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Uncertainties concerning low-impact development (LID) practices over its service life are
challenges in the adoption of LID. One strategy to deal with uncertainty is to provide an
adaptive framework which could be used to support decision-makers in the latter decision
on investments and designs dynamically. The authors propose a Bayesian-based
decision-making framework and procedure for investing in LID practices as part of an
urban stormwater management strategy. In this framework, the investment could bemade
at various stages of the service life of the LID, and performed with deliberate decision to
invest more or suspend the investment, pending the needs and observed performance,
resources available, anticipated climate changes, technological advancement, and users’
needs and expectations. Variance learning (VL) and mean-variance learning (MVL) models
were included in this decision tool to support handling of uncertainty and adjusting
investment plans to maximize the returns while minimizing the undesirable outcomes.
The authors found that a risk-neutral investor tends to harbor greater expectations while
bearing a higher level of risks than risk-averse investor in the VL model. Constructed
wetlands which have a higher prior mean performance are more favorable during the initial
stage of LID practices. Risk-averse decision-makers, however, could choose porous
pavement with stable performance in the VLmodel and leverage on potential technological
advancement in the MVL model.

Keywords: climate change, stormwater management, Bayesian, life span, low-impact development, porous
pavement, constructed wetland

INTRODUCTION

Low-impact development (LID) practices such as incorporation of constructed wetland (CW) and
porous pavement (PP) in stormwater management are decentralized elements that could be used to
manage storm runoff through retention and infiltration at source (Ahiablame and Shakya, 2016). As
an important adaptation strategy, LID is growing in popularity due to its anticipated social, esthetic,
and environmental benefits, as well as its flexibility and compatibility to blend in with architecture
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and landscape, particularly in a high-density urban area
(Ahiablame et al., 2012; Yuan et al., 2018). Decision-making
tools for selecting, sizing, and design of LID at various plot scales
such as a single project development site, urban sub-catchment,
or at a regional level have been developed (Bakhshipour et al.,
2019; Wang et al., 2020). However, the robustness associated with
the LID devices has not been addressed (Pyke et al., 2011;
Bahrami et al., 2019). Bracmort et al. (2006) stated that
although a “design life of LID” had been established, the
effective duration and performance of a LID during its design
life span remained uncertain. Naturally, LID efficiency would
vary over time (Koch et al., 2014; Chen et al., 2016). Like all
stormwater ancillaries, the efficiency of LID devices is likely to
decrease over time due to progressive degradation and
deterioration of the structural elements, clogging of pervious
surfaces, and sedimentation. Periodic maintenance would no
doubt restore the performance of LID to some degree.

Many reported studies have focused on certain aspects of
hydrologic performance of LID based on field or experimental
investigations (Montalto et al., 2007; Emerson et al., 2010;
Thompson et al., 2016; Hou et al., 2019). Some hydrological
or hydraulic modeling studies have focused on the potential
variations in long-term performances of LID but these studies
assumed that LID functions perfectly after installation (Liu et al.,
2015; Wang et al., 2021). There are only a handful of studies that
had developed techniques to address long-term efficiency of LID
and incorporated this consideration into the models to simulate
the actual performance (Bracmort et al., 2006). Liu et al. (2018)
presented a life-time modeling framework for assessing the
efficiency of LID technologies and long-term performances of
CWs and grass buffer strips in removing total phosphorus. Wang
et al. (2021) illustrated that the hydrological robustness of a
wetland system would decrease significantly over its service life
cycle once long-term performance for LID practices is
considered.

Selecting an appropriate LID solution is becoming more
complicated and more challenging due to high uncertainty of
climate change in recent years (Larsen et al., 2016) on top of the
uncertainty associated with long-term performance of LID.
Obviously, the combined effects and uncertainties of climate
change and its long-term efficiency would further complicate
decisions to invest on LID practices. Several researchers suggested
that a realistic modeling method should consider both the
internal uncertainties of LID’s dynamic hydrological
performance and external uncertainties such as climate change
(Pyke et al., 2011; Yazdanfar and Sharma, 2015). There are still
knowledge gaps and potential opportunities for further
development of models and tools which could be used to
support decision-making of LID.

An investment on LID often involves a long-term planning
horizon, hinging on management objectives, available resources,
risk appetite, and potential benefits of LID. The challenge is how
to structure the information on the cost-benefits of LID and
include a variety of structural uncertainties and climate scenarios.
A multi-scenario analysis with adaptive options including a
decision-tree analysis, real options analysis (Woodward et al.,
2014; Sturm et al., 2017), dynamic adaptive policy pathways, and

multi-stage stochastic programming (MSP) has been considered.
In this approach, adaptation strategies can be modified
dynamically and progressively based on updated information
(Shi et al., 2019). A Bayesian analysis is widely used in the multi-
scenario analysis with adaptive options. The Bayesian approach
begins with an assumed initial distribution of certain variables,
which is then refined progressively until an optimum state is
obtained (Kelly and Kolstad, 1999). Other reported studies that
include these are by Liu et al. (2017) and Tang et al. (2018) on
regional flood risk; Jacobi et al. (2013) on water quality
improvement; Hung and Hobbs (2019) on green
infrastructures; and Webster et al. (2017) on climate
mitigation technologies.

The objective of this study is to develop a reliable Bayesian-
based and coupled optimization model which addresses
uncertainty and risk associated with long-term efficiency of
LID and potential climate change.

MATERIALS AND METHODS

The proposed methodology for optimized design and investment
of LID based on Bayesian learning and anticipated long-term
efficiency over its design life span is described herein. The
procedure includes several steps as represented schematically
in Figure 1. Two urban sub-catchments in Guangzhou are
used as the test catchments in this study.

There are five main blocks in the work flow process: 1)
preparation of input data and focusing on the hydrological
characteristics of a test catchment; 2) select an appropriate
hydrological model; the model is used for hydrologic
simulation of stormwater runoff through the test catchments;
3) a Bayesian learning model which is used to assess the
performance of LID practices under different investment
strategies and various degrees of LID implementation; 4) a
coupled optimization model which is used for developing the
optimum investment strategy (optimum LID implementation);
and 5) final decision module, in which the outcome of the above
processes is used to determine the extent of the LID and its
configuration such that the objective could be achieved optimally
and with optimum investment.

Long-Term Efficiency of Low-Impact
Development
Test Catchment and Climate Scenarios
Guangzhou, a high-density city in China, has the most severe
urban flooding risk among the 136 large coastal cities in the world
(Hallegatte et al., 2013). The rainfall distribution is non-uniform
throughout the year due to the impacts of subtropical monsoon
climate. Using selected multi-global climate models (GCMs) and
the corresponding representative concentration pathways (RCPs)
scenarios in Guangzhou, occurrences of extreme storms are
expected to rise dramatically over the next 30 years (Zhang
et al., 2017).

Two test catchments selected for this study were located at
23°04′N; 113°12’ E, and they were residential sub-catchments S01
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and S02 (Supplementary Figure S1). The land surface area of S01
and S02 included a different proportion of impermeable areas.
The hydrologic parameters of both sub-catchments, as shown in
Table 1, had been established and calibrated using ten rainfall
events and validated using another 25 events over the period of
2013–15. The Kling–Gupta efficiency and Nash–Sutcliffe
efficiency were above 0.7 and 0.6, respectively (Zhu et al., 2019).

Historical rainfall data (2010–19) were collected from the
rainfall station at the Baiyun International Airport,
Guangzhou. In order to extract independent rainfall events
from continuous time series, the inter-event time definition
method with a duration of 12 h was adopted (Joo et al., 2014).
“Future” rainfall data were established based on observed data
and projections based on multi-GCMs (Figure 1) as well as
RCPs introduced by IPCC in its Fifth Assessment Report
(O’Neill et al., 2014). The median ensemble model of multi-

GCMs was adopted to project rainfall events over the projected
period. RCP 8.5, a high emission scenario reflecting the
increasing greenhouse gas emissions leading to radiative
forcing of 8.5 W/m2 in 2,100, was selected as the climate
change scenario (Lee et al., 2014). The projected period of

FIGURE 1 | Flowchart of the methodology for the coupled Bayesian optimization model of LID investments. Note: PP, permeable pavement; CW, constructed
wetland; LCC, life cycle cost; SWMM, Storm Water Management Model; VL, variance learning; MVL, mean-variance learning; None-L, none learning; Part-L, part
learning; All-L, all learning; CVaR, conditional value at risk.

TABLE 1 | Characteristic parameters of sub-catchment S01 and S02.

Parameter Unit S01 S02

Area ha 2.000 1.500
Characteristic slope % 0.019 0.184
Proportion of impermeable area % 50.000 92.000
Manning’s n for impervious areas — 0.025 0.024
Manning’s n for pervious areas — 0.150 0.150
Depression storage of impervious mm 0.100 0.206
Depression storage of pervious mm 10.000 10.000
Max infiltration rate mm/h 103.810 103.810
Min infiltration rate mm/h 11.440 11.440
Decay constant d 2.750 2.750

Note: source of parameters selected from Zhu et al. (2019).

TABLE 2 | Parameters of the permeable pavement (PP) and constructed wetland
(CW) in SWMM.

Layers Parameters PP CW

Surface layer Berm height (mm) — 300
Vegetation volume fraction (m3/m3) — 0.05
Surface roughness (Manning’s n) 0.012 0.1
Surface slope (percent) 0.5 0.5

Soil layer Thickness (mm) — 900
Porosity (m3/m3) — 0.5
Field capacity (volume fraction) (m3/m3) — 0.15
Wilting point (volume fraction) (m3/m3) — 0.08
Conductivity (mm/hr) — 50
Conductivity slope — 10
Suction head (mm) — 80

Pavement Thickness (mm) 100 —

Void ration (voids/solids) (m3/m3) 0.15 —

Impervious surface fraction 0 —

Permeability (mm/hr) 500 —

Clogging factor 0 —

Storage layer Thickness (mm) 300 300
Void ration (voids/solids) (m3/m3) 0.4 0.67
Seepage rate to native soil (mm/hr) 13 13
Clogging factor 0 0

Underdrain layer Flow coefficient 2.5 2.5
Flow exponent 0.5 0.5
Offset height (mm) 100 150

Note: sources from Rossman and Huber (2016).
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2020–39 was adopted. In so doing a 30-year planning horizon
and LID’s life span (assumed to be 30 years) (Vineyard et al.,
2015) was established, with the first 10 years (2010–19) of
observed rainfall time series and 20 years (2020–39) of
projected rainfall time series.

Hydrologic Model and LID Practices
The Storm Water Management Model (SWMM), a dynamic
hydrologic model, was used to simulate the hydrological
processes for a single and continuous rainfall event on an
urban catchment. The result was used in the planning and
design of various LID technologies (Kong et al., 2017). The
underlying surface of catchment was treated as a non-linear
reservoir (Palla and Gnecco, 2015). The Horton model for
infiltration and dynamic wave routing was selected for rainfall
loss and confluence routing (Rossman and Huber, 2016).

Although both PP and CW have been widely used in LID
practices for reducing peak flow and pollution loads at source,
their construction structures, materials, costs, and maintenance
as well as applicabilities are quite different (Wang et al., 2019). In
this study, PP and CW were adopted as representative LID
elements, and the corresponding structural parameters are
listed in Table 2. The surface area and width of the PP and
CW were used to describe the extent of LID conceptually.

Annual runoff volume reduction was set as the main
parameter in the optimization (maximized cost-saving) of
investment. The construction costs of LID practices are
included in Table 3. The annualized maintenance costs were
defined as a certain fraction of the capital costs, that is, 4.0% for
PP and 8.0% for CW (Houle et al., 2013; Wang et al., 2020). The
life cycle cost (LCC) of LID was a long-term cost over the service
life time, and they were adopted as the investment budget. LCCs
of PP and CW were calculated using the capital and maintenance
costs over a service life time of 30 years (Rossman and Huber,
2016). Construction of PP and CWs was set to be ready at the
beginning of year 1, while the maintenance costs were incurred at
some point in time between years 1–30 (Wang et al., 2020). A
present value (PV) accounting was performed by compiling all
LCC and discounted to the 2018 United States dollar ($) value.
The LCC of PP and CWs were calculated as:

LCC � Ccapital + PVO&M, (1)

PVO&M � ∑30
n�1

O&M
1

(1 + i)n, (2)

where Ccapital is the capital cost of LID, PVO&M is the present
value of the maintenance costs, n is the number of year in service,
and i is the discount rate reflecting the depreciation in value over
time (Reis and Shortridge, 2020). A discount rate of 2% was
adopted in this study (Dong, 2018).

Long-Term Efficiency Metrics
Following the long-term performance modeling framework for
LID developed by Liu et al. (2018), the effective performance of
PP was assumed to degrade linearly over time and is shown in
Figure 2A (Emerson et al., 2010; Haile et al., 2016). The decrease
in PP effectiveness was mainly attributable to physical
degradation such as clogging of the pores and sediment
accumulation over the surface. Figure 2B shows the potential
change in the mean CW effectiveness normally distributed during
a typical year following the annual vegetative growth and
decay cycle.

The composite efficiency of PP and CW is shown in
Figure 2C. It is derived by superimposing the cyclic trend of
the CW on the linearly decreasing trend of the PP. The
relationship of LSEmean PP is as follow:

LSEmean PP � −a × x + b, (3)

where a is the slope (assumed to have a default value of 0.020 ±
0.005) (Liu et al., 2018), and b is the intercept set to 1, since the
initial efficiency of PP was set to 100%.

The mean efficiency for CW (LSEmean BC) was reflected as a
series of normal distribution with attenuated magnitude
(Figure 2C), which emulated the natural characteristics of
decreasing efficiency from year-to-year. The (LSEmean BC) was
assumed normally distributed (Forbes et al., 2011) as:

LSEmean BC � pdf norm(x|σ, μ) � 1
σ

���
2π

√ e
−(x−μ)2

2σ2 , (4)

where σ is the standard deviation (assumed to have a default value
of 1.0 and a range of 0.5–5.0) (Liu et al., 2018); μ is the mean of x
(assumed to be 0); and x has a value between −6 and +6 (the range
of 12 months).

For the first year of CW’s service life, the highest mean
efficiency (LSEhighest BC) was set to 100%. To reflect the
downward trend of CW’s performance, LSEhighest BC was
assumed to decay with a reduction factor, LSEnh year-on-
year:

LSEhighest BC � 100% × (1 − LSEnh)N−1, (5)

where N is the number of years of the design life span, and LSEnh

reflects the progressive reduction of potential maximum
efficiency year-on-year, and is assumed to have a default value
of 2.0 ± 1.0%.

For the annual rainfall–runoff reduction, it was necessary to
establish the statistics for the total runoff generated in the events
for the yth year as follow:

TABLE 3 | Construction costs of constructed wetland (n m2) and permeable
pavement (n m2) used in this study.

Construction work PP BC Unit price
($)

PP BC

Plant (m2) — n 20 — 20 n
Asphalt pavement (m3) 0.1 n — 150 15 n —

Soil (m3) — 0.9 n 30 — 27 n
Gravel (m3) 0.3 n 0.3 n 50 15 n 15 n
Pipe (m) n0.5 n0.5 15 15 n0.5 15 n0.5

Geotextile (m2) n n 1 n n
Excavation (m3) 0.4 n 1.2 n 4 1.6 n 4.8 n
Disposal (m3) 0.4 n 0.9 n 5 2 n 4.5 n

Note: The data are mainly from a local inquiry internet platform for engineering materials
[www.gldjc.com (accessed May 28, 2019)].
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Rov(y) � Vy–∑n
k�1

V(k, y) × LSEmean, (6)

where Rov(y) is the reduction runoff volume of LID practices in
year y (from 2010–39), Vy is the yth year annual runoff volume
generated for non-LID catchment, n is the number of rain events
in year y, and LSEmean is the mean efficiency of LID practices.

Bayesian Learning Programming
A Bayesian-based multi-stage decision model (with “prior” and
“posterior” predictive distribution) was adopted to model the
implementation process of the LID. The model analyzes various
schemes of implementation, while considering opportunities and
risks progressively. Certain schemes might change course at some
future stages, depending on the level of achievement attained at
that time. A two-stage decision model was incorporated in the
LID scheme (investment decision) in this study. The main
constraints were certain pseudo-random events and acceptable
risk-averse levels.

“Prior” Distributions
According to the terminology of Bayesian inference theory, the
distribution on the hydrological performances of LID practices at
the initial stage, called the “prior” distribution, was assumed to be
normally distributed (μ, σ2, where μ and σ2 were the mean and
variance of performances, respectively) based on the simulated
ensemble of LID function units.

Pave(u, s) � 1
Y

× ∑Y
y�1 Rov(u, s)
LCC(u, s) ,∀u ∈ {PP,BC},∀s ∈ S, (7)

where Pave(u, s) represents LID function objectives, Y is 30 years
of the simulated period, u ∈ PP,BC}{ represented the investments

in PP or CW, s ∈ S represents the LID investment scenario s in S
scenarios, and Rov(u, s) and LCC(u, s) are the storm runoff
volume reduction and life cycle costs for u LID type in
scenario s, respectively. The LID function objective contains a
single parameter, that is, storm runoff reduction. Pave(u, s) was
therefore adopted as an index for average annual runoff volume
reduction and reflected as reduced investment amount per $ per
year in scenario s.

Learning Curve Function
A learning curve was assumed to be a function of the transformed
relationship of investment on LID practices based on potential
information gains from Bayesian Inference (Hung and Hobbs,
2019). These information gains were used to update the
knowledge/beliefs regarding “posterior” distribution of the
hydrological performance of LID practices in the second stage
(Ferioli et al., 2009). A variance learning (VL) model and a mean-
variance learning (MVL) model were proposed for various
learning curve functions. The VL model was defined as a
learning process which could only reduce the uncertainty of
LID’s performance, whereas the MVL model assumed that the
learning process could reduce uncertainty and improve the
expected performance through technological advancement or
cost reduction. Thus, the MVL model might be viewed as an
extension of the VL model. The VL curve for variance reduction
was expressed in the form of a two-step function (Figure 3A)
representing one of the three possible learning pathways (None-
L, Part-L, and All-L) that would take place. None-L was defined as
one that the posterior distribution was identical to its prior; Part-
L was defined as one that the posterior distribution variances were
less than the prior distributions but not zero, and All-L was
defined as one that the posterior distribution variance was set to
zero. The learning curve function for reducing uncertainty of
u LID solution in scenario s at Stage II (denoted Uncertainty

FIGURE 2 | (A) Potential mean PP effectiveness during each year, (B) potential mean CW effectiveness during each year, and (C) example of composite mean PP
and CW effectiveness over the design life span.

Frontiers in Environmental Science | www.frontiersin.org November 2021 | Volume 9 | Article 7138315

Wang et al. Bayesian Optimization for LID Investment

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


(x2 s, u)) for both VL and MVL models was defined as
follows.

Uncertainty(xII,u,s) � βσ2
⎧⎪⎨⎪⎩

β � 1, if ThPart−L >xII, u, s (None − L takes place)
0< β< 1, if ThPart−L ≤xII, u, s < ThAll−L (Part − L takes place)
β � 0, , if ThAll−L ≤xII, u, s (All − L takes place) ,

(8)

where β is a scaling constant that is used to adjust the
variance. The parameters ThPart−L and ThAll−L are the
threshold values for investments needed for Part-L and
All-L cases, respectively.

In the MVL model, the learning curve function for mean
improvement in scenario s of u LID type at Stage II (denoted by
Mean (xII, u, s)) is assumed to have a single level only, and has a
threshold value equaled to ThPart−L (Figure 3B), as shown as below.

Mean(xII,u,s){ cμ, c> 1, if ThPart−L ≤xII,u,s

μ, if xII,u,s <ThPart−L
, (9)

where c is the scaling constant that could be used to adjust the
posterior mean. The abscissa, investment ($), was indicated the
extent/magnitude of LID.

Bayesian Optimization Formulation
The objective of the optimization process was to improve the
relationship between LCC and the expected reductions in runoff
volume based on the decision to invest on LID at various stages of

development, and pending the resources, progressive learning,
and risk constraints. Between expenditures and risk, tradeoffs
were evaluated by adjusting the investment budget and risk
appetite. Minimizing the risk of reduced efficiency was
considered as one of the main considerations of investment on
LID (Yamout et al., 2007). Conditional Value at Risk (CVaR),
which reflects the average level of “portfolio excess loss,” is
adopted as a reliable and valid index of the potential risk
(Bakhtiari et al., 2019). This index was used as the index of
“poor outcomes.” The optimization process portrayed risk-averse
preferences by adopting CVaR constraints. If the constraint was
binding, the decision was likely to be an investment that would
elevate the expected performance under the worst risk conditions.
The higher value of CVaR was desirable for maximum storm
runoff volume reduction.

The VL model for investment optimization was calculated as
follow:

sopt � argmax
s∈S

[fPave(u, s)] � Maximize fs(xI, xII), (10)

fs(xI, xII) � 1
Y
×⎧⎨⎩CI,u,sxI,u,s + TII

T
⎡⎣1
S
∑S
s�1
(CII n,u,sxII n,u,s

+ CII a,u,sxII a, u, s + CII p, u,sxII p,u,s)⎤⎦⎫⎬⎭, (11)

subject to

FIGURE 3 | (A) Variance learning curve functions used in the VL and the MVL models and (B) learning curve functions for the expected value improvement in the
MVL model.
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⎧⎪⎨⎪⎩
−xI,u + THPart

u LPart,u ≤ 0
−xI,u + THAll

u LAll,u ≤ 0
LNone,u + LPart,u + LAll,u � 1

,∀u ∈ {PP,BC}, (12)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
zs ≥ τ − fs(xI, xII),∀s ∈ S

τ − 1

(1 − α)S ∑S
s�1

zs
, (13)

where Eqs 12, 13 are learning and risk constraints, respectively; x
is a decision variable; xI, and xII are stage I, and II, respectively;
xII n,u,s, xII p,u,s and xII a,u,s are the investment vector at stage II
for the None-L, Part-L, and All-L case in scenario s, respectively;
CI,u,s is the reduction capacity of the storm runoff volume at stage
I in scenario s; CII n,u,s, CII a,u,s, and CII p,u,s are the expected
posterior mean of storm runoff volume reduction for the None-L,
All-L, and Part-L cases at stage II in scenario s, respectively;
LNone,u, LPart,u and LAll,u are binary vector indicating whether
(�1) or not (�0) None-L, Part-L, and All-L would occur for each
of the u LID types; τ is an auxiliary variable used to calculate
CVaR; and zs is the stormwater reduction below τ in scenario s. In
addition, it assumed equal likely of each scenario s.

The MVL model reflects technological improvement that
would lead to added increase of the mean of the “posteriors”
in comparison with the VLmodel. Therefore, the objective Eq. 10
may be revised as follow:

Maximize fs(xI, xII) � 1
Y
×⎧⎨⎩CI,u,sxI,u,s

+ TII

T
⎡⎣1
S
∑S
s�1
(CII n,u,sxII n,u,s

+ CMVL
II a,u,sxII a,u,s + CMVL

II p,u,sxII p,u,s)⎤⎦⎫⎬⎭,

(14)

where CMVL
II a,u,s and CMVL

II p,u,s are “posterior” mean of the storm
runoff volume reduction rate for the All-L and Part-L cases in
scenario s at stage II in the MVL model, respectively.

Discussion on the Assumptions Made
The constraints imposed on investment included the overall
budget, learning relationships, and risk appetite. A budget per
hectare of $100K was suggested for LID implemented at the test
sub-catchment. Thus, the budgets for S01 and S02 were set to
$200K and $150K, respectively. A two-stage investment process
was developed to optimize the LID planning process. Stage I
began at the start of the project, and Stage II would begin at year 4
in the 30-year planning horizon. Once installed, the LID would
continue to generate storm runoff volume reduction until the end
of the planning period.

The learning curves assumed in the VL model are displayed in
Figure 3A. There, Uncertainty (xII,u,s) � 1 indicated that the
investment was below the threshold and would trigger learning;
Uncertainty (xII,u,s) � 0.25 meant that the investment would
result in Part-L and the variance was reduced to a quarter of
the original value. Here, Part-L thresholds corresponded to
setting $10K and $30K for PP and CW, respectively.
Uncertainty (xII,u,s) � 0 meant that full information in All-L
was obtained in Stage II so that the variance was reduced to zero.
All-L thresholds corresponded to setting $30K and $60K for PP
and CW, respectively. In the MVL model, the thresholds for 80
and 50%meant that improvements were assumed at setting $10K
and $30K for PP and CW, respectively, and were the same as the
Part-L thresholds in the VL model (Figure 3B). Besides, a lower
bound value was placed on CVaR0.05 as a minimal acceptable
storm runoff volume reduction.

RESULTS

“Prior”Distributions of the Performance of a
Low-Impact Development
Statistically, the average annual rainfall from 2010 to 2019 was
2,253 mm. The climate ensemble of RCP 8.5 showed a small
increase (0.9%) for the projected period (2020–39) of 2,272 mm
for the median ensemble model. Although the median was close
to that of the observed climate, the projected changes in monthly
precipitation were still highly uncertain, especially in the

FIGURE 4 | Projected changes in monthly precipitation compared to historical average data in Guangzhou during the simulated period for RCP 8.5. Note: source of
information published by the Climate Change Knowledge Portal of the World Bank Group (https://climateknowledgeportal.worldbank.org [accessed 23 Jan 2020]).
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monsoon. (Figure 4). The projected change in monthly
precipitation in July (μ is 9.4 mm; σ2 is 1,008.4 mm) is the
most obvious, and its variance is nearly 110 times that in
February. Figure 4 shows that Guangzhou could be subject to
more severe urban flooding and drought due to significantly
increased precipitation during the rainy season but decreasing

rainfall during the dry season. Other studies focusing on climate
change impacts reported similar findings (Huang et al., 2018).
Deng et al. (2018) reported that seasonal storms and drought
might occur more frequently with greater intensity in most areas
of Guangzhou.

FIGURE 5 | Annualized stormwater reduction of LIDs in (A) S01 and (B) S02 based on the long-term effectiveness analysis in a simulated period.

FIGURE 6 | Prior distribution of LIDs with normal distribution in (A) S01 and (B) S02.
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Figure 5 illustrates the annualized storm runoff volume
reduction, averaged over the 30-year time horizon. The
performances of PP and CW showed a significant downward
trend attributable to decreasing efficiency based on the long-term
performance curves of LIDs. It was noted that the performance
curves were calculated according to the average performance as
recorded in the long-term time series for both LIDs. Therefore,
extreme scenarios would not be reflected within the scenario of a
particularly stable long-term performance or rapid degradation.
At the end of service life, long-term effectiveness of PP would
remain between 25.0 and 55.0% and appeared normally
distributed. However, in its last year of service life, the highest
efficiencies of CW would range from 10.0 to 70.0% with greater
fluctuation.

More frequent heavy rainfall events following climate change
would have exceeded the LID’s drainage capacity and reduce the
hydrological efficiency of LID. The performance of CW was
found to be superior than that of PP in S01 and S02 during
the same period. Also, the efficiency of storm runoff volume
reduction through LID in S01 was relatively lower than that in
S02. This result was attributed to the lower impervious rate in S01,

which led to lower rainfall losses and hence lower runoff volume
reduction.

By calculating the “prior” distribution of LIDs based on long-
term effectiveness, the performances of both LIDs appeared
normally distributed. CVaR0.05 was used to calculate the risk
values of “prior” probability for LIDs under long-term
performance (Figure 6). As a result, investment on CW was
found to be more cost-efficient than that for PP, but the
uncertainty with the performance of CW was higher. Also,
CW showed lower CVaR values, reflecting its potentially
higher risk. These findings were found to be consistent with
those reported by others (Liu et al., 2018). It was noted that the
unit performance of LID in S02 was better than that in S01 but it
also showed a significant level of uncertainty.

Variance Learning Model
Though the same unit budget (a budget of $100K per hectare
{assumed}) was invested in LID, the performance and risk
thresholds corresponding to different test catchments were
different (Figure 7). The VL model was examined for
CVaR0.05 with values ranging from 7,060 m3/yr to 9,678 m3/yr

FIGURE 7 | Investment strategies at Stage I (left axis) and the objective function values (right axis) from the VL model for CVaR0.05 in (A) S01 and (B) S02.
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in S01 and 4,815 m3/yr to 7,980 m3/yr in S02. S01, at a CVaR of
7,060 m3/yr, which was the alternative that maximizes the
expected storm runoff volume reduction, achieved a value of
12,000 m/yr. High value of CVaR had higher stability at the
expense of lower expected hydrological performance. CVaR
could increase to as much as 9,678 m3/yr, with an increase of
37.1%. However, the corresponding expected storm runoff
volume reduction was reduced by about 7.0% from 12,000 to
11,160 m3/yr. Thus, it appeared that the risk capacity determined
the expected reduction of runoff. Meanwhile, CVaR showed a
65.7% increase from 4,815 m3/yr to 7,980 m3/yr, while the
expected storm runoff volume reduction fell about 23.3% from
10,800 m3/yr to 8,280 m3/yr in S02.

Not surprisingly, the optimal strategy was one in which all
allotted budgets were invested in CW at Stage I for a risk-neutral
decision-maker since CW had proven track of good performance
with a higher “prior” mean, even if PP were to degrade more
slowly than CW, and CW only portrayed a marginally higher
effectiveness than PP at around the middle of each year from
Figure 2. It is worth noting that the average annual runoff control

over the service life time was adopted as the performance level in
this study. Limited hydrological management ability of CW in the
later period was ignored, since CW degrades faster than PP
over time.

There was no strong incentive to invest in PP or take advantage of
learning on the VL model since “to wait”means that there would be
no derived benefit during the initial 3 years, which then led to lower
surface runoff reduction over the 30-year period. However, were him
showed a risk-averse attitude, the manager might act to save some
amount of budget for the next stage ormix his investment withmore
LID alternatives, or to wait to obtain better estimates of LID
performance. For instance, when 7,060 m3/yr < CVaR ≤
9,678 m3/yr, the model suggested making investments in CW and
also saving some amount of budget for Stage II.

In the case of S02, the optimal solutions were more complex.
With 4,815 m3/yr < CVaR ≤ 7,758 m3/yr, the model suggested
making investments in CW, while saving some amount of budget
to leverage on “All-L” in CW. However, with 7,758 m3/yr <
CVaR ≤ 7,980 m3/yr, the model suggested investing in PP to
the tune of $85.5K to $30K for “All-L″ at Stage I and saving the

FIGURE 8 | Investment strategies at Stage I (left axis), and the objective function values (right axis) from the MVL model for CVaR0.05 in (A) S01 and (B) S02.
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balance to invest at Stage II in order to further reduce the risk. It
was noted that CVaR showed a 2.9% increase from investing in
CW to PP. However, the expected storm runoff volume reduction
decreased dramatically by about 18.4% from 10,152 to 8,280 m3/
yr. Note that PP was not recommended for the risk-neutral
decision-makers since its efficacy is limited, but it was added
for the conservative or risk-averse one due to its obvious stability
of hydrological performance.

Mean-Variance Learning Model
The MVL model added other sets of learning functions to the VL
model, for which the expected performances of PP and CW could be
improved. As a result, the MVL model depicted a lower incentive to
make investment at Stage I to increase the expected volume reduction,
as compared to the VL model. A recommended initial decision is to
make a partial or delayed investment first, and then decide whenmore
information becomes available. The losses at Stage I may increase, but
better long-term outcomes could be achieved by reducing the loss of
structural performance and potential technological change for LID,
since it avoids irreversible investment at the initial stage and retains the
option of future expansion (Gersonius et al., 2013). Meanwhile, the
expectation is one with the highest return when the investment
strategy is extremely risk averse. This means that aggressive and
high-risk investment strategies at the initial stage do not necessarily
lead to high expectations when considering the uncertainty of
technological development.

Figure 8 illustrates the expected storm runoff volume reduction
as a function of CVaR0.05. The objective values in MVL models were
higher than the results in VLmodels due to anticipated technological
improvements with a decrease in capital costs or an increase in
hydrological efficiency for a “new” LID device. Moreover, with an
increased CVaR value, the expected runoff volume reduction showed
an upward trend of fluctuation, which was the opposite of the VL
model. For instance, in S01, CVaR could be significantly increased
from 7,060m3/yr to 15,415m3/yr, and the corresponding expected
storm runoff volume reduction increased by about 32.4%, from
12,000 to 15,890m3/yr. This was the result of investing a limited
amount of budget at Stage I to activate technological improvements,
resulting in the reductions of posterior variance and an expected
increase in LID. With the assumed technological improvement, the
CVaR value could be as high as 15,415m3/yr and 13,490m3/yr in S01
and S02, respectively. In the VL model, the CVaR had a cup of
10,000 m3/yr in both sub-catchments, whereas the maximum
expected storm runoff volume reduction in the MVL model
increased by about 32.4 and 40.0% for S01 and S02, respectively,
when compared with the VL model. It was also noted that, in S01,
andwithCVaR set to 13,480m3/yr or higher, theMVL also suggested
investment of more than $10K in PP in Stage I to obtain “Part-L” for
improving the efficiency of LID. Here, PP was not invested in the VL
model as PP had a higher potential to enhance its performance with a
relatively lower uncertainty in Stage II.

CONCLUSION

A coupled long-term efficiency analysis of LID and a Bayesian
learning model has been proposed. The model has the ability to

minimize urban flooding risk and maximize expected storm
runoff volume reduction through optimal investment in LID.
As a dynamic decision-making tool, the model could be
implemented in stages with deliberate decision to invest
more or suspend investment on the LID elements at
various times, pending the observed performance
(progressive updates of performance) of the LID, resources
available, environmental changes, technological
advancement, and users’ needs and expectations. Each and
every stage of the development is to be designed and built after
a Bayesian update of the probabilistic performance function
for each LID option. The goal of this Bayesian update is to
support the engineers and administrators on the
improvement of the design and investment, respectively, by
having to minimize uncertainty and to maximize returns
leveraging on potential technological advancements and
reducing cost. The proposed framework and procedure can
also be applied to the planning and investment planning in
other fields that involve some degree of uncertainty. Despite
the successful illustration of the framework reported herein,
the authors emphasize that simulation of long-term LID
efficiencies and the modification/validation of learning
curves based on the Bayesian method can be further
enhanced. A rapid and efficient method for calibration and
verification for the data-driven Bayesian model needs to be
further investigated.
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