20–60 cm layers
than the other two treatments (Figure 2E), but there was a lower
NH4

+-N concentration in the 0–20 cm layer (Figure 2F). On
the one hand, the low soil moisture content and high porosity
in the semi-arid area of the study site provided a strong aerobic
environment for the conversion of NH4

+-N to NO3
−-N through

nitrification (Wei et al., 2019). On the other hand, the roots in the
0–20 cm layer had a high mineralized N utilization rate, which
was mainly NH4

+-N (Geisseler et al., 2010). Therefore, legume
introduction would significantly increase soil NO3

−-N, but not
soil NH4

+-N. The large root biomass in the alfalfa field would
be beneficial to soil C input and N fixation, reducing the net
N mineralization rate, but the available N released by fine roots
could reduce the inhibitory effect on the N cycle induced by the
increased root biomass (Fornara et al., 2009). Furthermore, the
fine root turnover of leguminous plants is higher than that of C4
grasses (Fornara and Tilman, 2008). Therefore, alfalfa may have
the potential to improve the N cycle.

The TP concentration increased in the 0–20 and 20–60 cm
layers in the alfalfa field (Figure 2C). This result does not support
our second hypothesis. This may be associated with P utilization
in deep soil layers (He and Li, 2016; Zhou et al., 2018). Alfalfa
has a strong and deep root system, which can utilize P even
more than 5 m belowground. In addition, the root could be
considered a “nutrient pump” (Farley and Kelly, 2004; Jobbagy
and Jackson, 2004), promoting the transfer of P in the deep
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soil layer to the surface soil layer through residue inputs in the
alfalfa field. Soil microorganisms and plant roots can therefore
effect P transformation and then influence the P availability
(Richardson, 2001). Microorganisms not only store immobilized
P but can also provide inorganic or organic forms of P for
plant roots by dissolving and mineralizing soil TP (Richardson,
2001). Phosphorus in humic-metal complexes could be mobilized
by organic anions, inducing an increase in soil P availability
(Gerke, 1993). Microorganisms play an important role in rapidly
metabolizing various organic anions or releasing them through
their own traits (Jones, 1998). Roots can release acid substances
and decrease the soil pH (Phillips et al., 2004; Gu et al., 2018).
Microorganisms, such as fungi, could enhance the area of plant
roots, which is beneficial to the release of acid substances and
uptake of mobilized P (Solaiman and Abbott, 2003). In alfalfa
grassland, the soil calcium carbonate concentration is low (Gu
et al., 2018), therefore the release of acidic substances by plants
and microorganisms would lead to low pH which is conducive to
the activation of TP. Thus, the increased AP concentration after
alfalfa introduction might be due to rhizosphere acidification.

CONCLUSION

The long-term (17-years) effects of legume introduction on the
root biomass and soil C, N, and P cycles were investigated. After
17 years, the soil C, N, and P concentrations were enriched in
the 0–20 and 20–60 cm layers of the alfalfa field compared with
sweet clover and fallow fields. This was induced by the increase
in root biomass and soil microbial biomass. Alfalfa introduction
promoted the accumulation of soil organic matter and soil
organic matter mineralization. Therefore, Alfalfa introduction is
a low-cost and rapid revegetation method to enhance the soil C,
N, and P pool, enabling sustainable land use in the semi-arid areas
of the Loess Plateau.
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