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Phthalate esters (PEs) are by far the most produced and extensively used synthetic organic
chemicals with notable applications in many industrial products such as vinyl upholstery,
adhesives, food containers, packaging materials, printing inks, adhesives, cosmetics,
paints, pharmaceuticals munitions, and insecticides among other. PEs have long been
recognised as ubiquitous organic pollutants of prime environmental concern, with
urbanisation amongst the main cause and source of these compounds. Due to their
notoriety, these compounds are known to pose devastating effects to living organisms
including humans. The presence of PEs and their metabolites in the aquatic ecosystems is
of concern primarily due to their endocrine disrupting and carcinogenicity properties.
Several research studies have reported prevalence, exposure pathways, toxicity, and
impacts of PEs in aquatic ecosystems and humans. Their principal routes of exposure
could be direct or indirect, of which the direct route include contact, eating, and drinking
contaminated foods, and the indirect route constitute aerosols, leaching and other forms of
environmental contamination. PEs find way into water systems through means such as
effluent discharges, urban and agricultural land runoff, leaching from waste dumps and
other diffuse sources. High-end instrumentation and improvedmethodologies on the other
hand have resulted in increased ability to measure trace levels (μg/L) of PEs and their
metabolites in different matrices and ecological compartments of water or aquatic
ecosystems such as lakes, oceans, rivers, sediments, wetlands and drinking water
samples. In light of the above, this article provides an informed and focused
information on the prevalence of phthalate esters in aquatic systems and related
effects on living organisms and humans. Furthermore, techniques that have enabled
the extraction and analysis of these PEs in aquatic samples are also explained. Future
research outlooks and needs are also highlighted in this manuscript. This information will
be used to better understand their temporal and spatial distributions in the aquatic systems
and aid in devising prudent means to curtail their ecological footprints.
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INTRODUCTION

Phthalate esters (PEs) belong to a group of industrial organic
compounds with a common chemical structure, dialkyl or alkyl/
aryl esters of 1,2-benzenedicarboxylic acid (Annamalai and
Vasudevan, 2020; Giuliani et al., 2020). They are esters of
phthalic acid produced by reacting phthalic anhydride with an
appropriate alcohol (Howdeshell et al., 2008; Vats et al., 2013;
Annamalai and Vasudevan, 2020). The polar carboxyl group
contributes little to the physical properties of PEs, except when R
and R’ are very small alkyl groups (such as methyl and ethyl). The
general chemical structure of PEs is shown in Figure 1, where R
and R’ represents alkyl groups. The most commonly utilized PEs
in consumer products are dimethyl phthalate (DMP), diethyl
phthalate (DEP), diisobutyl phthalate (DIP), di-n-butyl phthalate
(DBP), benzylbutyl phthalate (BBP), dicyclohexyl phthalate
(DCHP), di-n-hexyl phthalate (DHP), bis (2-ethylhexyl)
phthalate (DEHP), di-n-octyl phthalate (DOP), diisodecyl
phthalate (DiDP) and diisononyl phthalate (DiNP) (Wang Y.
et al., 2019; Dutta et al., 2020; Zhang et al., 2021). Table 1
highlights the chemical structures and uses of some of the
most commonly used PEs.

PEs’ different chemical and physical properties account for
many of their potential individual applications (Wang Y. et al.,
2019). Their general low melting and high boiling points give
them applications as heat-transfer fluids and carriers (Giuliani
et al., 2020). Both linear and branched PEs are utilized in the
production of plastics; with linear esters having outstanding
flexibilities at low temperatures as they are less volatile. PEs
with alkyl side chains lower than six carbons are not often
used as plasticizers because volatility is a concern. PEs can be
found in printing ink, paint, adhesives, vinyl flooring, and even in
most food packaging materials, cosmetics, and pharmaceuticals
products (Giuliani et al., 2020; Zhang et al., 2021).

Owing to their growing economic and commercial interest,
PEs are by far the most used synthetic organic chemicals in a large
variety of products since 1930s (Wang et al., 2018; Heo et al.,
2020). Global production of PEs is estimated at 6 to 8 million tons
per annum (Seyoum and Pradhan, 2019) with utilization by
various industrial companies sitting at more than 3 million
tons (Zhang et al., 2021). These compounds are mainly used
for enteric coatings of nutritional supplements and
pharmaceutical pills, as viscosity controlling agents,
emulsifying agents, lubricants, binders, gelling agents,
stabilizers film formers, dispersants, and suspending agents but
primarily as plasticizers (Ji et al., 2014; Wang B. et al., 2015; Wang
et al., 2018; Heo et al., 2020; USEPA, 2021). They are generally
added to plastic materials such as polyethylene, polyethylene
terephthalate, polyvinyl acetate and polyvinyl chloride (PVC), at
the composition of up to 60% by weight of the PEs, to improve the
elasticity and extensibility of the polymers (Giuliani et al., 2020).
End applications comprise food products, building materials,
children’s toys, medical devices, agricultural adjuvants,
adhesives and glues, personal care products, detergents and
surfactants, modeling clay, waxes, printing inks and coatings,
paints, and textiles (Ling et al., 2007; Huang et al., 2008; Gao and
Wen, 2016). A large variety of household applications, for

example, vinyl upholstery, adhesives, shower curtains, floor
tiles, cleaning materials, food holders and coverings contain
PEs. PEs are also found in modern electronics (Chakraborty
et al., 2019; Zhang et al., 2019) and clinical applications, for
example, catheters and blood transfusion devices (Chiellini et al.,
2013; Malarvannan et al., 2019). In light of their extensive uses
and diverse applications, different studies have reported the
presence of PEs residues in different receiving ecosystems
(Salaudeen et al., 2018; Ai et al., 2021; Li et al., 2021), though
here the aquatic ecosystems are reviewed. Furthermore, their
magnificent bio-availability and degradability nature would
indispensably foster high possibility for these compounds to
accumulate in aquatic organisms and humans (Arambourou
et al., 2019; He et al., 2020; Zhang et al., 2021).

This review was conducted through an exhaustive online
database literature search from ScienceDirect (https://www.
sciencedirect.com/), Google Scholar (https://scholar.google.
com), international monitoring bodies databases such as
World Health Organization (WHO), United States
Environmental Protection Agency (USEPA) and United
Nations Environmental Program (UNEP) to identify relevant
and most recent articles and reports of PEs prevalence and their
impacts on aquatic ecosystems worldwide. Studies considered
were those published in accredited scientific journals and reports
from recognized international bodies and majority of them were
limited to a decade old (2011–2021), with preference given to
those that are not older than 5 years. The following set of
keywords were used to search and select the most suitable
studies; phthalate esters, phthalate ester metabolites, phthalate
esters in water, phthalate esters in sediments, phthalate esters in
aquatic ecosystems, phthalate esters toxicity, phthalate esters
bioaccumulation, phthalate esters biodegradation, health
impacts of phthalate esters, treatment of phthalate esters.
Based on the above criteria, more than 4,000 articles were
found of which 184 articles deemed more relevant (including
scientific reports) were used in the current article. The current
state of knowledge regarding the occurrence, different extraction
and analytical techniques and impacts of PEs in aquatic
ecosystems is highlighted so as to provide a better
understanding of their temporal and spatial distributions in
aquatic systems and to aid in devising prudent means to
curtail their ecological footprints.

PREVALENCE OF PHTHALATE ESTERS IN
AQUATIC ECOSYSTEMS

Due to their widespread domestic and industrial applications, it is
not surprising that ubiquity of PE contaminants is noted in
different aquatic ecosystem compartments such as: marine
water, sediments, rivers, lakes, and wetlands, and from
wastewater treatment plants (Gao and Wen, 2016; Al-Saleh
et al., 2017; Wang et al., 2017; Salaudeen et al., 2018; Arfaeinia
et al., 2019; Zhu Q. et al., 2019; Cheng et al., 2019; Zacharia, 2019;
WHO, 2021). PEs are readily released during production, use and
waste disposal, and can easily leach out into water (Vats et al.,
2013; Salaudeen et al., 2018; Henkel et al., 2019). Specifically, they
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are easily released into the environment because there is no
covalent bond between them and polymers in which they are

mixed in (Koniecki et al., 2011; Zheng et al., 2014; Wang X. et al.,
2015; Chi and Gao, 2015; Gao L. et al., 2019). Furthermore, as
plastics age and breakdown, the release of PEs into the
environment gets accelerated. Since PEs plasticizers are not
chemically bound to PVC, they also easily filter into aquatic
ecosystems among others (Olkowska et al., 2017; Chen et al.,
2018; Kashyap and Agarwal, 2018). PEs enter the environment
through several pathways including losses during manufacturing
processes and weathering, leaching or volatilization from final
products (Kashyap and Agarwal, 2018; Das et al., 2021). Several
aquatic ecosystems such as lakes (Lee Y.-M. et al., 2019; Gao X.
et al., 2019), wetlands (Gao and Wen, 2016; Wang et al., 2017),
marine environments and rivers (Arfaeinia et al., 2019; Zacharia,
2019; Ai et al., 2021; WHO, 2021) have been characterized as
highly polluted by PEs among other organic pollutants.

In the aquasphere, PEs occur at wide concentration range
from trace (μg/L) to mg/L depending on the degree of PEs
application and products. Large variety and abundance of PEs
can be observed in aquatic ecosystems in different countries;
however, the pollution levels and occurrences are mild to
moderate. Adeniyi et al. (2011) reported the presence of up to
2,705 μg/L of PEs from river water in Nigeria, while Liu et al.
(2015) reported between 0.02 and 0.77 μg/L in waterworks from
China, from undetectable to 0.43 μg/L on surface water in Iran by
Abtahi et al. (2019). Specifically, communities which are located
adjacent to industries that use or produce these compounds tend
to be greatly exposed to the PEs. Eventually, these compounds
will find their way into the waterways since they are receptors of
all effluents and pollutants in runoff. With PEs containing

FIGURE 1 | General chemical structure of phthalate ester.

TABLE 1 | Applications and potential sources of exposure for some of the most commonly used PEs.

Phthalate ester CAS number Chemical structure Application/potential sources of exposure

Bis-(2-ethylhexyl)
phthalate

117−81−7 Medical tubing, blood storage bags, medical devices, indoor
air, table cloths, food packaging, plastic toys, floor tiles, wall
coverings, furniture upholstery, shower curtains, garden
hoses, rainwear, baby pants, dolls, swimming pool liners,
some toys, shoes, automobile upholstery and tops,
packaging film and sheets, and sheathing for wire and cable
Swan et al. (2005); Rudel and Perovich (2009); Olujimi et al.
(2010); USEPA (2018); Wang Y. et al. (2019)

Benzyl butyl
phthalate

85−68−7 Vinyl flooring, adhesives, sealants, food packaging, furniture
upholstery, carpet tiles, and artificial leather; also used in
certain adhesives (Olujimi et al. (2010); Dominguez-Morueco
et al. (2014); Liu et al. (2015); Wang Y. et al. (2019)

(Continued on following page)
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TABLE 1 | (Continued) Applications and potential sources of exposure for some of the most commonly used PEs.

Phthalate ester CAS number Chemical structure Application/potential sources of exposure

Diethyl phthalate 84−66−2 Cosmetics, nail polish, aftershave, body lotions, deodorants,
perfumes/cologne, pharmaceuticals, herbal coating,
insecticide Cartwright et al. (2000); Jianlong et al. (2004);
Wang X. et al. (2019)

Di-n-butyl
phthalate

84−74−2 Cosmetics, aftershave, nail polish, make-up, perfumes,
pharmaceuticals, herbal coating, chemiluminescent glow
sticks Olujimi et al. (2010); Mankidy et al. (2013); Wang Y.
et al. (2019)

Dimethyl
phthalate

131−11−3 Hairstyling products, indoor air freshner, shampoo,
aftershave, adhesives and insecticides Swan et al. (2005);
Rudel and Perovich (2009); Olujimi et al. (2010); USEPA
(2018); Wang Y. et al. 2019)

Diphenyl
phthalate

84−62−8 Flooring, automotive, construction, medical, clothes,
households, wire and cables Swan et al. (2005); Rudel and
Perovich (2009); Olujimi et al. (2010)

Di-n-hexyl
phthalate

84−75−3 Toys and children’s cosmetics, food packaging, small
appliances, rubber products, plastic additives as well as inert
ingredients in pesticides (Wang Y. et al., 2019)

Di-n-octyl
phthalate

117−84−0 Medical tubing and blood storage bags, wire and cables,
carpet back coating, floor tile, and adhesives, cosmetics and
pesticides. Its major usage is in children’s toys Rudel and
Perovich (2009); Olujimi et al. (2010)

(Continued on following page)
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products and effluents being anthropogenically exorbitant in the
aquatic ecosystems, it is also essential to understand the extent of
occurrence and fate, biodegradation, bioaccumulation, and
persistence.

In light of the above, an array of literature has investigated the
temporal and spatial distribution of these compounds in different
aquatic ecosystems to demonstrate the presence and distribution
of these compounds in different countries globally (Paluselli et al.,
2018; Abtahi et al., 2019; Mi et al., 2019; He et al., 2020; Ai et al.,
2021). Furthermore, studies in the past decade that have reported
the presence of PEs in aqueous and edaphic matrices including
their concentration levels as reported in Tables 2, 3. DMP, DEP,
DBP, BBP, and DEHP are the most dominant PEs in both aquatic
sediments and waters with some DEHP concentrations
frequently exceeding the annual average environmental water
(freshwater and marine) quality standard of 1.3 μg/L (EU
directive 2008/105/EC) (UNEP, 2020). The high number of
recent PEs studies and PEs detection rate in Asia could
probably be attributed to the higher volume of PEs produced
and used in these environments, because of the absence of stricter
regulations on usage of the PEs designated as priority pollutants
unlike in developed countries of Europe and United States of
America (UNEP, 2020; Das et al., 2021; Li et al., 2021). However,
most values do not exceed the trigger threshold values of 5,100,
1,300, and 64.6 μg/L for DMP, DEP, and BBP respectively for
protection of about 80% of aquatic species proposed by
Australian and New Zealand guidelines (Net et al., 2015a).
Ground and surface water bodies receive notable levels of PEs
from different human activities such as agriculture, solid waste
disposal, manufacturing industries and wastewater treatment
plants (WWTPs) among others (Liu et al., 2015; Gao and
Wen, 2016; Al-Saleh et al., 2017; Zhu Q. et al., 2019). A recent
South African study by Salaudeen et al. (2018), revealed gross
water pollution by PEs in the wastewater treatment plants
(WWTPs) of Amathole Municipality in Eastern Cape
province. In this study, the authors reported the presence of
DMP, DEP, DBP, BBP, DEHP, and DOP of with DBP and DEHP

as the most abundant PEs. The reported concentration in the
influents were in the range of 2.7–2,488 μg/L and 130–1,094 μg/g
dry weight in the sludge which exceeded acceptable limits of
100 μg/g for dry weight as recommended by the European Union
for agriculture use (EU legislation 86/278/EEC). Furthermore,
Salaudeen et al. (2018) reported the levels of PEs to be much
higher in theWWTP unit processes than upstream of theWWTP
and the effluents discharging point hence suggesting that the
WWTPs are among the key source of anthropogenic PEs in the
environment and they could be identified as one of the hotspots
and source for PEs in aquatic ecosystems. In particular, the
concentration of PEs ranged from undetectable to 17 μg/L
upstream, 2.7–2,488 μg/L in the WWTPs, and undetectable to
25 μg/L in the effluent (Salaudeen et al., 2018). Considering the
magnitude of their toxicity and impacts thereof, these compounds
will drastically affect the receiving aquatic ecosystem and its
integrity to foster life. Moreover, their composition could
grossly be attributed to the level of anthropogenic activities,
such as industries, that discharge their effluents to different
handling facilities such as domestic and industrial WWTPs
(Olijimi et al., 2012; Liu et al., 2015; Gao and Wen, 2016; Al-
Saleh et al., 2017; Zhu Q. et al., 2019).

In aquatic ecosystem, some PEs are stable, persistent, and
resistant to natural degradation, hence previous studies
demonstrated the feasibility of PEs from contaminated water
to bio-accumulate and bio-magnify in the food chain (Ma et al.,
2013; Sun et al., 2015). Albeit, biodegradation is the dominant
route for PEs degradation in the environment (Staples et al.,
1997a; Chang et al., 2004; Xu et al., 2020; Das et al., 2021).
Documented studies have reported that marine microalgal (Gao
and Chi, 2015) and some microbial species possess the capability
to degrade PEs (Ren et al., 2018; Yu et al., 2020), with microbial
degradation considered themain route of PEs transformation (Yu
et al., 2020). Microbial degradation is however, generally affected
by external environmental factors and typical lack of specific
degrading bacteria in the aquatic ecosystem, which in turn makes
PEs degradation difficult under natural conditions, hence their

TABLE 1 | (Continued) Applications and potential sources of exposure for some of the most commonly used PEs.

Phthalate ester CAS number Chemical structure Application/potential sources of exposure

Diisodecyl
phthalate

26,761−40−0 Construction materials, PVC sheet and coating products,
packaging materials, children’s toys, artificial leathers
NICNAS (2008); Koniecki et al. (2011)

Diisononyl
phthalate

28,553−12−0 Construction materials, electrical wires and cables,
automotive care, clothing, paint, coatings, electrical and
electronic products and furniture Koniecki et al. (2011)
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TABLE 2 | Mean (RSD)/range concentrations of some PEs in environmental water samples (μg/L).

Phthalate ester compounds

Locations DMP DEP DIP DBP DHP BBP DEHP DCHP DOP DiDP References

Ogun river, Nigeria nd 1,480−1,755 — 2,080−2,705 — — 255−480 — — — Adeniyi et al. (2011)
Chaohu lake, China 0.015−3.670 0.006−0.283 — 0.070−17.53 — nd−0.107 nd−0.576 — nd−0.045 — He et al. (2013)
Selangor river, Malaysia 0.002−0.028 0.006−0.113 — 0.028−0.306 — 0.002−0.021 0.051−0.507 — 0.0002−0.014 — Santhi and Mustafa (2013)
Songhua river, China 0.98−4.12 1.33−6.67 — 1.69−11.81 — nd−4.39 2.26−11.55 — 0.69−6.14 — Gao et al. (2014)
Somme river, France 0.01−0.25 0.26−6.98 — nd — nd 5.16−20.80 — 0.22−3.386 — Net et al. (2014)
Waterworks, China 0.071 0.035 — 0.35 — 0.026 0.77 — 0.026 — Liu et al. (2015)
Kaveri river, India nd−0.094 0.036−0.52 — nd−0.372 — 0.0054−0.145 nd−0.822 — nd−0.085 — Selvaraj et al. (2015)
WWTPs, S. Arabia 0.228(0.188) 0.182(0.134) — 0.748(0.577) — 0.388(0.278) 0.468(0.495) — 0.195(0.209) — Al-Saleh et al. (2017)
Jiulong river, China 0.34−0.15 0.014−0.51 — 0.31−0.51 — — 0.12−1.76 — — — Li et al. (2017)
Changjiang river, China 0.65−0.311 nd−0.181 0.028−0.469 0.53−2.41 nd−0.011 nd−0.001 nd−0.008 nd−0.151 nd−0.011 nd−0.018 Zhang et al. (2017)
Adelaide WWTP, S.A 1.35−12.07 2.53−24.42 — nd−451.48 — 2.38−80.70 3.44−48.16 — nd−21.75 — Salaudeen et al. (2018)
Rhone river, France 0.0057 0.0305 — 0.0405 — — 0.407 — nd Paluselli et al. (2018)
Songhua river, China 0.065−0.208 0.14−0.334 — 0.190−4.762 — — 0.364−2.682 — nd−0.621 — Wen et al. (2018)
Surface water, Iran 0.26(0.23) 0.04(0.23) — 0.2(0.23) — 0.05(0.23) 0.43(0.23) — nd — Abtahi et al. (2019)
Pearl river, China 0.052(0.035) 1.62(1.09) 0.397(0.293) 0.176(0.141) 0.553(0.549) 0.834(0.850) 8.88(11.1) 0.092(0.096) 0.472(0.536) 0.018(0.014) Cheng et al. (2019)
Taihu lake, China nd−1.32 0.08−4.79 — nd−2.54 — 0.08−4.72 nd−1.41 — 0.07−0.59 — Gao X. et al. (2019)
Asan lake, Korea nd−0.18 nd−0.05 nd−0.07 nd−0.34 nd−0.07 nd nd−1.34 nd−0.07 nd−0.02 — Lee Y.-M. et al. (2019)
Liao river, China — nd−1.75 — 1.43−16.6 — nd−6.55 nd−37.3 — — — Zheng et al. (2019)
Yangtze river, China 0.017−0.035 0.009−0.057 0.077−0.205 0.135−0.801 — 0.001−0.0014 0.073−0.261 — 0.0005−0.001 — He et al. (2020)
Poyang lake, China nd−0.253 nd−0.127 — 0.121−1.297 — nd 0.023−0.896 — nd−0.018 — Ai et al. (2021)
Baoding lake, China 0.086−2.20 nd−2.04 0.079−1.48 nd−2.14 — nd−1.51 — nd−1.91 — — Li et al. (2021)
Baoding pond, China nd−2.32 nd−1.68 nd−1.52 nd−1.68 — nd−1.92 — nd−1.93 — — Li et al. (2021)
Lake Victoria, Uganda 0.07−0.4 0.04−1.1 — 0.35−16 — — 0.21−23 — — — Nantaba et al. (2021)

“RSD” = relative standard deviation“—” � not analyzed; “nd” � not detected; “WWTPs” � wastewater treatment plants; “S.A” � South Africa; “S. Arabia” � Saudi Arabia.
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TABLE 3 | Mean (RSD)/range concentrations of some PEs in sediments samples (μg/g dry weight) and standard deviations.

Phthalate ester compounds

Locations DMP DEP DIP DBP DHP BBP DEHP DCHP DOP DiDP DiNP References

Ogun river, Nigeria nd−0.85 0.08−0.35 — 0.19−1.42 — — 0.02−0.82 — — — — Adeniyi et al. (2011)
Jukskei river, S.A 0.0002−0.006 0.003−0.005 — 0.006−0.057 — nd 0.017−3.66 — — — — Sibali et al. (2013)
Qiantang river, China nd−0.179 nd−0.218 0.019−0.769 0.034−0.241 nd−0.0094 nd−0.021 0.365−6.24 nd−0.0035 nd−0.019 — — Sun et al. (2013)
Songhua river, China 0.03−0.09 0.04−0.04 — 0.60−0.88 — nd−0.10 0.23−0.57 — nd−0.38 — — Gao et al. (2014)
Pearl river, China 0.001−0.019 0.001−0.091 0.108−12.4 0.042−5.03 nd nd−0.113 0.415−29.5 nd−0.011 nd−0.181 — — Liu et al. (2014)
Suburban rivers,
China

0.02(0.05) 0.09(0.27) — 1.55(2.56) — 0.50(1.22) 10.52(14.30) — 0.49(1.37) — Wang J. et al. (2014)

Kaveri river, India nd−0.0037 nd−0.185 — nd−0.664 — nd−0.0078 nd−1.40 — nd−0.0085 — — Selvaraj et al. (2015)
Wetland, China nd−0.012 nd−0.029 — nd−0.039 — nd−0.020 0.136 — nd−0.027 — — Gao and Wen (2016)
Costal/Harbor,
Taiwan

nd−0.021 0.0014−0.072 0.002−0.11 nd−0.20 — — 0.0−36.7 — nd 0.024−5.28 nd−40.31 Chen et al. (2017)

Juilong river, China nd−0.004 nd−0.002 — 0.003−0.23 — — 0.033−1.28 — — — — Li et al. (2017)
Qixinghe wetland,
China

nd−0.036 nd−0.060 0.01−0.049 0.018−0.071 nd−0.0071 nd−0.028 0.038−0.295 nd nd-0.0464 — — Wang et al. (2017)

Changjiang river,
China

0.001−0.0004 nd−0.0002 nd−0.0068 nd−0.0073 — — nd−0.0046 — — — — Zhang et al. (2017)

Changjiang river,
China

0.622 0.265 4.41 3.05 — — 5.08 — — — — Zhang et al. (2018)

Persian gulf, Iran 5.68(0.99) 5.83(0.53) 2.50(0.20) 11.9(0.68) — 9.19(0.52) 30.25(4.75) — 6.35(0.83) — — Arfaeinia et al. (2019)
Pearl river, China 0.007(0.004) 0.083(0.031) 0.867(0.478) 1.84(1.33) 0.058(0.033) 0.08(0.044) 7.61(7.50) 0.25(0.179) 0.133(0.096) 0.157(0.115) — Cheng et al. (2019)
Taihu lake, China 0.950−3.50 0.590−2.29 — 0.500-1.75 — 0.420−1.30 0.550−4.77 — 0.480−16.2 — — Gao X. et al. (2019)
Asan lake, Korea nd−0.006 nd−0.004 nd−43.2 nd−0.535 nd-0.028 nd 0.007−8.33 nd-0.019 nd — — Lee Y.-M. et al.

(2019)
Marine, China — nd−0.0025 nd−0.0064 nd−0.0068 — nd−0.0016 nd−0.016 nd — — — Mi et al. (2019)
Sludge, China 0.195 0.053 0.440 0.957 0.001 0.005 14.7 — 0.018 — — Zhu Q. et al. (2019)

“RSD” � relative standard deviation“—” � not analyzed; “nd” � not detected; “S.A” � South Africa.
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long half-life, that range from a few years to several hundred years
(Fang et al., 2018; Das et al., 2021; Zhang et al., 2021).

Interestingly, recent studies confirmed the ability of Bacillus
mojavensis B1811 (Zhang et al., 2018a) and Paracoccus
kondratievae BJQ0001 bacterium (Xu et al., 2020) to have high
efficiency for the degradation of PEs. The results of the study by
Zhang et al. (2018a), showed that at 0.5 μg/L; DEHP, DBP, BBP,
and DPP could almost be completely degraded by strain B1811
within 4 days in mineral salt medium under shaking conditions,
while only 5.9% of the DMP and 42.9% of DEP present with short
alkyl chains, were degraded by strain B1811 under the same
conditions with DMP and DEP degraded to 0.471 and 0.285 μg/L
respectively. Xu et al. (2020), also found that strain BJQ0001 is
also capable of successfully degrading substrates DMP, DEP,
DBP, DIBP, and DEHP simultaneously when they are
coexisting in the fermentation system at 0.2 μg/L of the PEs
mixture, but with slightly reduced degradation rates. He et al.
(2020), studied bioaccumulation of PEs in muscle tissues of
domestic livestock (pig, cattle and chicken) and fish in China.
In their study, the authors reported that most PEs congeners are
not likely to accumulate in organisms due to their
bioaccumulation factors being ≤2 except for DEP, DMP and
BBP which were reported to comprise the BAFs values of ≥2, with
the pig showing more capacity to accumulate PEs than the other
animals’ tissues. This could be attributed to the fact that the pig
generally has more fat contents than both the cattle and chicken
and PEs are lipophilic.

ENVIRONMENTAL AND HUMAN HEALTH
RISKS ASSOCIATED WITH PHTHALATE
ESTERS

Phthalate Esters Impacts on Aquatic
Ecosystems
Aquatic ecosystems such as rivers, dams, lakes and wetlands that
are located within or passes through agricultural, industrial,
residential and urban environments are exposed to a lot of
different types of PEs from various anthropogenic inputs
(Salaudeen et al., 2018; Ai et al., 2021; Li et al., 2021).
Although both the cyanobacteria and freshwater algae are
capable of producing DBP or monoethylhexyl phthalate
(MEHP) under natural conditions, which can then be released
to aquatic ecosystem, anthropogenic activities pollution such as
agricultural pesticides, industrial effluents, commercial
wastewaters, landfills (Zhang et al., 2021) and household-
electronic and solid wastes (Zhang et al., 2019) all act as the
main avenues of PEs into these aquatic ecosystems. Due to their
high octanol-water partition (Kow/logKow

25) (1.61–9.46) and low
vapor pressures (Pa25) (1.84 × 10−6–0.263), most PEs entering the
water environment have extremely low volatility hence can easily
migrate into various water bodies and enter aquatic organisms
(Net et al., 2015a; Das et al., 2021; Zhang et al., 2021). Since the
value of KOW increases with increasing alkyl chain length, this
results in increased hydrophobicity for the higher molecular
weight PEs, hence their higher sorption to organic matter (Das
et al., 2021; Zhang et al., 2021).

Upon entering the aquatic ecosystem, PEs directly come into
contact with aquatic organisms. PEs can enter high-nutrient-
grade aquatic organisms through ingestion and pass along the
food chain (Zhang et al., 2021). PEs affect the aquatic ecosystem
in diverse ways. Such is demonstrated by their ability to elicit their
toxicity (immunotoxin, neurotoxic, genotoxic, endocrine,
metabolic, and developmental toxicities) to fish and aquatic
invertebrates with BBP, DEHP, and DBP eliciting the most
effects (Staples et al., 1997b; Aarab et al., 2006; European
Commission, 2008; Arambourou et al., 2019; Zhang et al.,
2021). Thenceforth, the introduction of these compounds
poses massive toxicity problem for the aquatic ecosystems and
living organisms in there (Crafford and Avenant-Oldewage,
2010). As reviewed by Staples et al. (1997b), DMP, DEP, DAP,
DBP, DIBP, and BBP exposure were found to have acute or
chronic effects across, algae, invertebrates, and fish species. A
recent review by Zhang et al. (2021) also noted acute and chronic
toxic effects on aquatic organisms, with symptoms such as
crooked tails, necrosis, cardiac edema, lack of tactile response
and death on aquatic animal embryos, while on adult organisms,
PEs exposure could lead to adverse effects on reproduction,
damage to the liver, kidney, and other organs (Gao et al.,
2018). It was noted that lower molecular weight PEs were
acutely and chronically toxic at concentrations below their
aqueous solubilities and that toxicity increased with increasing
alkyl chain length up to and including four carbon atoms (Staples
et al., 1997b). Reviewed ecotoxicity studies for these PEs showed
adverse effects to aquatic organisms with broad range of
endpoints and at much lower concentration levels (ng/L to μg/
L) than that are being obtained in recent environmental studies
(Oehlmann et al., 2009; Zhang et al., 2021).

Toxicity of chemical substances to aquatic organisms is
determined by the median lethal concentration (LC50) (Huang
et al., 2020; Zhang et al., 2021). As reviewed by Zhang et al.
(2021), the common carp 96 h LC50 ranges for DEP, DBP, DOP,
and DEHP are 34.8–53, 16.30–35, 7.95, and 37.95 mg/L
respectively, while the lethal concentrations of DEP and
DBP in marine flounder and Nile tilapia are also similar to
those of carp. Contrary to this, lethal concentration of other
small-sized fish such as juvenile triangular Bream
(Magalobrame tarminalis) is significantly lower, with 96 h
LC50 values for DMP, DEP, DBP, and DEHP as low as 3.29,
6.60, 2.08, and 5.41 mg/L respectively. They are also toxic for
many other aquatic species with DEP’s LC50/EC50 values of 3
and 132 mg/L for marine algae and protozoan respectively, with
the lowest NOECs (1.7–4 mg/L) for algae, fish and invertebrates
(Staples et al., 1997b; Net et al., 2015a). Some of these toxicity
studies on aquatic organisms are listed in Table 4 with their
health effects. However, some aquatic organisms like micro-
algae have PEs degradation capabilities. Instead of being
toxicologically affected, benthic diatom (Cylindrotheca
closterium) demonstrated the ability to accelerate
degradation of DEP and DBP (Li et al., 2015). Research
indicate that most PEs (with short carbon-chains) are
degradable in the environment, however some tend to
bioaccumulate in biological samples (He et al., 2020; UNEP,
2020).
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TABLE 4 | Toxic effects of some PEs on aquatic organisms.

Organisms PEs Test concentration levels Toxicity References

Estuarine copepod
(Eurytemora affinis)

DEHP 109 μg/L, 10 days Exposure to DEHP, especially from embryonic development could results in endocrine disruption Forget-Leray et al. (2005)

Murray river
rainbowfish
(Melanotaenia
fluviatilis)

DBP 125, 250, 500, and 1,000 μg/L, 7 days Increased spermatogonia, liver choriogenin and an induction in brain aromatase suggest
continuous exposure for 7 days can adversely affect both male and female reproductive system

Bhatia et al. (2013); Bhatia et al.
(2014)

Marine medaka
(Oryzias melastigma)

DEHP 0.1 and 0.5 mg/L, 6 months Continuous exposure results in accelerated start of spawning, production in females, reduced
oocytes fertilization rate in untreated females paired with treated males

Ye et al. (2014)

Larvae midge
(Chironomus riparius)

BBP 10−3, 10−2, 10−1, 1, and 10 μg/L, 48 h Novel and significant dose and time-dependent alterations in expression profile of genes involved in
cell processes such as energy metabolism, stress response, hormone pathways and detoxication
activities even at lower concentrations

Herrero et al. (2015)

Abalone (Haliotis
diversicolor upertexta)

DBP 2, 10, and 50 μg/L, 30 days Major metabolite changes related to metabolic energy, environmental stress and osmotic
regulation, with increase in intracellular metabolites the most obvious change

Zhou et al. (2015)

Mature goldfish
(Carassius auratus)

DEHP 1, 10, and 100 μg/L, 30 days Decreased sperm production, motility and velocity after the 30 days test period Golshan et al. (2015)

African sharptooth
catfish (Clarias
gariepinus)

DEHP 0, 10, 100, 200, and 400 μg/L, 14 days Consistent and unique pattern of biphasic effect on steroidogenic enzyme genes, which increases
at low concentration (10 μg/L), and affects the brain and head kidney

Arukwe et al. (2017)

Zebrafish embryos
(Danio rerio)

DEP, BBP, DBP DEP: 0.08, 0.4, 2, and 10 mg/L; BBP: 0.02,
0.1, 0.5, and 2.5 mg/L; DBP: 0.0008, 0.004,
0.02, 0.1 mg/L, 14 days

Disruption of sex hormones through modulating key steroidogenic genes in male zebrafish over
14 days exposure period to DEP, BBP, and DBP.

Sohn et al. (2016)

DMP, DEP, DEHP, DOP,
DiNP, DiDP

0, 0.01, 0.1, 1.0, 10 and 100 mg/L, 6 h -
7 days

Exposure DMP, DEP, DEHP, and DOP significantly increased E2/T ratio in H295R cells while DEHP
influenced the expression of vtg1, esr1, and cyp19a1b genes in zebrafish larvae. In zebrafish, DMP,
DEP, DiNP, DiDP exposure showed significant transcriptional alteration of steroid hormones genes
even at lower concentrations suggesting great endocrine disrupting potencythan DEHP. Generally,
PEs reduced heart rate and body length of developing zebrafish embryos

Lee H. et al. (2019)

Daphnia magna DEP, DBP, DEHP 1 and 10 μmol/L, 14 days Enhanced fat accumulation upon exposure to all the tested PEs, analysis of genes involved in fat
metabolism suggests the increase in fat content could be due to inhibition of absorption and
catabolism of fatty acids, reduced body size.While DEP and DBP decrease lifespan, DEHP results
in increased reproduction output

Seyoum and Pradhan (2019)
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While PEs tend to be ubiquitous in the biosphere, there is
limited information about their route of exposure,
bioaccumulation behavior, and human exposure. Furthermore,
eco-toxicological studies have played a pivotal role in
determining the degree at which these compounds accumulate
in biota, specifically the plants and animals. Net et al. (2015a),
indicated that a high capacity to accumulate the PEs by species
could be obtained when the BAFs values are larger than 1,000 [log
(BAFs) > 3]. In their study, the authors reported the mean log
(BAFs) values which ranged between 0.91 and 2.96, thus implying
that most PEs congeners are not likely to be accumulative in
organisms. It is worth noting that large variances of BAFs values of
individual PEs can also be found in other studies as reported byNet
et al. (2015a), and for this, the explanation could be based on the
discrepancies between the physicochemical properties of individual
PEs, variances in temporal bioavailability, and species-specific in
metabolic capability, resulting in individually and/or jointly
impacting on the bioaccumulation of PEs in the biota (Adeogun
et al., 2015; Net et al., 2015a). This further necessitates the need for
improved and continual monitoring of PEs in aquatic ecosystems,
especially those being utilized by communities for various basic
functions such as fishing, irrigation, drinking and bathing. Such is
evidenced by the recent study by He et al. (2020), in a rural
agricultural area of western China where people are dependent on
river water for domestic and household uses and found that their
pigs, cattle and chicken meat samples all contained PEs. A
significant correlation was also observed between the biota and
river water samples, indicating that river water heavily influenced
PEs uptake and accumulation in the biological samples (He et al.,
2020). PEs, notably high molecular weight ones, have exceptional
ability to accumulate in sediments; where sorption to particles and
the low-oxygen conditions slows PEs degradation process by
reducing their degradation rates (UNEP, 2020).

Phthalate Esters Exposure, Toxicity and
Human Health Effects
Humans are continually exposed to PEs daily as these compounds
are found in little quantities in literally thousands of industrial
and household products ranging from cosmetics, toys, curtains,
electrical appliances, food, packaging materials, beverages and

drinking water (Baloyi, 2012; Gong et al., 2018; Luo et al., 2018;
Abtahi et al., 2019; He et al., 2020). Humans are exposed to PEs
from aquatic ecosystems via different routes, namely; dermal skin
absorption, inhalation, and ingestion from food and drinking
water (Alharbi et al., 2018; Paluselli et al., 2018; Abtahi et al., 2019;
Giuliani et al., 2020). Upon exposure or uptake, effects exerted
range from mutagenicity, teratogenicity, and carcinogenicity. In
fact, global concern about PEs arise due to their hazardous,
toxicity, mutagenic, teratogenic and carcinogenic
characteristics to humans on exposure (Gao and Wen, 2016;
Zarean et al., 2016; Zacharia, 2019; Li et al., 2020; USEPA, 2021).
PEs at varying levels of exposure may adversely affect human
health by acting as endocrine disruptors (Zarean et al., 2016; De
Toni et al., 2017; Jiang et al., 2018; Ren et al., 2018; Zhu M. et al.,
2019; Zhang et al., 2021). Endocrine disruptors are sometimes
also referred to as hormonally active agents that act like
hormones in the endocrine system, disrupting the
physiological functioning of endogenous hormones (Balaguer
et al., 2019; Darbre, 2019; Xu and Yin, 2019; Talia et al., 2021;
You and Song, 2021). The endocrine system in humans and most
groups of animal life, including aquatic organisms, consists of
glands that secrete hormones, and receptors that detect and react
to the hormones (Hiller-Sturmhöfel and Bartke, 1998). Studies
have associated endocrine disruptors to severe biological effects in
animals, giving rise to concerns that low-level exposure to PEs
might cause similar effects in human beings (Krimsky, 2001; Lin
et al., 2018; Balaguer et al., 2019; USEPA, 2021) since PEs have
similar effects on the endocrine system (WHO/UNEP, 2013).

The theory of endocrine disruption posits that low-dose
exposure to chemicals that interact with hormone receptors
can interfere with reproduction, development, and other
hormonally mediated processes (Zoeller et al., 2014; Gore
et al., 2015; Xu and Yin, 2019). Furthermore, since
endogenous hormones are typically present in the body in
relatively tiny concentrations, the theory also holds that
exposure to relatively small amounts of exogenous hormonally
active substances such as PEs could disrupt proper functioning of
the body’s endocrine system (Diamanti-Kandarakis et al., 2009;
Marty et al., 2011). Thus, endocrine disruptors such as PEs elicit
adverse effects at much lower doses than a toxicant acting
through a different mechanism. The half-life of PEs diesters in

TABLE 5 | Recommended toxicity uptake limits of some PEs in humans.

Phthalates MRLs/TDI (μg/kg/day) Toxicity endpoint References

DEP 7,000 (MRL-Acute) Reproduction ATSDR (2021)
6,000 (MRL-Intermediate) Hepatic ATSDR (2021)

DBP 500 (MRL-Acute) Developmental ATSDR (2021)
10 (TDI) Reproduction European Food Safety Authority (2019)

BBP 500 (TDI) Reproduction European Food Safety Authority (2019)
DEHP 100 (MRL-Intermediate) Reproduction ATSDR (2019)

60 (MRL-Chronic) Reproduction ATSDR (2019)
50 (TDI) Reproduction European Food Safety Authority (2019)

DOP 3,000 (MRL-Acute) Hepatic ATSDR (2021)
400 (MRL-Intermediate) Hepatic ATSDR (2021)

DiDP 150 (TDI) Hepatic, reproduction European Food Safety Authority (2019)
DiNP 150 (TDI) Hepatic, reproduction European Food Safety Authority (2019)

“Acute’’ � 1–14 days; “Intermediate” � 15–364 days; “Chronic” � 1 year and longer.
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human biomonitoring studies in blood plasma and/or urine of
humans and rodents is less than 24 h (Wang Y. et al., 2019; Zhang
et al., 2019; Giuliani et al., 2020; Shin et al., 2020). Other studies
have reviewed pharmacokinetics of PEs and found that diesters
are rapidly hydrolyzed to monoesters in the gastrointestinal tract
(Latini, 2005; Frederiksen et al., 2007; Dodson et al., 2014;
Cequier et al., 2015). While binding of DEHP metabolites to
blood plasma proteins, biliary excretion, and enterohepatic
circulation in humans have been suggested (Frederiksen et al.,
2007), urinary excretion remains the major elimination pathway
of PEs (Wang Y. et al., 2019). In one study by Jiang et al. (2018),
prolonged blood clotting time, decreased hemoglobin
concentrations, and increased likelihood of anemia were all
associated with high urinary phthalate metabolites in pregnant
women on their late third trimester.

PEs exposure timing is presumed to be critical, since different
hormone pathways are active during different stages of
development (WHO/UNEP, 2013). High doses of certain PEs
have shown hormonal activity in rodents’ studies with reported
liver and testicles damages and birth defects. Exposure to PEs
during pregnancy could result in birth defects such as venereal
enlargement of the male offspring and various forms of altered
genitals developments, low sperm count and quality (Swan et al.,
2005; Philippat et al., 2012; Sathyanarayana et al., 2014; Qureshi
et al., 2016; Huang et al., 2017; Hoffman et al., 2018; Rehman
et al., 2018; Xie et al., 2019). A study by Colon et al. (2000), found
that Puerto Rican girls with premature breast development had
higher levels of PEs in their blood compared to other girls,
suggesting an association between PEs exposure and abnormal
reproductive organs development. Swan et al. (2005) also found
that baby boys born to mothers with highest levels of PEs were
seven times more likely to have a shortened anogenital distance.
This authenticates that one way or another, prenatal PEs
exposure could and could’ve played a role in most cases of
abnormal reproductive organs development, miscarriage and
adverse birth outcomes (Toppari et al., 2006; Tilson, 2008; Mu
et al., 2015; Hoffman et al., 2018). Therefore, it is very important
not to only screen and monitor but also put preventative
measures in place to limit exposure to such important
endocrine disruptors as this could influence the fetal health
(Chen et al., 2019).

PEs have also been linked with endometriosis and reduced
female fertility (Cobellis et al., 2003; Reddy et al., 2006), obesity,
preterm birth and low birth weight (Mu et al., 2015; Stojanoska
et al., 2017; Hoffman et al., 2018), diabetes in adults (Svensson
et al., 2011; Stojanoska et al., 2017), autism spectrum disorders
(Jeddi et al., 2016), changes in sex hormone levels, breast cancer
and prostate cancer (Lopez-Carrillo et al., 2010; Zhu M. et al.,
2019), adverse effects on immune system, bronchial obstruction
and asthma symptoms and neuropsychological development
(Cho et al., 2010; Tellez-Rojo et al., 2013; Wang I.-J. et al.,
2014; Kim et al., 2018; Zhang et al., 2019). PEs exposure could
also interfere with production of the male sex hormones and
testosterone, which is necessary for proper development and
functioning of the male reproductive organs (Xie et al., 2019).
Interference with testosterone activity, especially early in life, can
have irreversible undesirable effects onmale reproduction organs.

Some of the suggestions on avoiding and/or minimizing
exposure to PEs for concerned people, are based on the
available literature on occurrence and levels of PEs. Although
with limited evidence that this will positively affect one’s health,
suggestions to minimize effects include among other strategies;
eating a balanced diet, reduced consumption of canned and
plastic packaged food, no nutritional supplements, no
microwaved food, frequent hand washing, minimal application
of personal care products such as cosmetics, moisturizers and
perfumes that contains PEs (Koniecki et al., 2011; Chen et al.,
2015; Braun, 2017; Wang Y. et al., 2019). In Taiwan, Chen et al.
(2015) explored these PEs exposure reduction strategies in 30
(4–13 years old) young girls and found that pre-intervention
dominant urinary PEs metabolites were significantly lower
post the one-week intervention period. The study found that
frequent hand washing (p � 0.009) and reduced intake of
beverages in plastic cups (p � 0.016) were the most effective
ways to reduce PEs metabolites in urine, particularly DEHP and
mono-n-butyl phthalate (MBP) metabolites (Chen et al., 2015).
However, avoiding personal care products containing PEs can be
tricky and impossible as countries such as the United States do
not require that PEs be disclosed on the list of the ingredients
(Dodson et al., 2012). It is also recommended to avoid and
minimize utilization of untreated water from the rivers as they
can act as a major source of exposure to human by PEs, especially
in rural areas where access to clean water is limited. A study by He
et al. (2020), in China, found that untreated river water accounted
for 79, 83, and 88% of the estimated PEs (DMP, DEP, BBP, DIBP,
DNBP, DEHP, and DOP) daily intakes in toddlers, children and
adults respectively, which exhibited an increasing trend with age,
and this agreed with another study, also in China by Ji et al.
(2014), where water ingestion and/or absorption was the major
source of exposure to DBP, DEHP, and DOP. It is also worth
noting that domestic animal meat can also serve as another route
of PEs exposure, especially pork, beef, chicken and some
vegetables (He et al., 2020) and some crops producing eaten
grains such as rice, maize and wheat (Sun et al., 2015; Xu et al.,
2020), so it is befitting to suggest and recommend consumption of
organic farm produces which contain no synthetic products.

An assessment report by UNEP (2020) on chemicals and waste
issues posing risks to human health and the environment has
reviewed measures taken by several countries to reduce the use
and exposure of PEs through various means. Among these
measures, Denmark successfully reduced the use and exposure
to PEs by introducing tax on products containing PVC and
phthalates, although the tax was then repealed in 2019, in part
due to reductions in the overall utilization of PEs. The Korean
Ministry of Food and Drug Safety adopted and prohibited the
production, import sale or use medical devices containing DBP,
BBP, and DEHP. China, through National Food Safety Standard
prohibited the use of DMP, DBP, DOP, and DiDP as additives in
food contact materials, and banned the use of DBP, BBP, DEHP,
DOP, DiNP, and DiDP in infants and children’s textile products.
Canadian government has already banned the use of DEHP in
cosmetics and medical devices and restricts concentrations of
BBP, DBP, DEHP, DOP, DiNP, and DiDP to below 1 mg/kg in
childcare articles. Columbia and Peru also restrict contents of
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BBP, DBP, DOP, DEHP, DiNP, and DiDP in flexible plastic for
children (UNEP, 2020). The widespread utilization, potential
exposure and effects of PEs also necessitated the need for
monitoring by international agencies such as the United Nations
Environmental Program (UNEP), International POPs Elimination
Network (IPEN), United States National Health and Nutrition
Examination Survey (NHANES), United States Centers for
Disease Control and prevention (USCDC), United States
Environmental Protection Agency (USEPA) and Stockholm
Convention, and for the Agency for Toxic Substances and
Disease Registry (ATSDR) and European Food Safety Authority
(EFSA) to regulate and recommend toxicity limits for some of the
most utilized PEs. Table 5 lists recommended levels of some
individual PEs as set out by ATSDR (2021), EFSA (2019), with
regulated concentration in the form ofMinimal Risk Levels (MRLs)
and Tolerable Daily Intake (TDI). A study by the United States
National Academies of Sciences, Engineering and Medicine (2017)
found that although the current toxicity test methods can identify
DEHP hazard, they may not accurately and conclusively be able to
predict the levels at which humans are affected, implying that some
of the reference doses and other “safe” limits established by
regulatory agencies based on animal testing, may in fact be not
safe to humans (UNEP, 2020). Such discovery calls urgently for
improved and reliable methods for PEs biomonitoring studies on
human samples. Statistically representative sample of United States
population in a 2015–2016 NHANES survey revealed that high
concentration of PEs was prevalent among people living below the
poverty line (USCDC, 2018; USEPA, 2018). Similar trend of high
exposure to PEs among children of low socio-economic income
household was also found to be prevalent in Canada (Navaranjan
et al., 2019; UNEP, 2020). It is worth noting that there are no known
or documented MRLs/DTI and/or toxicity endpoints for majority
of the PE compounds yet. Worryingly, these compounds are not
regulated in most developing countries, specifically the low-and
middle-income countries (LMIC) hence their impacts might be
catastrophic, yet they are not captured in any epidemiological report
or assay.

EXTRACTION AND ANALYSIS OF
PHTHALATE ESTERS IN AQUATIC
ECOSYSTEMS

Extraction of PEs
Like most organic compounds contaminants that are of
environmental concern, PEs are also lipophilic, and thus typically
extract into lipid soluble compounds. These esters have been detected
in very low ranges of parts per billions (ppb) and parts per million
(ppm) in different environmental samples (Sibali et al., 2013; Lee Y.-
M. et al., 2019; Arfaeinia et al., 2019; Dong et al., 2019; Zhang et al.,
2019; Annamalai and Vasudevan, 2020; He et al., 2020). Reliable
and sensitive analytical methods for trace detection are therefore
paramount. PEs analysis procedure generally involve a three-step
process; extraction, column clean-up and chromatographic
determination and/or quantification. Different methods and
procedures for PEs determination have been reviewed and
findings are well documented (Arfaeinia et al., 2019; Annamalai

and Vasudevan, 2020; He et al., 2020). All these studies employed a
typical separation approach comprising of sample collection,
extraction of target compounds from the samples and extracts
clean-up process, then qualitative/quantitative analysis. The most
common and basic methods are briefly explained below.

Solid Phase Extraction
SPE is a sample preparation process by which analytes are isolated
fromwide variety ofmatrices (compounds) in themixture according
to their physical and chemical properties (Falenas, 2019). SPE is
advocated for due to its ease of implementation, ability to save time
and solvent (Net et al., 2015b). SPE has been used to isolate PEs with
great success from river and tap waters (Dominguez-Morueco et al.,
2014; Selvaraj et al., 2015; Wang R. et al., 2019). Advances have been
made recently to improve applicability and reliability of SPE by
utilizing different covalent organic framework (COF) adsorbents
(Santana-Mayor et al., 2018; Tong et al., 2019; Pang et al., 2020).
Examples of such are the successful development and applications
among others of fabricated COF-(TpBD)/Fe3O4 (rapid magnetic
separation and reusable after washing with methanol) to magnetic
solid phase extraction of 15 PEs with detection limit as low as
0.005 µg/L and good recoveries of 79.3–121.8% (Pang et al., 2020);
0.01–0.28 µg/L detection limit and recoveries of 80–112.8% with
fabricated core-shelled Fe3O4 graphitic carbon sub-microcube (Tong
et al., 2019); 0.006–0.178 µg/L detection limit and recoveries of
70–120% with Fe3O4 nanoparticles coated with reduced-graphene
oxide (Santana-Mayor et al., 2018). However, the downsides to these
advances are that they are delicate and expensive therefore they are
not practical especially for developing countries.

Solid Phase Micro-Extraction
SPME employs a miniature automatic device to integrate sampling,
enrichment and separation, purification, concentration and injection
into one simple procedure which is more sensitive and
environmentally friendly (Yang et al., 2015). Introduction of
modulating agent into the synthesis fibers enhances PEs extraction
efficiency significantly which is evident achieved satisfactory
recoveries (Wang X. et al., 2019; Guo et al., 2019). In early 21st
century, novel SPME systems with new selective coatings received
much attention in the development of SPME (Mehdinia and Aziz-
Zanjani, 2013). In 2010, a headspace SPME approach was established
and optimized for analysis of sixteen PEs compounds in oil matrices
with a special fiber as sorbent. This approach had the major
advantage of not requiring any sample manipulation thereby
minimizing cross contamination from glassware, solvents and
samples. With minor modifications to the method, it has been
employed by several other researchers in China for PEs analysis
inmarine water samples with relative standard deviations of less than
10% and different satisfactory recoveries; 68–114% (Zhang et al.,
2017), 55.4–110.9% (Zhang et al., 2018b), in South Africa for
WWTPs effluents; 75–116% (Salaudeen et al., 2018). However,
the method’s main drawbacks are that the fibers are rather
expensive and tend to break (Yang et al., 2015).

Soxhlet Extraction
This method is applicable to the extraction of non-volatile and
semi volatile organic compounds from solids such as sediments,
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sludges, soils and solid wastes (Sibali, 2008). Soxhlet extraction
uses relatively affordable glassware and organic solvents. Once
loaded it requires no hands-on manipulation and provides
efficient extraction. In one study by Liu et al. (2014), SE was
used for sixteen PEs analysis from urban lakes and rivers in
China, with reported recoveries of 61–112% and average relative
standard deviations of less than 10% for water and sediments
samples. In South Africa, SE optimized and applied for PEs
extraction on soil and sediments samples from Muledane open
dump, Thohoyandou, Limpopo province, with recoveries of
between 88–90% (Adeniyi et al., 2008; Fatoki et al., 2010).
Also, in Venda, Limpopo province, South Africa, Fatoki et al.
(2010). With minor modifications and recoveries of 90–122%, SE
was also optimized and applied for PEs extraction from sediments
samples in Jukskei river catchment in Gauteng province of South
Africa (Sibali et al., 2013).

Liquid-Liquid Extraction
LLE, also known as solvent extraction is a basic technique in the
laboratory and a traditional method used to separate compounds
based on their preferences for two different immiscible liquids,
usually water and an organic solvent. It is an extraction of
lipophilic compounds from aquatic medium which results in
the water rich and the organic rich phases (Cai et al., 2007). LLE
has been used in a couple of environmental studies involving the
analysis of PEs in aquatic ecosystems (Cai et al., 2007; Fatoki et al.,
2010; Hadjmohammadi and Ranbari, 2011; Sibali et al., 2013).
Fatoki et al. (2010), optimized and applied LLE for PEs analysis
from Venda, Limpopo province, South Africa, with recoveries of
81–90% and relative standard deviation of less than 5%. In Africa,

with minor modifications, Sibali et al. (2013) also successfully
optimized and utilized the LLE method to extract PEs from water
samples collected in Jukskei river catchment in Gauteng province
of South Africa with recoveries of 95–122% and relative standard
deviation of less than 10% while Nantaba et al. (2021) obtained
recoveries of 83–115% in Lake Victoria of Uganda. Some of the
benefits for LLE are the easy phase separation, rapid partition
equilibrium, less toxicity and good compatibility for the
subsequent determination (Cai et al., 2007).

Ultra-Sonication Extraction
Selvaraj et al. (2015), utilized the method to extract PEs from the
sediments with good recoveries of 79–121% in India. With minor
modifications, USE method was also applied to extract PEs from
sediments in China, recoveries of 69–123% and relative standard
deviations of less than 10% were reported (Wang et al., 2017;
Zhang et al., 2017; Zhang et al., 2018b; Weizhen et al., 2020). Li
et al. (2015), also employed themethod on biodegradation of both
diethyl phthalate and dibutyl phthalate esters from marine
sediments albeit with no percentage recovery reported, this
demonstrate the applicability of the method.

Sample Clean-Up and PEs Analysis
Extracts from environmental samples usually contain large
amount of other potential interfering organic compounds
which could give rise to high background during instrumental
analysis, hence a clean-up process is necessary before analysis.
More often, this is done by adsorption chromatography in the
form of aluminum oxide, florosil or silica gel columns which traps
unwanted compounds. Should the clean-up step be omitted the

TABLE 6 | Some of the recent extraction and analysis methods applied on environmental matrices.

Country Extraction method Environmental matrix Recovery rate
(%)

Detection limit
(μg/L)

Instrumental
analysis

References

India SPE Water (river) 33–121 0.47–1.22 GC-MS Selvaraj et al. (2015)
Spain SPE Water (wastewater/pond) 70–120 0.006–0.178 HPLC-MS/MS Santana-Mayor et al. (2018)
Korea SPE Water (lake) 77–112 0.001–0.021 GC-MS Lee Y.-M. et al. (2019)
China SPE Water (lake) 79–91 0.009–0.078 GC-MS Ai et al. (2021)
China SPE Water (river) 76–110 0.008 (LOQ) GC-MS Cheng et al. (2019)
China SPE Water (river) 71–130 0.0001–0.075 GC-ECD Weizhen et al. (2020)
China SPME Water (marine) 68–114 0.0004–0.00032 GC-MS Zhang et al. (2017)
Iran SPME Water (surface/river) 98–102 0.017–0.035 GC-FID Abtahi et al. (2019)
China SPME Water (lake) 66–122 0.003–0.033 GC-MS Li et al. (2021)
South Africa SE Water (river) 90–122 0.027–0.056 GC-FID Sibali et al. (2013)
China SE Sediments (river) 68–119 0.00044–0.055 GC-MS Sun et al. (2013)
China SE Sediments (river) 61–112 0.00112–0.00859 GC-MS Liu et al. (2014)
China SE Sediments (river) 76–110 0.008 (LOQ) GC-MS Cheng et al. (2019)
China SE Sediments (marine) 94–141 0.00005–0.00132 GC-MS Mi et al. (2019)
Iran LLE Water (river/marine) 92–102 0.9976–0.9993 HPLC-UV Hadjmohammadi and Ranbari (2011)
South Africa LLE Water (river) 81–122 0.027–0.056 GC-FID Sibali et al. (2013)
Uganda LLE Water (lake) 83–115 0.0002–0.001 GC-MS Nantaba et al. (2021)
China USE Sediments (river) 71–125 0.0008–0.00038 GC-MS Wang J. et al. (2014)
India USE Sediments (river) 79–108 0.47–1.22 GC-MS Selvaraj et al. (2015)
Taiwan USE Sediments (marine) 83–107 0.0033–0.0432 GC-MS Chen et al. (2017)
China USE Sediments (wetlands) 84–110 0.35–0.78 GC-MS Wang et al. (2017)
China USE Sediments (marine) 76–105 0.00012–0.0016 GC-MS Zhang et al. (2018c)
Iran USE Sediments (marine) 68–111 0.007–0.027 GC-MS Arfaeinia et al. (2019)
Korea USE Sediments (lake) 89–118 0.104–1.32 GC-MS Lee Y.-M. et al. (2019)
China USE Sediments (river) 75–123 0.0001–0.075 GC-ECD Weizhen et al. (2020)
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crude extracts are likely to contaminate the capillary column
during instrumental analysis. Generally, the glass column is
prepared by packing it with glass wool at its base and about
1–5 g of silica gel/florisil/aluminum oxide slurry in extracting
solvent, anhydrous sodium sulfate is added above the column
packing material (about 1 cm) to dehydrate the extracts. The
column is saturated with extracting solvent, extract loaded on to
the column and eluted with enough extracting solvent to ensure
that all target compounds are eluted. The final eluate is
concentrated to about 1 ml before Gas chromatography (GC)
analysis (Fatoki et al., 2010; Sibali et al., 2013; Liu et al., 2014; Lee
Y.-M. et al., 2019) or liquid chromatography (LC) such as high
performance or Ultra performance coupled with mass
spectroscopy (MS) (Santana-Mayor et al., 2018; He et al., 2020).

Development of gas chromatograph fused-silica capillary
columns has resulted in an increased separation powers for
PEs (Liu et al., 2013; Yang et al., 2015). This is greatly due to
the general low molecular weight, relatively low polarity and
thermal stability of PEs. GC methods combined with mass
spectroscopy (MS), MS/MS, Electron capture detector (ECD)
or flame ionization detectors (FID) have steadily become the
main tool for identification and quantification of PEs in the 21st
century (Yang et al., 2015; Salaudeen et al., 2018; Weizhen et al.,
2020), and to some extent, LC coupled to MS detector (He et al.,
2020). Common methods used for determination and analysis of
PEs from different environmental matrices are based on GC-MS/
FID (Sibali et al., 2013; Qureshi et al., 2016; De Toni et al., 2017;
Zhang et al., 2018c; Salaudeen et al., 2018; Li et al., 2020), GC-
ECD (Weizhen et al., 2020), Stir-Bar Sorptive Extraction-
Thermal Desorption (SBSE-TD)-GC/MS (Heo et al., 2020),
Ultra Performance Liquid Chromatography (UPLC) coupled
to a Quadrupole Time of Flight Mass Spectrometer (TOF-MS)
(He et al., 2020), ultra-high-performance liquid chromatography
coupled to triple quadrupole tandem mass spectrometry
(UHPLC-QqQ-MS/MS) (Santana-Mayor et al., 2018).
Quantification of PEs is generally performed using internal
standard calibration method (Liu et al., 2014; Lee Y.-M. et al.,
2019; He et al., 2020; Li et al., 2020; Weizhen et al., 2020). Table 6
gives a summary of various extraction methods used on different
environmental matrices, percentage recovery rate, detection
limits and analytical instrument used.

All methods discussed demonstrate their fair share in terms of
applicability and reliability for PEs extractions from different
environmental matrices by yielding good and acceptable
recoveries, especially the solid phase extraction. However,
development of covalent organic framework absorbents for
solid phase extraction is a delicate and time-consuming
process. USE has also yielded great recoveries, but the
downside is the need for hands-on and multiple extraction
processes to concentrate the extracts. Although solid phase
micro-extraction is regarded as an innovative solvent free
extraction method with satisfactory recoveries, it is very
technological which limits the applicability of the method,
especially to under-developed and developing countries

without access to state-of-the-art instrumentations. It was also
noted from the reviewed research that LLE was barely utilized in
the last decade, instead SPE and SPME have become the most
preferred methods for PEs extraction from aquatic water
matrices.

CONCLUSION

Occurrence of PEs in the environment is undoubtedly of great
concern and more so in aquatic ecosystem where diverse sources
are responsible for input of these toxic pollutants into the water
and sediments. Biomonitoring studies elsewhere have clearly
demonstrated that both human and aquatic life exposure from
PEs polluted water is ubiquitous. PEs toxicity in aquatic
ecosystems has been shown to affect biota therein and is also
associated with human exposure and health risks that result from
human contact, ingestion of contaminated food (e.g. fish and
crops irrigated with PEs polluted water), and inhalation. Different
toxicity studies have characterized the adverse effects
(hatchability, embryonic development, and sex ratio) of PEs
on different tissues, organs, and systems of aquatic organisms.
The need to protect water resources and the aquatic ecosystem is
well demonstrated through the multitude monitoring and toxicity
data availed from various researches. Different sources of
exposure to PEs are well documented but several questions
about cumulative exposures, contributions of various sources
in toxicity and mixed exposures remain partially answered.
While the review here has demonstrated that there has been a
lot of research characterizing and monitoring PEs in aquatic
ecosystems and their effects on humans and other living
organisms, very limited action has been implemented toward
strict regulation and regulatory enforcement for these
compounds in many developing countries. Although several
countries have made efforts to regulate and limit the
distribution and application of PEs by various industrial fields,
through the establishment of various policy thresholds that
restrict and limit the amount of PEs on certain products, and
tolerable intake through MRLs and TDI for individual PEs per
person. However, these efforts seem to be ineffective as exposure
to PEs is exacerbated by the expanding human population and
increasing PEs production and widespread application in various
industries. There is ongoing need for regulatory agencies to put in
place more research informed environmental, health-protective
and legally binding regulations as well as enforcing them.
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