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Previous microplastic research under laboratory conditions has focused on microplastics
that are homogeneously mixed into test media, in order to maximize test reproducibility
and uniform bio-accessibility. Here we specifically focused on testing the idea that
microplastics in soil could affect adjacent soil layers not containing microplastic
themselves. We included two different microplastics (low-density polyethylene films
and polyacrylonitrile fibers) and carried out a soil column test consisting of three
different vertical layers (0–3 cm, top, control soil; 3–6 cm, middle, microplastic-
containing soil; 6–9 cm, bottom, control soil). Our study shows that microplastic-
containing soil layers can act as an anthropogenic barrier in the soil column,
interrupting the vertical water flow. These changes directly affected the water content
of adjacent layers, and changes in the proportion of soil aggregate sizes occurred for each
depth of the soil columns. We also observed that these physical changes trigger changes
in soil respiration, but do not translate to effects on enzyme activities. These results imply
that the soil environment in non-contaminated parts of the soil can be altered by
microplastic contamination in adjacent layers, as might occur for example during
ploughing on agricultural fields. More generally, our results highlight the need to further
examine effects of microplastic in experiments that do not treat this kind of pollution as
uniformly distributed.
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INTRODUCTION

Scientists estimate that less than 5% of plastic production is recycled (Sutherland et al., 2019), and a
considerable amount of plastic waste is accumulating in the environment (Jambeck et al., 2015; Rillig
and Lehmann, 2020). One of the main concerns about plastic pollution is that plastic waste can be
slowly fragmented into smaller size under environmental conditions such as UV-radiation and
mechanical weathering (Arthur et al., 2009). These tiny particles (<5 mm), defined as
“microplastics,” are ubiquitously observed in freshwater (Sarijan et al., 2021), oceans (Andrady,
2011), atmospheres (Chen et al., 2020), and soils (Rillig, 2012). An annual input rate of microplastics
into European agricultural lands has been estimated to be 125–850°tons per million inhabitants, and
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427 thousand°tons of plastic mulch films are used every year in
European farmlands (Nizzetto et al., 2016). Previous studies have
reported that 300–67,500 mg kg−1 or 40–18,760 particles kg−1 of
microplastics are observed in agricultural (Liu et al., 2018; Piehl
et al., 2018; Zhang et al., 2018; Zhang and Liu, 2018; Ding et al.,
2020), coastal (Zhou et al., 2018), floodplain (Scheurer and
Bigalke, 2018), and industrial lands (Fuller and Gautam, 2016).

Research on microplastics effects has been mainly conducted
under highly controlled laboratory conditions since this provides
more accurate results, andmany studies havemixedmicroplastic into
test media as homogeneously as possible to keep variability of results
low. In liquid media, homogenous dispersion of insoluble test
substances (e.g., nanomaterials and microplastics) is an important
requirement to reduce agglomeration or sedimentation, and the use
of dispersants is often adopted as an efficient strategy (Potthoff et al.,
2017). For soil, it is also recommended for target material to bemixed
thoroughly and homogenized (Thomas et al., 2020). A recent study
explained that the “homogeneity of exposure” is a crucial criterion to
guarantee the reproducibility and uniform bio-accessibility during
laboratory tests in microplastic research (de Ruijter et al., 2020).

Here, we were specifically interested in testing if microplastics in
soil can affect adjacent soil layers not even containing microplastic
themselves. Microplastics can induce changes in soil physicochemical
and biological parameters, and these effects have been well-
established in previous studies (Rillig and Lehmann, 2020). For
instance, microplastic fibers can interfere with soil aggregate
formation due to their linear shape (de Souza Machado et al.,
2018; de Souza Machado et al., 2019; Zhang et al., 2019), and
microplastic films influence soil tensile strength (Wan et al.,
2019). It is likely that such physical changes in microplastic-
containing soils would become more intense with time (de Souza
Machado et al., 2018; de Souza Machado et al., 2019; Lehmann et al.,
2020b), and that flows of water and nutrients into adjacent soil layers
can be influenced. This would be important, because such indirect
effects would suggest that previous work might have underestimated
the extent of microplastic effects in soil. To capture this situation, we
designed an experiment inwhichwe addedmicroplastic in a layer of a
soil column, and this afforded us the opportunity to study effects on
adjacent soil layers that are themselves not contaminated.We selected
two different microplastics as target materials; low-density
polyethylene (LDPE) films and polyacrylonitrile (PAN) fibers. The
soil column was constructed with three layers (control soil;
microplastic-containing soil; control soil), and two different levels
of water addition (low and high) were included in the experimental
design. To evaluate biophysical parameters at each depth of the soil
columns, water content, water flow, soil aggregates sizes, soil
respiration, and enzyme activities were measured after short-
(1 day) and long-term (60 days) incubation periods.

MATERIALS AND METHODS

Preparation and Characterization of
Microplastics
LDPE films and PAN fibers were prepared using commercial
mulching films (thickness, 13.66 ± 2.32°μm, Ihlshin Chemical
Co., Ltd., Ansan, South Korea) and knitting wool (100% PAN,

DIKTAS Sewing & Knitting Yarns Co., Turkey) (Kim et al., 2020).
Each material was cut using sterilized scissors, and then passed
through a 630 μm-sieve. Each microplastic was observed under a
microscope, and close-up photographs were captured to
determine average sizes using image analysis (ImageJ, 1.52a,
National Institutes of Health, United States) (Supplementary
Figure S1). The average area of LDPE films was calculated as
1.5 ± 0.8 mm−2 (n � 100), and the average length of PAN fibers
was 2.4 ± 0.6 mm (n � 100). Target microplastics were stored at
room temperature before main experiments. To characterize the
actual nature of each material, a spectrophotometer (Jasco, model
FT/IR-4100, ATR mode) was used, and each sample was scanned
32 times from 4000 to 600 cm−1, with a resolution of 4 cm−1

(Supplementary Figure S2).

Soil Column Test
Test soil was collected from a grassland site of the Institute of
Biology of Freie Universität, Berlin, Germany (52.45676N,
13.30240E) on January 20, 2020. The soil was passed through
a 2 mm-sieve, and then dried at 60°C for 24 h. The texture of test
soil was a sand (sand 93.3%, silt 5.0%, and clay 1.7%), and pH and
water holding capacity (WHC) were 6.7 ± 0.2 and 0.34 ±
0.10 ml g−1, respectively (n � 3). In order to prepare
microplastic soils (LDPE films and PAN fibers), 100 mg of
each microplastic and 99.9 g of dry test soil were mixed using
laboratory tweezers and a spatula, and each mixture was shaken
using an overhead shaker (Reax 2, Heidolph, Germany) for 5 min
(0.1% based on dry weight). The control soil was treated by an
equivalent process (shaking), but not containing microplastics,
and each soil was directly used for the soil column test. To prepare
the soil column, 10 g of test soil was placed into 50 ml-test tubes
(bottom layer), and 10 g of each microplastic-containing soil
(LDPE films and PAN fibers, 0.1%) were added (microplastic-
containing soil layer), after which additional test soil (10 g) was
placed into the test tube (top layer) (n � 3). A control treatment
was prepared with no microplastic-containing soil layer, but
using an otherwise equivalent process (n � 3). The total soil

FIGURE 1 | The diagram of the soil column test in this study.
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depth of the soil column was approximately 9 cm, and the depth
of each layer (top, microplastic-containing soil, and bottom) was
3 cm (Figure 1). To moisten the soil columns, 3 ml (low level of
irrigation) or 6 ml (high) of deionized water was carefully injected
into surface soil (<1 cm) using a syringe needle, and these water
levels were regarded as 10 and 20% of total soil weight. Each soil
column was covered by a vented cap and incubated at 20°C-
laboratory incubator (PP110plus, Memmert GmbH, Schwabach,
Germany) in the dark for 1 day or 60 days, respectively. Changes
in biological parameters are expected to be observed after long-
term incubation, while the water infiltration occurs within
1–2 days (Schneider et al., 2018). We determined two test
periods (1 and 60 days) to check both parameters in the soil
columns. Since the different water content in soil can influence
our measurement, parameters such as soil respiration and
enzyme activities, water content was replenished every 3 days
to keep uniform moisture during incubation periods.

At the end of each incubation period, soil samples of each depth
(1 cm) were carefully collected using laboratorial spatula. The weights
of each soil sample were recorded before and after drying at 60°C for
24 h to calculate water content (%). Soil structure of each depth were
assessed as reported in previous study (de SouzaMachado et al., 2019;
Lehmann et al., 2020a). Shortly, the whole soil was gently passed
through a set of stacked sieves (4,000, 2,000, 1,000, and 212 μm), and
theweights of four separated fractionswere recorded to determine the
proportions (%) of each soil aggregate size class. Bulk density was
computed bymeasuring the volume of soils within the plastic pot and
soil dry weight (g cm−3). We measured the soil respiration of three
layers (top, microplastic-containing soil, and bottom), as CO2

production rate (ppm h−1) after 60 days of the experiment. Before
the measurement, we flushed each of the tubes with CO2-free air for
five minutes to standardize among experimental units (Rillig et al.,
2019). After 18 h, we sampled 1ml of air from the headspace of each
tube and injected this sample into an infrared gas analyzer (LiCOR
6400xt). Extracellular soil enzyme activities, acid phosphatase and
β-D-glucosidase weremeasured after the 60 days incubation (Jackson
et al., 2013). Briefly, 5 g of each soil sample (top, microplastic-
containing soil, and bottom) was placed into a 50ml test tube
and mixed with 10ml of 50mM acetate buffer (pH 5.0–5.4), and
150 µl soil slurry was pipetted into each of six wells on a 96-well plate
after vortexing. Then 150 µl acetate buffer was added into the last two
wells of each samples (sample buffer control), and 150 µl substrate
solutions (p-nitrophenyl-phosphate and p-nitrophenyl-
β-glucopyranoside; Sigma, Germany) to the first four wells. Then
the plates were kept in an incubator at 25°C for 2–4 h. After
incubation, the microplates were centrifuged at 3000 x g for 5min,
and then 100 µl supernatant from each well was added into the new
microplates with 10 µl 1M NaOH and 190 µl distilled water in each
well. Finally, the absorbance was recorded at 410 nm by a microplate
reader (Benchmark Plus Microplate Spectrophotometer System,
BioRad Laboratories, Hercules, CA, United States).

Dye Tracer Test
To observe the spatial patterns of water flow in the soil columns,
dye tracer experiments were conducted with starting and 60 days
incubated soil columns. The starting soil columns (0 days, before
irrigation) were directly used for dye tracer test, and the 60 days

incubated columns were dried at 60°C for 48 h. We employed
Brilliant Blue dye as a tracer since it is highly visible (Schneider
et al., 2018). Although dye transport is slower than the advance of
infiltrating water, dye-stained soil patterns are generally
considered to reasonable reflect flow patterns in soil
experiments (Cey and Rudolph, 2009). We dissolved 100 mg
of Brilliant Blue powder in 100 ml of deionized water, and
3 ml or 6 ml of dye solutions were applied to each soil
column. After 24 h, the soil was carefully separated from the
soil column, and vertically excavated to observe the soil profiles.
To study the distribution of dye tracer in the soil profiles,
photographs were captured. For each profile, the close-up
photographs were adjusted for analyzing the relative pixel
intensity of Brilliant Blue dyed path using ImageJ software
(ImageJ, 1.52a, National Institutes of Health, United States).

Statistical Analyses
Data were analyzed using the SPSS statistical software (Ver. 24.0,
SPSS Inc., Chicago, IL, United States). One-way analysis for
variance (ANOVA) and Turkey’s tests were conducted to
determine the significance (p < 0.05) of multiple comparisons.

RESULTS AND DISCUSSION

Effects on Water Contents and Flows
We observed each soil sample at each depth to examine the
potential migration of microplastics during the soil column tests.
As shown in Supplementary Figures S3–S6, microplastic-
contaminated soil layers contained numerous LDPE films and
PAN fibers, while only a few microplastic particles were found in
top and bottom layers. We assume that the microplastics ended
up in adjacent layers during the layer separation or soil analysis

FIGURE 2 | Water contents (% soil dry weight) at each soil depth
(0–9 cm) of each soil column (control and microplastic-containing soil layer
treatments). Each soil column was irrigated either at a low level (A,B) or with
higher water volume (C,D), and incubated for 1 day (A,C) and 60 days
(B,D). Asterisk represents significance at the level of 5% (p � 0.05) between
control and microplastic-containing soil layer treatments.
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steps. Although the microplastics may migrate to the adjacent soil
layers with longer time or different conditions, we concluded here
that the microplastics were not transported in our soil column
tests. Water contents of each depth were considerably different
already after the 1 day incubation. In the control treatment, after
low-level irrigation, water content of the top layer (0–3 cm) was
relatively higher than the bottom layer (6–9 cm), and this
difference significantly increased in microplastic-containing
soil layer treatments. Water contents increased to 13.03 ± 0.29
(LDPE films) and 12.98 ± 0.28 (PAN fibers) % in the top
transition layer (3–4 cm), while the control treatment had a
water content of 11.32 ± 0.19%. In the bottom transition layer
(6–7 cm), water contents were 1.67 ± 0.19 (LDPE films) and
1.57 ± 0.23 (PAN fibers) %, while control treatment had 4.72 ±
0.57% (Figure 2A). The gaps of water contents between top and
bottom layers were reduced after the 60 days of incubation, but
significant differences among depths remained in the soil column
containing PAN fiber layer (Figure 2B). In high-level irrigation
treatments, only the soil layer with PAN fibers significantly
influenced the vertical water distribution (Figure 2C), and the
difference of water content in the top layer disappeared after the

60 days incubation, but remained in the bottom layer
(Figure 2D).

The infiltrated dye stain patterns for vertical soil profiles are
shown in Figure 3. In the control treatment after low-level
irrigation, the dye tracer solution had uniformly infiltrated
into soil depth 3–4 cm for both incubation periods (1 and
60 days), while uneven dye distributions and several
discontinuities were observed in microplastic-containing soil
layer treatments (yellow arrows in Figures 3A,B). After high-
level irrigation, the maximum depth of dyed soil in the control
treatment increased to 4–5 cm for both incubation periods (1 and
60 days) (Figures 3C,D). Paths of preferential flow appeared in
microplastic-containing soil layer treatments (LDPE films and
PAN fibers), and these patterns were observed below a soil depth
of 6 cm (yellow arrows in Figure 3C). Although the dye transport
does not exactly match the infiltrating water volume, the
preferential flow indicates that the microplastic-containing soil
layer might block and influence the water flow path in the soil
column. These preferential flows were not observed after 60 days
of incubation, and uneven dye distributions were observed in the
top layers (yellow arrows in Figure 3D).

FIGURE 3 | Infiltrated dye stain patterns for vertical soil profiles. Each soil column was incubated for 0 days (A,C) and 60 days (B,D), and irrigated either at a low
level (A,B) or with higher water volume (C,D).
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Soil water content plays an important role in hydrological and
biological processes, and spatial variability, both horizontally and
vertically, is typically present in soil profiles (Wang and Liu,
2013). In anthropogenically modified soils, a high heterogeneity
of substrates and unique patterns of water infiltration are often
observed, such as in mine spoil soils, tilled soils, and biochar-
containing soils (Andreini and Steenhuis, 1990; Badorreck et al.,
2010; Schneider et al., 2018). A high spatial heterogeneity of pore
volumes can be associated with anthropogenic (e.g., relict
charcoal hearths) or natural fragments (e.g., organic matter
and plant roots), and these can affect water flows in soil
profiles (Schneider et al., 2018). There are several previous
studies reporting that microplastics can influence water
dynamics (de Souza Machado et al., 2018; de Souza Machado
et al., 2019; Wan et al., 2019). Polyethylene films and polyester
fibers induced changes in soil aggregation and pore sizes, and
these phenomena can be directly or indirectly linked with water
evaporation and soil cracking (Wan et al., 2019; Zhang et al.,
2019). Alterations in soil structure can affect pore space in soils,
which can simultaneously alter water holding capacity and water
availability (de Souza Machado et al., 2019). Our study here
shows that microplastic-containing soil layers can affect water

contents and flows in adjacent soil layers, even if total water
contents in the soil columns were kept the same in each treatment
(control, LDPE films, and PAN fibers) (Supplementary
Figure S7).

Effects on Soil Physical Structure
With low-level irrigation (1 day incubation) in the control
treatment, large soil aggregate size fractions (2–4 mm)
decreased with increasing soil depth, while intermediate sized
fractions (1–2 and 0.1–1 mm) increased. This difference was
more pronounced in microplastic-containing soil layer
treatments, and mainly occurred in the microplastic-
containing soil and bottom layers (<4 cm soil depth) (Figures
4A–C). After 60°days, the differences in soil aggregate size
fractions between each soil depth were noticeably reduced in
the control treatment, but significant differences among soil
depths were still observed in the microplastic-containing soil
layer treatments (Figures 4E–G). With high-level irrigation, large
and intermediate sized soil aggregate fractions (2–4 and 1–2 mm)
showed similar levels at each soil depth, but the PAN fiber layer
influenced other size fractions (0.2–1 and <0.2 mm) (Figures
5A–D). After 60°days, the proportion of small soil aggregate size

FIGURE 4 | Soil aggregate size fractions (2–4; 1–2; 0.2–1; <0.2 mm) at each depth (0–9 cm) after low-level irrigation. Each soil column was incubated for 1 day
(A–D) and 60 days (E–H). Asterisk represents significance at the level of 5% (p � 0.05) between control and microplastic-containing soil layer treatments.

Frontiers in Environmental Science | www.frontiersin.org May 2021 | Volume 9 | Article 6819345

Kim et al. Vertical Changes in Microplastic-Containing Soil

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


fractions (<0.2 mm) was dramatically changed by LDPE films
and PAN fiber layers. The proportion of the small size fraction
significantly increased in the top layers and decreased in the
bottom layers of PAN fiber treatment, and LDPE film layers had a
significantly lower level than the control treatment (Figure 5H).
Soil bulk density in the bottom layer seemed to be slightly
influenced by microplastic-containing soil layers, but overall
levels were similar in each treatment and depth (Figure 6).

The relative proportion of micro- (<0.2 mm) and larger
macro-aggregates (2–4 mm) is crucial for pore size distribution
(Horn and Smucker, 2005), and thus directly and indirectly
influence the movement of water, gas, and nutrients
(Jayarathne et al., 2021). We observed that the differences in
size fractions between adjacent layers were less pronounced after
the 60 days incubation since the water started to slowly infiltrate
into the whole soil column from the soil surface (Figures 2, 4). In
microplastic-containing soil treatments with low-level irrigation,
the significant differences in large and intermediate sized soil
aggregate fractions (2–4, 1–2, and 0.2–1 mm) were still observed
after 60 days of incubation (Figures 4E–G). With high-level
irrigation, each size fraction in the soil columns after the
60 days incubation showed similar levels in control and

microplastic treatments due to relatively homogenous water
contents (Figures 5E–G), but fluctuations were observed in
small soil aggregate size fractions (<0.2 mm) (Figure 5H).
Since more intense irrigation can increase the dispersion of
water and the mobility of clay particles (Horn and Dexter,
1989), the soil fraction in the size range of micro-aggregates
seems to be influenced by both clay contents (Schweizer et al.,
2019) and microplastics (Rillig and Lehmann, 2020).

The effects of microplastic fibers on soil aggregation have been
well established in previous studies (de Souza Machado et al.,
2019; Rillig and Lehmann, 2020). Aggregate water stability
decreased by polyamide and polyester fibers in sandy loam
soil (de Souza Machado et al., 2018; de Souza Machado et al.,
2019; Lehmann et al., 2019), however, the contrary result that
macro-aggregate fractions increased by polyester fibers addition
in clayey soil (Zhang et al., 2019) was also observed. Films, which
is one of the two microplastic shapes we use here, reduce tensile
strength of soil, and desiccation shrinkage and cracking can be
induced, depending on film particle size (Wan et al., 2019). In the
present study, changes in each soil aggregate size fraction
occurred in both microplastic-containing soil and bottom
layers, and larger macro-aggregate fractions (2–4 mm)

FIGURE 5 | The fractions of each soil aggregate size (2–4; 1–2; 0.2–1; <0.2 mm) in each depth (0–9 cm) after high-level irrigation. Each soil column was incubated
for 1 day (A–D) and 60 days (E–H). Asterisk represents significance at the level of 5% (p � 0.05) between control and microplastic-containing soil layer treatments.
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decreased while micro-aggregates (<0.2 mm) were more variable.
Our results here show that the microplastic-containing soil layer
acts as an anthropogenic barrier, disrupting water flow paths into
the bottom soil layer, and the different water contents in each
layer seemed to be highly linked with the changes in the soil
aggregate size fraction. Regarding microplastic target
concentration, the changes in soil aggregate fractions by
microplastic addition were induced in the ranges of 0.1–0.4%
in previous reports (de Souza Machado et al., 2018; de Souza
Machado et al., 2019; Lehmann et al., 2019). In our study, the soil
aggregate size fractions were influenced not only in 0.1% of LDPE
films or PAN fibers containing soil layers, but also in adjacent
layers. Since many previous studies have focused on the
homogeneous microplastic distribution in test soil and the
effects in themselves, the observed changes in non-
contaminated adjacent layers might mean that the effects of
microplastics have been underestimated.

Effects on Biological Parameters
The results for soil respiration and enzyme activities are shown in
Supplementary Table S1. A part of β-galactosidase data are
missing due to experimental errors during measurements.
With low-level irrigation, soil respiration rates (CO2

production) in the top layers (0–3 cm) were
5.10–5.25 ppm h−1, and those of the middle layers (3–6 cm)
were 3.78–4.45 ppm h−1. Significant changes were observed in
the bottom layer (6–9 cm), as LDPE films and PAN fibers
treatments had lower respiration (2.54 ± 0.12 (LDPE films),
2.75 ± 0.36 (PAN fibers) ppm h−1) than control (3.27 ±
0.45 ppm h−1). With high-level irrigation, soil respiration rates
increased in the bottom layers with microplastic-containing soil
layers, with 6.26 ± 0.80 (control), 7.64 ± 0.79 (LDPE films), and
7.86 ± 0.38 (PAN fibers) ppm h−1, respectively. Enzyme activities
in the bottom layers showed no significant differences between
control and microplastic-containing soil layer treatments.
Although acid phosphatase in soil columns containing PAN
fibers tended to have higher activity (8.90 ± 5.02 and 8.32 ±
6.06 μmol mg−1 h−1 for low- and high-level irrigations,

respectively), these values were not significantly different from
the control (5.40 ± 3.05 and 4.09 ± 0.35 μmol mg−1 h−1). The
activities of β-D-glucosidase in each treatment were calculated as
1.92–3.68 (for low-level irrigation) and 2.10–3.08 (for high-level
irrigation) μmol mg−1 h−1, and there were no significant
differences compared with control treatment.

Broad and extensive microbial responses to microplastic
exposure have been reported in many previous studies (Liu
et al., 2017; Yang et al., 2018; Huang et al., 2019). LDPE films
and PAN fibers, the target microplastics in this study, can affect
the rate of fluorescein diacetate hydrolysis (Huang et al., 2019;
Liang et al., 2019). Microplastic fibers could provide more
porosity, and their effects on soil respiration and enzyme
activities can depend on soil water conditions (Lozano et al.,
2021). Microplastic films can strongly influence soil respiration
(Ng et al., 2020), and could reduce activity of aerobic microbes by
affecting soil aeration due to their planar shape (Lehmann et al.,
2020b). Previous studies have suggested that changes in soil
structure can be a trigger for a series of events (de Souza
Machado et al., 2018; de Souza Machado et al., 2019).
Changes in soil structure can influence pore spaces, which can
alter water dynamics and soil aeration, and this microplastic-
driven physical change is particularly linked to biological or
chemical processes. In our study, microplastic-containing soil
layers interrupted water flow in soil and changed soil physical
structure. These differences would be directly or indirectly linked
with microbial activities: water content in soil has a linear
relationship with soil respiration (Cook and Orchard, 2008),
and soil aggregate size class is highly correlated with biological
soil parameters since each size fraction has a different available
organic matter content and C-N ratio (Ashman et al., 2003). We
found evidence that microplastic-containing soil layers can affect
a biological parameter (soil respiration) in the non-contaminated
bottom layer. Despite the changes in soil respiration in the
bottom layer, these changes did not translate to overall
changes in the rate of enzyme activities.

CONCLUSION

Microplastics have unique properties compared with more
traditional pollutants, such as heavy metals or organic
chemicals, and many previous studies have reported effects of
microplastic on soil properties. We here examined that
microplastics-containing soil can affect adjacent soil layers not
containing microplastic. We conducted a simple soil column test
taking a phenomenological approach. Our results provide crucial
evidence that microplastics-containing soil layers could act as an
anthropogenic barrier, leading to vertically interrupted soil water
flows and changes in physical structure. These effects occurred
not only in microplastic-containing soil layers, but also in
adjacent layers (top and bottom). Our results imply that the
indirect effects on adjacent soils might be underestimated, and
soil systems can be altered by microplastic contamination in
unexpected ways. While our study was intended as a proof-of-
concept, it also has relevance to real world situations, for example
when plastic-containing soil surface layers are flipped during

FIGURE 6 | Bulk density (dry, g cm−3) at each soil depth (0–9 cm) of
each soil column (control and microplastic-containing soil layer treatments).
Each soil column was irrigated either at a low level (A,B) or with higher water
volume (C,D), and incubated for 1 day (A,C) and 60 days (B,D). Asterisk
represents significance at the level of 5% (p � 0.05) between control and
microplastic-containing soil layer treatments.
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certain ploughing operations in agricultural systems. Overall, we
argue that future research should also consider heterogenous
distribution of microplastic pollutants in ecosystems.
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