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Assessing the response of soil heterotrophic and autotrophic respiration to climate change
is critical for forecasting terrestrial carbon cycle behavior in the future. In the present study,
we conducted a drought experiment in Vitexnegundo var. heterophylla shrub ecosystem of
the Middle Taihang Mountain. Three precipitation manipulation treatments (natural
conditions/ambient precipitation (CK), reduced precipitation by 30% (PE30), and
reduced precipitation by 60% (PE60)) were used to study the impact of different levels
of precipitation exclusion on total soil respiration (Rs) and its heterotrophic (Rh) and
autotrophic (Ra) components. Our results showed that the rates of Rs and its
components were significantly decreased under the precipitation exclusion treatments.
The proportion of Rh in Rs reduced from 72.6% for CK to 71.9% under PE60. The annual
cumulative C fluxes of Rs decreased by 47.8 g Cm−2 in PE30 and 106.0 g Cm−2 in PE60,
respectively. An exponential relationship was observed between the rate of each soil
respiration component and soil temperature in all treatments (p < 0.01). Moreover, each
soil respiration component rate was better represented by a quadratic model which
included soil moisture (p < 0.01). However, including both of soil temperature and soil
moisture did not explain more variation in soil respiration components compared than the
regression model with soil moisture only. In addition, excluding precipitation increased the
temperature sensitivity (Q10 values) of Rs and its Ra and Rh components compared to the
control. Collectively, our findings suggest that increased drought will inhibit the release of
carbon from the soil to the atmosphere, and will likely decrease the contribution of Rh to Rs

in this semiarid shrubland ecosystem.
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INTRODUCTION

In future climate scenarios, the intensity and frequency of
precipitation is forecasted to decrease in many areas (IPCC, 2013;
Sun et al., 2019). Reductions in precipitation induced by climate
change will greatly impact terrestrial carbon (C) cycling, including
soil respiration (Rs), especially in arid and semiarid regions (Ahlström
et al., 2015; van der Molen et al., 2011). Terrestrial ecosystems release
approximately 58 Pg CO2 per year, which is 10 timesmore than fossil
fuels emissions (Schlesinger and Andrews, 2000; Huang et al., 2018).
Accordingly, even small changes in Rs may influence inter-annual
fluctuations in C cycling, with subsequent feedbacks on climate
change (Bond-Lamberty and Thomson, 2010; Liu et al., 2021).

Responses of Rs to decreasing precipitation have been studied
in various ecosystems, but considerable uncertainty remains
about the directions and magnitude of the response (Hinko-
Najera et al., 2015; Sotta et al., 2007; van Straaten et al., 2010; Wei
et al., 2016). Precipitation reduction was reported to suppress Rs
in arid and semiarid ecosystems (Talmon et al., 2011) but
enhance it in tropical rainforests (Cleveland et al., 2010; Zhang
et al., 2015). These contradictory results have been attributed to
differences in vegetation types, climatic conditions, and soil
microbial activities (Li et al., 2020; Liu et al., 2016). Rs is
comprised of autotrophic respiration (Ra), produced by the
activities of vegetation roots and associated organisms, and
heterotrophic respiration (Rh), associated with decomposition
of soil organic matter (SOM) through soil biota (Luo and
Zhou, 2006). These two components represent different
biological and ecological processes and respond differently to
changes in environmental factors including soil temperature (Ts)
and soil moisture (Ms) (Liu et al., 2016). For example, reduced
precipitation strongly suppressed Ra, but had no effect on Rh in a
temperate broadleaved evergreen eucalypt forest (Hinko-Najera
et al., 2015). Therefore, identifying differences between Ra and Rh
and the factors that control them in different precipitation
treatments could help to reduce some of uncertainties
associated with climate-carbon feedback forecasts (Liu et al.,
2016; Huang et al., 2018; Zhang et al., 2015). However, very
few studies have combined manipulating precipitation with
partitioning Rs into its component fluxes in semiarid shrublands.

Shrublands are a widely distributed biome type in China (Piao
et al., 2009), covering approximately 1.23 million km2 of China
(Yang et al., 2016). The arid and semi-arid shrublands are
important land-cover types in northern China, which are
affected by increasing temperatures and changing precipitation
patterns (Jia et al., 2016). Moreover, the region of arid and semi-
arid shrublands is projected to be characterized by large
fluctuations in precipitation and frequent drought periods
under future climate change (Liu et al., 2012). Thus, it is
important to better understand the response of soil respiration
components to changing precipitation by using an artificial
precipitation manipulation experiment. In the present study,
we established precipitation shelters in mountain shrublands
of northern China to identify: 1) the impacts of precipitation
exclusion on the different soil respiration component rates and
their temperature sensitivity values, and 2) the relation between
soil respiration components and soil temperature/moisture.

MATERIALS AND METHODS

Study Area and Plot Setting
This research was carried out at the Hilly Ecosystem
Experimental Station of Taihang Mountain, Chinese Academy
of Science (114°15′50″ E, 37°52′44″ N, 350 m a.s.l.) in the Hebei
Province of northern China. This region has a semi-arid
continental climate with an annual mean atmospheric
temperature of 13°C. The lowest average temperature in
January is −4°C, and the highest average air temperature in
July is 26°C (Zeng et al., 2014). Annual mean precipitation is
about 560 mm concentrated from June to September (Shen et al.,
2014). Monthly accumulated precipitation and average air
temperature during the experimental period are shown in
Figure 1. The soil is categorized as Cinnamon soil under the
Chinese soil taxonomy, which is equal to Ustalf in the USDA Soil
Taxonomy (Zeng et al., 2014). The most abundant shrub is Vitex
negundo var. heterophylla, which forms a relatively closed canopy
(Shen et al., 2014).

The experiment was carried out in June 2015. Based on a
randomized block design, three replicate treatments were used to
create precipitation gradients, including natural conditions/
ambient precipitation (CK), reduced precipitation by 30%
(PE30), and reduced precipitation by 60% (PE60). This design
resulted in a total of nine plots. Each experimental plot of 10 m ×
10 m was established with 10 m spacing between plots. All
measurements were carried out at the center (8 m × 8 m) to
avoid edge effects. In PE30 and PE60 treatments, precipitation
was reduced by 30 and 60%, respectively, by using plastic rainout
shelters as described by Sherman et al. (2012). Although the
shelters minimally intercepted incoming light, past work has
shown that the interception has little effect on plant responses
(Zhang et al., 2017).

Measurement of Soil Respiration and Its
Components
A mini-trenching method was adopted to measure Rh in the
subplots. In each plot, three trenches were excavated (0.5 m high
and 0.4 m in diameter) and then the roots were removed.

FIGURE 1 | Climatic data during the study period from August 2016 to
July 2017.
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Subsequently, the soil was put into nylon mesh bags (mesh size of
0.038 mm) to avoid roots expanding into the subplots and to
allow the movement of soil organic nutrients, microbes, and soil
water (Zhang et al., 2014). Finally, the soil was placed back into
the trenches. Vegetation was restricted from the area inside each
trench by manually cutting plant growth throughout the study
period.

In each plot, three PVC collars (inner diameter of 10.4 cm and
height of 8 cm) were installed in the soil at 5 cm depth to monitor
Rs in the untrenched area. In addition, another three PVC collars
were inserted at the center of the trenching areas to measure Rh.
In order to remove the impacts of soil collar installation on Rs or
Rh measurements, the collars were installed one year before
measurements were collected (July 2015). Moreover, living
vegetation inside the PVC collars was removed before
monitoring (Fang et al., 2018). Rs and Rh were monitored on
clear days once every month between August 2016 and July 2017
using a LI-COR 8100 infrared gas analyzer. All measurements of
Rs and Rh were carried out from 8:00 to 11:00 a.m. Ra was
calculated by subtracting Rh from Rs (Sun et al., 2019). The soil
temperature and humidity sensors equipped with the LI-COR
8100 system were used to record Ts and Ms at a soil depth of
10 cm (Shen et al., 2014).

Statistical Analyses
An exponential model was used to calculate the relationship
between monthly mean Rs, Ra, and Rh and monthly mean Ts (°C)
from three replicates (Sun et al., 2019):

R � a · eb·Ts andQ10 � e10·b (1)

where R stands for Rs, Ra, or Rh (μmol m−2 s−1); Ts is the soil
temperature (°C); a and b are regression parameters; Q10 is the
temperature sensitivity of different soil respiration components.

A polynomial function (Sun et al., 2019) was established to
analyze the variation between monthly mean Rs, Ra, or Rh and
monthly mean Ms (%) as follows:

R � c ·M2
s + d ·Ms + e (2)

where R stands Rs, Ra, or Rh (μmol m−2 s−1); c, d, and e are
functional parameters; Ms is the soil moisture (%).

To consider the combined impacts of Ts and Ms on soil
respiration components, we also fitted soil respiration
components using a two-factor regression model (Zhang et al.,
2015) as follows:

R � f · eg·Ts ·Mh
s (3)

Where R represents Rs, Ra, or Rh (μmol m−2 s−1); f, g, and h are
regression parameters; Ts and Ms are the soil temperature (°C)
and soil moisture (%) at 10 cm depth, respectively.

According to the method described by Shen et al. (2014), Rs
and Rh measurements between respective sampling dates were
interpolated and summed to estimate the annual cumulative
fluxes for different treatments.

Repeated measures ANOVA analysis was used to examine the
significant differences in mean Ts, Ms, Rs, Ra, Rh and Rh/Rs
between the CK and treatment plots for various periods.

ANOVA was also performed to test the effect of precipitation
treatment on the mean soil respiration components,
environmental factors, and cumulative soil respiration
component fluxes. All analyses were performed using SPSS
13.0 software (SPSS for Windows, Chicago, IL). Significant
differences were indicated at the level of p < 0.05. Exponential
model 1) and polynomial model 2) and their corresponding
coefficients were performed using Sigmplot 12 (Systat Software
Inc., CA, United States of America); non-linear regression model
3) and its regression parameters were performed using R 4.1.0 for
Windows (https://www.r-project.org).

RESULTS

Soil Temperature and Soil Moisture
Soil temperature varied seasonally, from the lowest of −2.8°C in
January 2017 to the highest of 26.9°C in July 2017 (Figure 2A).
Mean monthly Ts depth for CK, PE30 and PE60 were 14.1, 13.9
and 13.8°C, respectively, and there was not a significant difference
among the three treatments throughout the study period
(Figure 2B).

Soil moisture in the three precipitation gradients displayed
similar seasonal variation (Figure 2C). On average,Ms was 10.2%
in CK and decreased by 5.0 and 17.8% in PE30 and PE60,
respectively (Figure 2D). In addition, soil in PE60 was
significantly drier than the soil in the control (p < 0.05).

Rs and Its Components
During the study period, Rs, Rh, and Ra showed similar
seasonal variation to Ts and Ms, with maximum values
occurring during summer (July) and minimum values
occurring in the winter (Figure 3A,C,E). However, the ratio
of Rh/Rs showed an opposite pattern with the lowest value
(approximately 60%) during the peak season (Figure 3G). The
average Rs was 1.48 ± 0.14 μmol m−2 s−1 in CK, and was
reduced by 8.5 and 18.8% in PE30 and PE60, respectively;
the reduction in Rs was significant for PE60 (p < 0.05)
(Figure 3B). The average Rh was 1.07 ± 0.09, 0.98 ± 0.08,
and 0.88 ± 0.04 μmol m−2 s−1 in CK, PE30, and PE60,
respectively. The mean Ra was 0.41 ± 0.08 μmol m−2 s−1 in
CK, with a reduction of 7.5% in PE30 and 19.9% in PE60,
respectively (Figure 3D,F). The one-way ANOVA showed that
the average Rh was significantly higher in CK than in PE60
(Figure 3D). In contrast, Ra was not significantly altered by
changing precipitation (Figure 3F). In addition, precipitation
exclusion did not significantly alter the ratio of Rh/Rs

(Figure 3H). Rh was significantly and positively correlated
to Rs under the three precipitation manipulation treatments
(Figure 4). The model implied that Rh approached zero with
Rs, which made sense biologically as Rh occurred in the soil
when Rs > 0 (Bond-Lamberty et al., 2004). Annually, reducing
precipitation significantly decreased the cumulative Rs by
47.8 g C m−2 in PE30 and 106.0 g C m−2 in PE60,
respectively (Figure 5). Moreover, the contribution of Rh to
Rs was altered by different precipitation treatments, with a
larger Rh/Rs ratio in CK than in PE30 and PE60.
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Effects of Soil Temperature andMoisture on
Soil Respiration Components
Both Rs and its Rh and Ra components increased exponentially
with Ts (p < 0.01) for the three precipitation treatments (Table 1).
Ts interpreted 68.2–78.9% of the variations in Rs, Rh, and Ra
(Table 1). The Q10 values of Rs, Rh, and Ra varied from 3.35 to
4.57, 2.12 to 2.20, and 3.60 to 4.35, respectively. Moreover, theQ10

of Rs and Ra both significantly increased with reduced
precipitation, while the Q10 of Rh did not. A significant
quadratic relationship was observed between soil respiration
components and Ms (p < 0.01) measured at 10 cm depth
(Table 2). Ms explained 76.1–78.6% of the variation in Rs,
71.8–74.5% in Rh, and 76.9–81.6% in Ra, respectively
(Table 2); thus, Ms was a better predictor of soil respiration
components in the three precipitation treatments. Moreover,
simultaneously considering both Ts and Ms explained
56.6–77.9% of the variation in soil respiration components
(p < 0.01 or p < 0.05) (Table 3), indicating that the inclusion
of Ts did not improve the explanation of soil respiration
components compared to the model based on Ms only.

DISCUSSION

Segmentation of Soil Respiration
The average Rs in this study ranged from 1.20 ± 0.09 μmol m−2 s−1

to 1.48 ± 0.14 μmol m−2 s−1, which was in the range of values
reported for other shrubland ecosystems (de Dato et al., 2010; Shi
et al., 2020; Talmon et al., 2011). The relative contribution of Rh to
Rs was 72.6, 72.3 and 71.9% in CK, PE30 and PE60, respectively.

These were consistent with the values reported by Cheng et al.
(2015) and Huang et al. (2018), but were higher than those
reported in other ecosystems (Comstedt et al., 2011; Huang et al.,
2016; Saiz et al., 2005). The trenching method has been widely
utilized to distinguish Rh from Rs in many ecosystems (Hanson
et al., 2000; Kukumägi et al., 2017; Liu et al., 2016). Nevertheless,
it should be noted that a long period of time (i.e., more than 6
months) might be needed to completely remove the influence of
dead roots on Rh (Xu et al., 2015; Lei et al., 2017). In order to
eliminate the impacts of dead root decomposition on Rh
measurements, we inserted collars into the trenches almost
one year before the measurement of soil respiration
components. However, the trenching method may lead to low
estimates of Rh due to removal of inputs from root exudates and
dead roots (Yi et al., 2007; Fang et al., 2018).

Effects of Precipitation Manipulation on Rs

and Its Components
Precipitation can affect Rs and its components by changing soil
humidity, which directly influences the substrates for
heterotrophic respiration as well as the autotrophic respiration
of roots and microorganisms (Wang et al., 2014b; Liu et al., 2018;
Sun et al., 2019). Consistent with several previous works (Balogh
et al., 2016; Borken et al., 2006; Suseela et al., 2012), a decrease in
Rs and its Rh and Ra components was also observed under the
precipitation exclusion treatments in the present study, and this
response can be explained by a number of abiotic and biotic
mechanisms. First, reductions in Rh, and hence Rs, were possibly
caused by lower soil moisture due to decreased precipitation
(Yang et al., 2020). Reduced precipitation might inhibit Rh and Rs

FIGURE 2 | Seasonal variation in (A) soil temperature (Ts) at 10 cm depth, and (C) soil moisture (Ms) at 10 cm depth from August 2016 to July 2017. Data are the
mean ± SD (n � 3). Monthly mean values of (B) Ts and (D)Ms throughout the study period. Letters on the top of the bars indicate significant difference among treatments
at level of p < 0.05. CK: ambient precipitation; PE30: 30% reduced precipitation; PE60: 60% reduced precipitation.
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FIGURE 3 | Seasonal variations in (A) total soil respiration (Rs) and its (C) heterotrophic (Rh) and (E) autotrophic (Ra) components and (G) the ratio of Rh/Rs (%) from
August 2016 to July 2017. Data are the mean ± SD (n � 3). Monthly mean values of (B) Rs, (D) Rh, (F) Ra and (H) ratio of Rh/Rs (%) throughout the study period. Letters on
the top of the bars indicate significant difference among treatments at level of p < 0.05. CK: ambient precipitation; PE30: 30% reduced precipitation; PE60: 60% reduced
precipitation.
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by impeding the diffusion of unstable substrates, and thus
decreasing the rates of soluble substrates absorption by
microorganisms (Yan et al., 2011). Second, lower fine root

growth caused by lower soil moisture levels might also explain
the effect of decreased precipitation on Rs and its components
(Hinko-Najera et al., 2015). Third, lower soil moisture in

FIGURE 4 | Relationship between soil respiration (Rs) and its heterotrophic (Rh) component during the study period. (A) CK: ambient precipitation; (B) PE30: 30%
reduced precipitation; (C) PE60: 60% reduced precipitation.
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decreased precipitation treatments might increase the amount of
CO2 that accumulates in soil pores (Liu et al., 2019).

However, many other studies have reported varying responses
of soil respiration to reduced precipitation (Deng et al., 2018;
Zhang et al., 2015). Davidson et al. (2008) found no effect of
reduced precipitation on soil respiration, indicating that
belowground carbon allocation may not have been
significantly impacted by reduced precipitation. In addition,
Cleveland et al. (2010) and Zhang et al. (2015) reported that
reducing precipitation increased soil respiration in tropical
rainforest experiments because the soils responded to the
increase of dissolved organic matter concentrations or soil O2

availability. The reasons for these inconsistent results may be due
to the fact that they were conducted in diverse ecosystems and
measurements were conducted on different temporal scales
(Wang et al., 2014b). Therefore, it is necessary to
quantitatively assess the changes of Rs and its components
under different intensities and frequencies of precipitation
exclusion in different ecosystems.

Effects of Precipitation Manipulation on
Modeled Soil Respiration Components
Soil temperature exhibited seasonal variation, which primarily
accounted for the temporal variation of soil respiration
components (Fang et al., 2018). In this study, both Rs and its
components rose exponentially with the increase of Ts in the three
precipitation treatments, consistent with previous findings from
shrublands (Lellei-Kovács et al., 2016; Sun et al., 2021) and other
ecosystems (Rey et al., 2002; Zhang et al., 2015). Mechanisms
underlying the response of soil respiration components to
changes in Ts may include the availability of nutrients and
substrates, the adaptation of roots to different soil
environments, and the alteration of the microbial community
(Wei et al., 2016). In addition to Ts, Ms has also been considered
an important variable that controls the variation of Rs and its
components (Saiz et al., 2005; Sun et al., 2019). Our results
provided evidence that the precipitation manipulation
treatments significantly decreased Ms and had a much
stronger effect on both Rs and its components. Ms might limit
soil respiration components by stressing the distribution of
assimilates in the plant-soil system, microorganisms, and
enzymatic activities in the rhizosphere (Escolar et al., 2015;
Sanaullah et al., 2011). According to the Ms-based quadratic
function, both Rs and its components may become depressed
whenMs becomes either too high or too low (Liu et al., 2018). We
simulated the soil respiration components with a two-factor
model (Eq. 3) (Table 3) which turned out to be weaker than
the Ms-based model, suggesting that precipitation exclusion
amplified the effects of soil water limitation on soil respiration
(Sun et al., 2019).

Q10 is recognized as an important parameter to evaluate
temperature adaptation of Rs (Luo and Zhou, 2006; Fang et al.,
2018). In our work, the values ofQ10 ranged from 2.12 to 4.57, which
was consistent with the range (0.65–5.18) of other ecosystems (Rey
et al., 2002; Zou et al., 2018; Sun et al., 2021). Previous studies have
suggested that drought might change the sensitivity of Rs to
temperature and disrupt the coupling between temperature and
humidity (Selsted et al., 2012; Wang et al., 2014b). Soil-water deficit
adequately weakened the sensitivity of Rs to Ts, leading to the
decrease of Q10 (Rey et al., 2002; Wang et al., 2014b; Liu et al.,
2016). In contrast, our study found that reducing precipitation
increased the Q10 values of different soil respiration components,
which was consistent with previous results in a grassland ecosystem
(Sun et al., 2019). TheQ10 values of Ra were higher than those of Rh,
reflecting a tighter relationship between Q10 and plant root activities
(Sun et al., 2019; Zou et al., 2018). In addition, the results also
suggested that Rh was less sensitive than Ra to the precipitation
exclusion treatments, indicating that drought might have a weaker

FIGURE 5 | The ratio of heterotrophic respiration (Rh) and autotrophic
respiration (Ra) to cumulative soil respiration components fluxes (g C m−2)
from August 2016 to July 2017. Letters on the top of the bars indicate
significant difference among treatments at level of p < 0.05. CK: ambient
precipitation; PE30: 30% reduced precipitation; PE60: 60% reduced
precipitation.

TABLE 1 | Impacts of soil temperature (Ts, °C) on the variation of different soil
respiration components (R, μmol m−2 s−1). R2, p, andQ10 values are reported.

Treatment Equation R2 p Q10

Soil respiration (Rs)
Ambient precipitation (CK) Rs � 0.135e0.121Ts 0.753 <0.01 3.35
30% reduced precipitation
(PE30)

Rs � 0.067e0.148Ts 0.763 <0.01 4.39

60% reduced precipitation
(PE60)

Rs � 0.108e0.152Ts 0.749 <0.01 4.57

Heterotrophic respiration (Rh)
Ambient precipitation (CK) Rs � 0.281e0.075Ts 0.682 <0.01 2.12
30% reduced precipitation
(PE30)

Rs � 0.244e0.077Ts 0.690 <0.01 2.16

60% reduced precipitation
(PE60)

Rs � 0.216e0.079Ts 0.689 <0.01 2.20

Autotrophic respiration (Ra)
Ambient precipitation (CK) Rs � 0.0003e0.128Ts 0.789 <0.01 3.60
30% reduced precipitation
(PE30)

Rs � 0.0006e0.133Ts 0.783 <0.01 3.78

60% reduced precipitation
(PE60)

Rs � 0.0008e0.147Ts 0.761 <0.01 4.35
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feedback mechanism of SOM decomposition on climate change
(Sun et al., 2018).

CONCLUSION

The present study provided unique data for exploring the impacts
of precipitation exclusion on Rs and its components in a semiarid
mountain shrubland of northern China. Precipitation exclusion
significantly depressed Rs and its Rh and Ra components. Rs and
its components were all exponentially related with Ts and
quadratically related with Ms. The temperature sensitivity
(Q10) of Rs and Ra were both significantly increased by
decreased precipitation. In addition, decreasing the intensity of
precipitation decreased the contribution of Rh to Rs. We estimated

an annual C reduction release of 47.8 and 106.0 g C m−2 in
response to treatments that decreased precipitation by 30 and
60%, respectively. Our findings are critical for understanding and
forecasting possible changes in the release of carbon by semiarid
shrublands in response to climate change. Further work with
long-term experiments is necessary to evaluate the influence of
precipitation manipulation treatments on soil respiration
components and how the responses may vary along under
future drought events.
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TABLE 3 |Combined impacts of soil temperature (Ts, °C) and soil moisture (Ms, %)
on the variation of different soil respiration components (R, μmol m−2 s−1). R2

and p values are reported.

Treatment Equation R2 p

Soil respiration (Rs)
Ambient precipitation (CK) Rs � 0.560e0.068Ts Ms

−0.136 0.628 <0.05
30% reduced precipitation
(PE30)

Rs � 0.487e0.056Ts Ms
−0.105 0.566 <0.05

60% reduced precipitation
(PE60)

Rs � 0.035e0.105Ts Ms
0.106 0.779 <0.01

Heterotrophic respiration (Rh)
Ambient precipitation (CK) Rs � 0.487e0.072Ts Ms

−0.152 0.627 <0.05
30% reduced precipitation
(PE30)

Rs � 0.419e0.059Ts Ms
−0.112 0.568 <0.05

60% reduced precipitation
(PE60)

Rs � 0.016e0.096Ts Ms
0.447 0.775 <0.01

Autotrophic respiration (Ra)
Ambient precipitation (CK) Rs � 0.427e0.071Ts Ms

−0.136 0.635 <0.05
30% reduced precipitation
(PE30)

Rs � 0.363e0.059Ts Ms
−0.092 0.585 <0.05

60% reduced precipitation
(PE60)

Rs � 0.039e0.112Ts Ms
−0.106 0.728 <0.01

TABLE 2 | Impacts of soil moisture (Ms, %) on the variation of different soil respiration components (R, μmol m−2 s−1). R2 and p values are reported.

Treatment Equation R2 p

Soil respiration (Rs)
Ambient precipitation (CK) Rs � 0.044 Ms

2 − 0.548 Ms + 2.014 0.778 <0.01
30% reduced precipitation (PE30) Rs � 0.042 Ms

2 − 0.498 Ms + 1.664 0.786 <0.01
60% reduced precipitation (PE60) Rs � 0.051 Ms

2 − 0.518 Ms + 1.561 0.761 <0.01
Heterotrophic respiration (Rh)
Ambient precipitation (CK) Rs � 0.024 Ms

2 − 0.291 Ms + 1.234 0.733 <0.01
30% reduced precipitation (PE30) Rs � 0.022 Ms

2 − 0.236 Ms + 0.933 0.745 <0.01
60% reduced precipitation (PE60) Rs � 0.028 Ms

2 − 0.269 Ms + 0.929 0.718 <0.01
Autotrophic respiration (Ra)
Ambient precipitation (CK) Rs � 0.019 Ms

2 − 0.257 Ms + 0.779 0.816 <0.01
30% reduced precipitation (PE30) Rs � 0.018 Ms

2 − 0.229 Ms + 0.631 0.790 <0.01
60% reduced precipitation (PE60) Rs � 0.023 Ms

2 − 0.250 Ms + 0.641 0.769 <0.01
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