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Urban climate features, such as the urban heat island (UHI), are determined by various
factors characterizing the modifications of the surface by the built environment and human
activity. These factors are often attributed to the local spatial scale (hundreds of meters up
to several kilometers). Nowadays, more and more urban climate studies utilize the concept
of the local climate zones (LCZs) as a proxy for urban climate heterogeneity. However, for
modern megacities that extend to dozens of kilometers, it is reasonable to suggest a
significant contribution of the larger-scale factors to the temperature and UHI climatology.
In this study, we investigate the contribution of local-scale and mesoscale driving factors of
the nocturnal canopy layer UHI of the Moscow megacity in Russia. The study is based on
air temperature observations from a dense network consisting of around 80 reference and
more than 1,500 crowdsourced citizen weather stations for a summer and a winter
season. For the crowdsourcing data, an advanced quality control algorithm is proposed.
Based on both types of data, we show that the spatial patterns of the UHI are shaped both
by local-scale and mesoscale driving factors. The local drivers represent the surface
features in the vicinity of a few hundred meters and can be described by the LCZ concept.
The mesoscale drivers represent the influence of the surrounding urban areas in the vicinity
of 2–20 km around a station, transformed by diffusion, and advection in the atmospheric
boundary layer. The contribution of the mesoscale drivers is reflected in air temperature
differences between similar LCZs in different parts of the megacity and in a dependence
between the UHI intensity and the distance from the city center. Using high-resolution city-
descriptive parameters and different statistical analysis, we quantified the contributions of
the local- and mesoscale driving factors. For selected cases with a pronounced nocturnal
UHI, their respective contributions are of similar magnitude. Our findings highlight the
importance of taking both local- and mesoscale effects in urban climate studies for
megacities into account. Furthermore, they underscore a need for an extension of the
LCZ concept to take mesoscale settings of the urban environment into account.
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INTRODUCTION

The urban heat island (UHI) is one of the most studied examples
of inadvertent climate modification due to humans and refers to
the fact that cities are almost always warmer than their natural
surroundings (Oke et al., 2017; Stewart, 2019). UHIs affect urban
dwellers in various (in)direct ways, e.g., by increased levels of heat
risk/stress and heat-related mortality (Tan et al., 2010; Gabriel
and Endlicher, 2011; Zemtsov et al., 2020), and are, thus,
important to include in weather forecasts (Barlage et al., 2016;
Baklanov et al., 2018; Rivin et al., 2020), climate-responsive urban
planning (Svensson and Eliasson, 2002; Fernandez Milan and
Creutzig, 2015; Emmanuel, 2021), and ecological and
epidemiological applications (Gregg et al., 2003; Mironova
et al., 2019; Brousse et al., 2020). UHIs are expressed at
different vertical levels from subsurface soil temperatures to
atmospheric boundary layer (ABL), yet the most studied and
relevant for many applied tasks is a so-called canopy layer UHI,
defined as the difference between the near-surface air
temperatures below roof level (Oke et al., 2017). It is typically
studied based on the screen level (1.5–2 m) temperature
observations. Further in this paper, by UHI, we mean exactly
the canopy layer UHI.

A distinctive feature of urban climates is their high spatial
heterogeneity, determined by a variety of urban forms, land cover
types, and anthropogenic activity on different spatial scales, and
the complexity of the surface–atmosphere interaction in cities.
The question of spatial scale is acknowledged as central in urban
climate studies (Oke et al., 2017). It is important for observational
data analysis and numerical modeling, for resolving the climatic
heterogeneity in applied tasks, and for developing physically
based urban climate models. However, while its importance
has been recognized over decades of urban climate research
(Stewart, 2019), specific contributions of processes at different
spatial scales to certain urban climate phenomena remain vague.

Heterogeneity of urban forms and land cover types can be
expressed on a wide range of spatial scales from micro- to
mesoscale, each corresponding to typical horizontal length
scales from meters to kilometers (Oke et al., 2017), and
leading to scale-dependent urban climate phenomena (Pacifici
et al., 2019). Among this range of scales, the so-called local scale
(i.e., hundreds of meters to several kilometers) is considered to be
especially relevant for UHI studies. At such scale, canopy layer air
temperatures are directly influenced by their underlying surface
properties (Stewart and Oke, 2012). In order to make urban
climate studies more comparable and to facilitate metadata
collection and description of measurement sites, Stewart and
Oke (2012) developed the concept of local climate zones (LCZs),
where LCZs are defined as regions of uniform surface cover,
structure, material, and human activity that span hundreds of
meters to several kilometers in horizontal scale. This concept
classifies urban and rural environments according to local-scale
surface cover, morphology, and human activities into 10 “built”

and 7 “natural” classes, where each class has a set of characteristic
parameter values (e.g., sky view factor, built-up surface fraction,
and vegetation surface fraction). The body of literature using the
LCZ concept is fast growing (Demuzere et al., 2021), highlighting
the applicability of the concept in UHI studies and showing that
different LCZs possess different air temperature regimes (see, e.g.,
Alexander andMills, 2014; Fenner et al., 2014; Stewart et al., 2014;
Skarbit et al., 2017; Beck et al., 2018a; Verdonck et al., 2018;
Milošević et al., 2021). Despite the fact that a microscale
temperature heterogeneity can still be observed within the
same LCZs or neighborhoods (Ellis et al., 2015; Leconte et al.,
2015; Quanz et al., 2018; Shi et al., 2018; Pacifici et al., 2019), the
LCZ system is widely acknowledged as a global standard for
urban temperature studies (Stewart and Oke, 2012; Jiang et al.,
2021).

Beyond the LCZ framework, several studies attempted to
explain UHI spatial structures through local-scale variability of
land cover and morphology properties. Several studies revealed
dependencies between the UHI intensity and land cover
parameters such as green area fraction, artificial cover fraction,
and building area fraction (Bottyán et al., 2005; van Hove et al.,
2015; Scott et al., 2017). More advanced statistical models were
developed to predict UHI intensity, e.g., for Portland,
United States (Hart and Sailor, 2009), Wroclaw, Poland
(Szymanowski and Kryza, 2009), Rotterdam, Netherlands
(Heusinkveld et al., 2014), and 35 European cities (Sangiorgio
et al., 2020), using several local-scale parameters as predictors,
e.g., building and road density, surface roughness, albedo,
greenery, and anthropogenic heat flux.

Local-scale variations in surface cover and morphology
determine modifications of the surface–atmosphere interaction
regime within the surface layer of the atmosphere with a depth of
a few tens of meters (Oke et al., 2017). However, for medium-
sized cities and even more so for megacities, the influence of the
various neighborhoods on the atmosphere is accumulated and
further transformed over tens of kilometers, resulting in
modifications of the whole ABL and the development of the
phenomena induced by the city as a whole. According to the
classification of atmospheric processes by scale (Orlanski, 1975),
such phenomena can be considered as mesoscale processes. The
examples of urban-induced mesoscale atmospheric phenomena
include the ABL heat island with a vertical extent of hundreds of
meters (Bornstein, 1968; Oke, 1995; Wouters et al., 2013;
Lokoshchenko et al., 2016; Varentsov et al., 2018), urban
plumes (Clarke, 1969; Wang et al., 2020), urban-induced
modifications of regional circulation (Lemonsu and Masson,
2002; Varentsov et al., 2018), and deep convection systems,
precipitation, and cloudiness (Bornstein and Lin, 2000; Dixon
and Mote, 2003; Han et al., 2014).

The urban-caused mesoscale phenomena not only involve the
“bottom–up” urban forcing affecting the ABL and lower
troposphere but also provide “top–down” impacts on the
canopy layer climate and spatial patterns of the UHI. The
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latter is clearly expressed, e.g., in the UHI advection to the
leeward side of the city and its neighboring rural areas, as
reported both by modeling (Zhang et al., 2011; Heaviside
et al., 2015) and observation-based (Bassett et al., 2016; Bassett
et al., 2017) studies. On a quasi-climatic approximation, heat
advection from varied wind directions, together with diffusion,
and mixing by mesoscale circulations, are expected to smooth the
local-scale thermal heterogeneity of the urban environment, and
to make the climate of the given site sensitive to surface
parameters outside its local-scale neighborhood. Mesoscale
smoothing is expected to be among the factors establishing the
known logarithmic relation between UHI intensity and city size
or population (Oke, 1973; Zhou et al., 2017; Li et al., 2020).

Despite the obvious contribution of mesoscale processes to the
development of urban climates, they are often ignored in spatially
resolving UHI studies, including those ones aimed to predict
urban temperature heterogeneity based on land cover parameters
(Hart and Sailor, 2009; Szymanowski and Kryza, 2009;
Heusinkveld et al., 2014). A few counterexamples include the
studies for Leipzig, Germany (Franck et al., 2013), Detroit,
United States, (Oswald et al., 2012), and several French
(Gardes et al., 2020) and Dutch (Theeuwes et al., 2017) cities,
where the authors attempted to account for both local-scale
parameters and the meso-climatic features of the area through
the distance from the city center and large water bodies. On the
other hand, local-scale factors may be also ignored. For example,
the recent work by Manoli et al. (2019) continues to explore the
varying UHI intensity with population size, yet others believe this
coarse-grained approach is insufficient and inappropriate, even as
a first-order guidance approach (Martilli et al., 2020).

The abovementioned contradictions about the scale-
dependent drivers of the UHI may, in part, be attributed to
the lack of detailed observational data. To resolve urban climate
phenomena with observations, high-density observational
networks with stations installed in various settings are
required. Such networks are deployed in different cities, e.g.,
in Birmingham, United Kingdom (Chapman et al., 2015); Dijon,
France (Richard et al., 2018); Szeged, Hungary (Lelovics et al.,
2014); and Novi Sad, Serbia (Milošević et al., 2021); see review in
Muller et al. (2013) for further examples. However, the large
majority of global cities do not possess such networks, as they are
costly to install and maintain over longer periods of time (Muller
et al., 2013).

In recent years, the use of nontraditional and opportunistic-
sensing technologies in meteorological and climatological
research, such as smartphones (Overeem et al., 2013b; Mass
and Madaus, 2014; Droste et al., 2017), cars (Haberlandt and
Sester, 2010; Mahoney and O’Sullivan, 2013; Bartos et al., 2019),
commercial microwave links (Messer et al., 2006; Zinevich et al.,
2009; Overeem et al., 2013a; Chwala and Kunstmann, 2019),
wrist-mounted wearables (Nazarian et al., 2020), and privately
owned citizen weather stations (CWSs), e.g., Wolters and
Brandsma (2012), Bell et al. (2015), de Vos et al. (2017),
Meier et al. (2017), Fenner et al. (2019), Droste et al. (2020),
and Mandement and Caumont (2020), have shown to provide
additional and reliable information, thus, highlighting a
multitude of possible applications in research and beyond (de

Vos et al., 2019; Nipen et al., 2020). To study urban air
temperatures and the UHI effect, data from CWSs have been
used in a variety of studies (Steeneveld et al., 2011; Chapman
et al., 2017; Fenner et al., 2017; de Vos et al., 2020; Feichtinger
et al., 2020; Venter et al., 2020; Vulova et al., 2020), focusing on
different cities. One major advantage of CWSs over traditional
meteorological stations is their large number within a single city
(Meier et al., 2017). Further, CWSs are located in a large variety of
micro- and local-scale settings, distributed all over a city region
(Fenner et al., 2017), thus, detecting the spatial heterogeneity of
urban air temperatures.

Decades of research provide evidence that local- and
mesoscale processes are important drivers shaping urban
thermal environment. This is relevant both for specific
atmospheric processes as well as the scales of the surface
heterogeneity influencing the climate of specific site, which are
referred to as drivers in this study. However, it remains largely
unknown to what extent both scales determine the spatial
heterogeneity of urban air temperatures. To disentangle these
two influencing spatial scales, this study focuses on the megacity
of Moscow, Russia. The city is a perfect testbed for this question
since it is located far away from the sea and has no significant
topography, ruling out these geographic controls on the
formation of its UHI. Furthermore, a large set of near-surface
observations is available from both professionally maintained
stations and amateur CWSs in a large variety of meso- and local-
scale settings. The overall aim of the study is to investigate the
respective contributions of meso- and local-scale heterogeneity of
urban surface to the nighttime canopy layer UHI in Moscow.

DATA AND ITS PREPROCESSING

Study area
Moscow is the most populous Russian and European megacity
(55.75°N, 37.62°E) with a population of approximately 17 million
people (considering the whole urban agglomeration) (Cox, 2017).
The actual area of the city (excluding the suburbs and satellite
cities) is about 1,000 km2. Moscow has a temperate humid and
moderately continental climate (Dfb in the Köppen–Geiger
climate classification, Beck et al., 2018b) with an annual mean
air temperature of 5.8°C, and mean June and January
temperatures of 19.2°C and −6.5°C, respectively (values are
given for VDNKh weather station, Figure 1, for the period
1981–2010). Due to the cold winters, Moscow is known as
one of the coldest megacities of the world. The intense urban-
induced meteorological effects of Moscow are easy to detect
against the homogeneous rural surroundings. The city
experienced an increasing UHI intensity over the last decades
(Kislov et al., 2017), with a present-day annual mean UHI
intensity of 2°C, peaking to more than 10°C during calm and
clear nights (Lokoshchenko, 2014; Lokoshchenko, 2017).
Recently, Moscow served as a testbed for a series of high-
resolution urban climate modeling studies with the COSMO
model (Varentsov et al., 2017; Varentsov et al., 2019; Garbero
et al., 2021), revealing persistent urban-induced mesoscale effects
in the lower atmosphere (Varentsov et al., 2018) and high
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sensitivity of the simulated UHI to the spatial patterns of the
urban canopy parameters (Varentsov et al., 2020b). Nonetheless,
despite the numerous previous studies, the spatial patterns of the
Moscow UHI and their physical drivers have not been
systematically analyzed yet.

This study focuses on an area centered around the city center
of Moscow with a 60-km radius, thereby including Moscow itself,
its suburbs, and satellite cities, yet not including the medium-
sized cities around Moscow that are separated from the megacity
by wide countryside areas (Figure 1).

Reference meteorological observations
We use regular observations from a dense reference network
(hereafter referred to as REF) consisting of weather stations
(WSs) of the Russian hydrometeorological service
(Roshydromet) and automatic air-quality stations (AAQS) of
Mosecomonitoring, the official environmental monitoring
service of Moscow. The WSs provide the most reliable screen-
level (1.5–2 m above the ground) air temperature observations
according to the standards of the World Meteorological
Organization (WMO). Yet, only a few WSs are available in
urbanized areas: the Balchug WS in the city center, the
meteorological observatory of the Lomonosov Moscow State
University (MSU), VDNKh WS in an urban park, and several
WSs in the suburbs. AAQSs cover the city with a denser network
(Figure 1) but provide less accurate meteorological data.
Meteorological observations by AAQSs do not comply with
the WMO standards, e.g., the sensors are located at a height

of 2 m above roofs of metal containers and 4 m above the ground.
Previous studies showed that AAQS air temperature
measurements may be biased during daytime. However, daily
mean and nighttime temperatures are accurate enough for
spatially explicit UHI studies (Varentsov et al., 2019).

We use REF air temperature data on a one-hourly temporal
resolution with instantaneous values at the full hour to be
consistent with the temporal resolution of the CWS data (see
next subsection Citizen weather stations). The data were
downsampled from the original 10- and 20-min resolutions of
WSs and AAQSs, respectively. For a few WSs where only three-
hourly observations are available, missing one-hourly
temperature values were gap filled based on existing three-
hourly values and one-hourly values for the nearest WSs,
where they are available. In total, we use data from up to 42
WSs and up to 40 AAQSs (the actual number of stations varies
due to data availability for the considered periods).

Citizen weather stations
Crowdsourced air temperature data from CWSs of the “Netatmo”
company (https://www.netatmo.com/en-us/weather) were
acquired using the application programming interface (API)
provided by the company (https://dev.netatmo.com/
apidocumentation/weather). A full description of the device
itself and the data acquisition, i.e., crowdsourcing, is given in
Meier et al. (2017); a brief summary is given in the following. The
device consists of an indoor and an outdoor module. From the
latter, air temperature and relative humidity data can be acquired

FIGURE 1 | Local climate zonemap from Varentsov et al. (2020b) and reference stations. The white circle in the left subplot depicts the study area involved in further
statistical analysis, and the red box shows the smaller area shown in detail in the right subplot and used in the followingmaps. Circle markers indicate location of reference
weather stations (WSs), and square markers indicate location of reference automatic air-quality stations (AAQSs, more info below). Nine WSs used to define mean
background temperature are highlighted by blue.
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via the API. The specified accuracy for the air temperature sensor
is ± 0.3 K in the range –40°C–65°C. Each CWS takes
measurements approximately every 5 min, data are then
automatically uploaded to the server of the company via WiFi
connection. Netatmo data for the study area was collected at an
hourly resolution (instantaneous values) using the workflow as
described in Meier et al. (2017).

Netatmo CWSs provide uncertified observations, which can be
misrepresentative for many reasons. For example, outdoor
modules may be installed directly at walls or even inside
buildings (Meier et al., 2017). Beyond these extreme cases,
other typical ways of CWS installation could, nonetheless, be
different from standards of meteorological observations, such as
observations on balconies or below trees.

Previous studies have already shown the opportunity to filter
out misrepresentative and faulty data using quality-control (QC)
algorithms. Here, we developed a QC algorithm based on ideas
from previous studies (Meier et al., 2017; Napoly et al., 2018) with
some modifications, which allows to exploit the high number of
reference observations in the Moscow region (Figure 1).

The preprocessing step, L0, removes CWSs with the same
location (assuming that the location was wrongly defined by
using the IP address; Meier et al., 2017). The following three steps,
L1–L3, depend on statistics calculated over a period Δt � 14 days
before the i-th moment for which the QC is applied. L1 is passed
if the missing data ratio for the j-th CWS over the Δt period is
lower than a threshold (Rgaps � 0.5). L2 is passed when the

temperature mean value TCWS
j and the standard deviation

σ(TCWS
j ) for the j-th CWS for the Δt period are within an

acceptable range, determined by min/max values within a set
of n reference stations in the study area, with an additional k1
sigma tolerance (k1 is set to 1.5):

⎧⎪⎪⎨⎪⎪⎩
min(Tref

1...n) − k1 · σ(Tref
1...n)≤TCWS

j ≤max(Tref
1...n) + k1 · σ(Tref

1...n)
min(σ(Tref

1...n)) − k1 · σ(σ(Tref
1...n))≤ σ(TCWS

j )≤max(σ(Tref
1...n)) + k1 · σ(σ(Tref

1...n)).
This approach rejects CWSs if the outdoor module is located

indoors and partially eliminates cases when the outdoor module
is not shaded properly. The L3 step checks the Pearson
correlation coefficient R between the data for the j-th CWS
and the mean temperature over the five nearest reference
stations over the Δt period. The level is passed if R > 0.9.
Levels L4 and L5 depend on the data for the i-th time
moment only. The L4 step checks whether the CWS
temperature value for individual hours is within an acceptable
range determined by min/max values within a set of reference
stations with an additional k2 sigma tolerance (k2 is also set
to 1.5):

min(Tref
1...n) − k2 · σ (Tref

1...n)≤TCWS
j ≤max (Tref

1...n) + k2 · σ (Tref
1...n).

Finally, a fifth step (L5) is added to remove too high spatial
variability among closely located CWSs within a 3-km
distance, following the idea of a “buddy check” from
Båserud et al. (2020) and Nipen et al. (2020). The criteria
for the L5 step for the temperature value for j-th CWS at i-th

moment is based on its deviation from the mean value over the
neighboring CWS:∣∣∣∣∣∣∣∣TCWS

j − TCWS
k1 ...km

∣∣∣∣∣∣∣∣≤ 3 · σ(TCWS
k1 ...km

)
where TCWS

k1...km
are temperature values ofm other CWSs within a 3-

km distance. This condition is applied only if m≥ 4, and the

temperature deviation |TCWS
j − TCWS

k1...km
| is higher than twice the

declared accuracy of Netatmo CWS air temperature
measurements (0.6°C).

For comparison with this new QC scheme, the raw CWS data
were also filtered according to the “CrowdQC” procedures until
level O1 (Grassmann et al., 2018; Napoly et al., 2018). Based on
evaluation of the quality-controlled CWS data against closely
located REF sites, we found that the proposed algorithm
noticeably decreases the CWS errors with respect to unfiltered
data and performs even better than CrowdQC, but passes slightly
less data (see Supplementary S2 for details).

The quality-controlled CWS data is still not free from
uncertainties, associated with the height of a CWS installation
above the ground. CWSs may be installed at different heights,
including the upper floors of high-rise buildings, which is far
away from the standards of the WMO. Unfortunately, no
methods of identification for the installation height of the
CWS have been proposed so far. However, we assume that
CWSs are typically installed below roof level and characterize
the temperature of typically well-mixed air within the urban
canopy and, hence, could be used to study the canopy layer UHI
studies as already shown, e.g., in Fenner et al. (2017), Meier et al.
(2017), Napoly et al. (2018), and Feichtinger et al. (2020).

Sampling and preprocessing the
observations
Based on availability of REF and CWS data, as well as on weather
conditions, we selected the periods of winter 2018/2019
(December and January) and summer 2019 (May and June)
for our study. During the two winter months Moscow
experienced low temperatures with a strong cold wave at the
end of January 2019 (Figure 2A). May and June 2019 experienced
warm weather that was favorable for UHI development, while
July and August 2019 were cold, rainy, and unfavorable for UHI
appearance. Therefore, we did not include July and August 2019
in the analyzed summer period.

In the selected winter and summer periods, CWS data were
collected from, respectively, 1,646 and 1,673 unique CWSs. Raw
CWS data included numerous artifacts, which are typical for
Netatmo temperature readings according to previous studies:
unrealistically high daytime temperatures due to overheating
of the unshaded outdoor modules by direct sunlight and
unrealistic temperatures without expected diurnal variations
for the CWSs placed somewhere indoors instead of outdoors
(Meier et al., 2017; Napoly et al., 2018). The proposed QC
algorithm successfully filters out such artifacts, which
decreases the amount of individual temperature readings by
39% in winter and 44% in summer (Figure 2).
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To analyze the spatial structure of the UHI and the factors of
its formation in a quasi-climatological approximation, we
sampled a selection of summer and winter cases characterized
by intense UHIs. UHI intensity (ΔT) is defined in line with
several previous studies for Moscow (Varentsov et al., 2018, 2019;
Varentsov et al., 2020a) as the air temperature deviation from the
mean background air temperature. The latter is averaged over
nine weather stations surrounding the city at a distance from 53
to 110 km from its center (see Figure 1; Supplementary Table
S1). Only one among them, Novo-Ierusalim, is inside the selected
study area. Some of these stations are not purely “rural” due to
their location close to smaller towns or within rural/suburban
settlements, typically in LCZ 6 (Supplementary Table S1). We
note that the calculated UHI values might, hence, be
underestimated, as even villages are shown to have UHI effects
(Dienst et al., 2018; Dienst et al., 2019). Nevertheless, such an
approach to use several stations surrounding the city allows
eliminating the influence of a potentially existing large-scale
horizontal temperature gradient on ΔT. For any given site and
at each hour, ΔT is defined as follows:

ΔT � T − 1
N

∑
k�1...N

Tb, k (1)

where N � 9 is the number of selected background stations, and
Tb, k is the air temperature at the k-th background station.

We usedΔT of the city center (BalchugWS) >4 K as a criterion
for sampling the cases for further analyses. Such a criterium
corresponds to the 50th percentile of the daily maximum ΔT in
summer and the 90th percentile in winter. In summer, such UHI
intensities are common for Moscow during nocturnal hours,
while in winter, they may be observed during the whole day
under frosty weather conditions (Yushkov et al., 2019; Varentsov
et al., 2020b). Nonetheless, to exclude the effects of direct solar
heating on the UHI spatial patterns and possible uncertainties of
the CWSs and AAQSs, we considered only the nocturnal and
early morning hours, i.e., 21–2 UTC (0–5 local time) for summer
and 18–6 UTC (21–9 local time) for winter. Based on this
criterion, we sampled 196 individual cases (one-hourly values)
for summer and 62 cases for winter. Further analyses were
performed for the mean air temperature and ΔT, averaged
over these sampled summer or winter cases.

As expected for cases with pronounced UHI, the sampled
cases are characterized by generally calm weather conditions with
a near-surface wind speed lower than 3 m/s and generally low
low-level cloudiness (see Supplementary Figure S3 for details).
Wind direction during the sampled cases is not homogeneous but
is still quite diverse (Supplementary Figure S3.1), so we deem it
acceptable for a coarse quasi-climatic approximation.

For the final analyses, we considered only reference stations
and CWSs with a ratio of missed or QC-filtered values over all
cases <25%, resulting in a total of 477 and 500 CWSs, and 67 and

FIGURE 2 | Air temperature in the study region for January 2019 (A) and June 2019 (B) for citizen weather station (CWS) data and reference observations. Quality
control (QC) levels L0–L5 refer to the data after each respective level of quality control for CWS data. In the legend, f � n (Li) / n (L0) indicates the fraction of individual
temperature values over all CWSs that passed through the i-th QC level. Reference minimum and maximum were identified as the respective individual (hourly) values
among all reference stations within the study area. Note the different scales of the y-axes.
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61 REF sites within the study area, for winter and summer,
respectively. The remaining stations were gap filled using a
regression-based algorithm adopted after Tardivo and Berti
(2012) to obtain continuous and homogeneous time series.
Each individual gap for a specific station was filled based on a
multiple linear regression using air temperature observations at
neighboring stations as predictors (for each station, three to five
neighboring stations were used that provided the best regression
result). Regression coefficients were derived based on the data
before and after each individual gap, separately for each hour of
the day. When applying gap filling for CWS data, we only used
REF data as predictors.

For each station, we calculated the mean air temperature over
the selected summer or winter cases. To exclude a larger-scale
spatial temperature gradient from our analysis, a two-
dimensional latitude–longitude mean temperature trend was
identified based on the observations at rural WSs for a larger
area (within 300 km around Moscow) and subtracted from the
mean temperatures. Finally, we calculated the mean ΔT based on
Eq. 1 and detrended temperatures. Since the topography of the
Moscow region is relatively flat, altitude differences between the
stations are small (123–212 m within the study area), and no
height correction of the air temperature was carried out.

Local climate zones and city-descriptive
parameters
To characterize the heterogeneity of the underlying surface
properties, our study combined two popular approaches,
namely, the LCZ classification (Stewart and Oke, 2012) and
independent quantitative estimation of city-descriptive
parameters. The LCZ map for the Moscow region (Figure 1)
is available from Varentsov et al. (2020b) at a 100-m spatial
resolution. It was created based on training areas selected by
Samsonov and Trigub (2018) and post-processed using a
Gaussian kernel majority filter (Demuzere et al., 2020).

Each observation site (WS, AAQS, or CWS) was assigned to
an LCZ class based on a majority filter applied for a circle with
a 250-m radius around each site as suggested in Fenner et al.
(2017). An important but nontrivial component of the LCZ
assignment procedure is to detect the measurement sites
surrounded by heterogeneous LCZ coverage and to exclude
them from further analyses. Fenner et al. (2017) proposed to
consider sites only if the LCZ for the central pixel of the kernel
is equal to the major LCZ of the kernel and that this LCZ covers
≥80% of the area of the kernel. However, applying the same
criteria for Moscow resulted in losing a high number of
stations from both REF and CWS networks. We found that
a lot of sites were excluded in cases where they are surrounded
by two or more relatively similar LCZs. For example, a site may
be surrounded by mixed open mid- and high-rise buildings,
classified into LCZs 4 (open high-rise) and 5 (open mid-rise),
or by low-rise private houses surrounded by vegetation
classified as LCZs 6 (open low-rise) and 9 (sparsely built).
To avoid such data loss, we proposed a procedure of LCZ
assignment that accounts for the similarity between
surrounding LCZs. For a kernel where the i-th LCZ

occupies the largest area fraction λLCZi, the similarity-
weighted fraction λLCZi, sim is calculated as follows:

λLCZi, sim � ∑
j�1...17 wi,j · λLCZj

where λLCZj are the area fractions of each LCZ in the kernel, and
wi,j are similarity coefficients between the i-th and j-th LCZs.
These coefficients refer to the similarity of LCZ classes in terms of
openness, height of roughness elements, land cover, and thermal
inertia (Bechtel et al., 2017; Bechtel et al., 2020). They were
originally designed for assessing the accuracy of LCZ maps, as
confusion between dissimilar types (e.g., LCZs 1 and A) should be
penalizedmore than confusion between similar classes (e.g., LCZs
1 and 2). For greater rigor, we use only wi,j > 0.5; otherwise, we
treat it as zero.

Based on the proposed approach, we considered a site to be in
quasi-homogenous local-scale surroundings if the area fraction of
the modal LCZ of the kernel is >0.5, and the similarity-weighted
area fraction is >0.75. Otherwise, the station was excluded from
the LCZ-dependent analyses. Additionally, and in contrast to the
LCZ assignment procedure from Fenner et al. (2017), we do not
use a condition that the LCZ for the nearest pixel of a station has
to correspond to the modal LCZ, since the location of the stations
are not always known with enough precision.

On top of the LCZ-based approach, several city-descriptive
parameters were sourced from OpenStreetMap data, Sentinel-2
images, and Copernicus Global Land Cover (CGLC) data,
following Samsonov and Varentsov (2020). Based on the
literature review, we selected the following parameters that are
commonly used as predictors for ΔT: urban (built up) land cover
class area fraction according to CGLC (λurb), impervious area
fraction (λISA), and building area fraction (λbld). Additionally, we
consider building volume, derived as Vbld � H · λbld, where H is
the mean building height. These parameters were defined on a
250-m grid. On the smallest scale, the surroundings of the
measurement sites were characterized by the values of these
parameters specified as a weighted-mean within four nearest
grid cells of a 250 m by 250 m grid, with weights equal to
inversed distances between the location of the sites and grid
cell centers. To characterize the urban surroundings of a specific
site on larger scales, a set of smoothed 2D fields of all listed
parameters was prepared using a running square kernel filter with
size ofm ×m grid cells, wherem � 2 p r/0.25 + 1, and r is what
we further call a smoothing radius. We prepared smoothed fields
with r equal to 0.25, 0.5, 1, 2, 3, 5, 7, 10, 15, and 20 km. Figure 3
shows the spatial distribution of λurb, λISA, and λbld parameters on
the original 250-m grid and after applying a smoothing kernel
with radii of 3 and 10 km.

ANALYSIS STRATEGY

The central hypothesis of our study is that the ΔT at a given site is
determined by the surface properties in the local neighborhood of
this point and a larger area with a size corresponding to
mesoscale. The local-scale heterogeneity may be characterized
by the LCZ map and selected city-descriptive parameters. To
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characterize the mesoscale heterogeneity, we use again the city-
descriptive parameters, smoothed with different radii, r.
Additionally, the concentric structure of Moscow (Figure 3)

allows considering the distance to the city center as a
simplified proxy for mesoscale heterogeneity. To disentangle
the contribution of the local-scale and mesoscale heterogeneity

FIGURE 3 | Spatial distribution of city-descriptive parameters λurb (A, D, G), λISA (B, E, H), and λbld (C, F, I) on the original 250-m grid and after smoothing within a
radii of 3 km (A–D) and 10 km (G–I).
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of the urban land cover to the observed UHI spatial patterns, we
perform several types of statistical analyses, described below:

• LCZ-dependent analysis. This analysis focuses on the intra-
and inter-LCZ variability of ΔT in order make our results
comparable with other LCZ-based UHI studies.

• Simple correlation analysis. This analysis focuses on the
relationships between ΔT and selected city-descriptive
parameters, smoothed with different radii, r. We analyze
the Spearman correlation between ΔT and these parameters
to estimate at what scale it is maximal.

• Regression analysis with local-scale and mesoscale
predictors. Based on the central hypothesis of our study,
we propose to predict the observed ΔT using a multiple
linear regression (MLR) with two predictors, where the first
one represents the local-scale surroundings (xloc), and the
second one represents the mesoscale surroundings (xmeso):

ΔTreg � k0 + kloc · xloc + kmeso · xmeso (2)

• As local-scale predictors xloc, we consider λurb, λISA, λbld,
and Vbld values on the original 250-m grid (r � 0) or
smoothed with r of 250 and 500 m, i.e., with a square
kernel with a size of 750 and 1,250 m. As mesoscale
predictors xmeso, we consider the same parameters
smoothed with r of 1, 2, 3, 7, 10, 15, and 20 km. We do
not pretend to establish prognostic relationships between
ΔT and specific parameters. Instead, we consider all possible
pairs of xloc and xmeso (384 combinations in total). For each
pair, we further estimate unknown regression coefficients
k0, kloc, and kmeso using the regress function of Matlab and
then calculate several statistical parameters. First, we
calculate the regression coefficient Rreg � RΔT,ΔTreg

(correlation coefficient between observed and predicted
ΔT) and correlation coefficients between ΔT and each of
the predictors, Rloc � Rxloc, ΔT and Rmeso � Rxmeso,ΔT. To
exclude correlations between the local-scale and
mesoscale predictors, we use partial correlation
coefficients Rxy/z that allow to estimate the correlation
between x and y variables excluding their correlation
with variable z. In this way, we calculate partial
correlation coefficients Ploc � RΔT, xloc/xmeso, Pmeso �
RΔT, xmeso/xloc using the pcorr function of Matlab.

• Regression analysis with multi-scale predictors. Assuming
that an MLR model with predictors of only two scales may
be oversimplified and, therefore, skew the results, additional
analyses are performed using an MLR model
simultaneously involving predictors xr smoothed with all
nr � 11 considered radii r from 0 to 20 km:

ΔTreg � k0 + ∑
i�1...nr

ki · xri (3)

• To avoid appearance of meaningless negative values of ki,
we build the MLR models with an additional constraint
ki > 0 using the lsqlin function of Matlab. In order to obtain
more robust results, we processed 1,000 randomly generated

combinations of predictors (independently changing λurb,
λISA, λbld, and Vbld for each xri) and select the best 25% for
further analysis according to regression coefficient Rreg,
defined in the same way as before as RΔT,ΔTreg . All
parameters xri were preliminary normalized to fit the
range from 0 to 1, which allows to compare and analyze
their relative weights wi � ki/ ∑

i�1...nr
ki.

RESULTS

Spatial patterns of the nocturnal urban heat
island in Moscow
Figure 4 shows the spatial distribution of theΔT in the central part of
the study area. Both for winter and summer, the highest ΔT is
observed in the central parts of the city, with a general decrease in ΔT
with increasing distance away from the city center. This pattern is
visible in both the REF and CWS data. To further illustrate this,
Figure 5 displays the relation between the distance to the city center of
Moscow (defined here as the Balchug WS, 55.74556°N, 37.63°E) and
themeanΔT of each station. For both networks and both seasons, we
find significant (p < 0.05) strong negative correlations. The strength of
the correlation is similar between winter and summer for CWSs and
lower for reference stations during summer compared with winter
(Figure 5). Both networks are similar in terms of their regression
slope, with an approximate decrease inΔT of 1 Kper 5 km away from
the city center. At the same time, such regressions clearly show that
theCWSdata are generally biasedwith respect to the referenceΔT for
the whole range of distances. The mean difference between the trend
lines is approximately 1 K. This is not surprising, since the CWSs are
typically installed on the buildings themselves or in their immediate
vicinity. Even after passing QC, they exhibit warm biases against the
reference network (see Supplementary S2 for more details).

Intra- and inter-LCZ variability of air
temperature
Figure 6 displays ΔT for each station, grouped by LCZ type.
Intra-LCZ variability of air temperature and thus also ΔT is large
for most LCZs, both for REF (Figures 6A, C) and CWS data
(Figures 6B, D). Generally, more stations per LCZ lead to higher
intra-LCZ variability. Yet, LCZs 6 and 9 display the largest intra-
LCZ variability among all LCZ types for CWS data, even though
they are not the LCZs with the highest number of stations.
Furthermore, even though the number of CWSs in LCZ 6 is
three to four times the number of CWS in LCZ 9, interquartile
ranges (IQR) in ΔT are much alike between these LCZ types. Both
these LCZs display the largest IQR for “built” LCZ types (1–10),
being approximately double the IQR of the other built LCZ types.
Especially, LCZ 4 stands out, containing the maximum number of
CWS, yet showing a narrow IQR compared with LCZ 6 with
almost the same number of CWS (Figures 6B, D). Intra-LCZ
variability of ΔT for LCZ 4, calculated from REF data, shows a
similar absolute range and larger IQR compared with CWS data,
even though the number of stations is much smaller.

Comparing mean ΔT across LCZ types, the highest values are
observed for LCZ 1, 2, 4, 5, and 8. LCZ 2 displays the highest ΔT
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for winter and summer, and for REF and CWS data. Mean ΔT for
LCZs 6 and 9 are alike when compared within the same network.
These two “built” classes are also the only ones with stations
exhibiting lower values than the background REF stations,
i.e., ΔT < 0 K. When comparing ΔT per LCZ type between the
two networks, CWS data generally display higher values than REF
data. This is particularly prominent in mean ΔT and less so in
absolute maximum values per LCZ type (Figure 6).

To further investigate the intra-LCZ variability of ΔT seen in
Figure 6, mean ΔT values per station for summer and winter are
displayed in Figure 7 in relation to the distance to the city center
of Moscow. Despite the overall higher UHI intensities in the CWS
data compared with the REF data (as seen in Figure 5), a
dependence between distance from city center and mean ΔT is
observable in both networks and for both seasons. Mean ΔT
decreases with increasing distance from the center. The

FIGURE 4 | Spatial patterns of the mean urban heat island (UHI) intensity ΔT over the analyzed winter (A) and summer (B) cases. Big circle markers indicate WSs,
square markers indicate AAQSs, small circle markers indicate CWSs.

FIGURE 5 |Dependence between UHI intensity ΔT and distance from the city center (BalchugWS) for winter (A) and summer (B) for reference stations and CWSs.
Dotted lines indicate linear trends. R in the legend denotes Spearman correlation coefficient, R2 denotes coefficient of determination.
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dependence is similar for the different LCZ groups, and for the
reference and CWS data (Figure 7). Yet, despite this general
decreasing dependence, large variability is also present for the
same distance to the center, both in the REF and CWS data. This
can especially be seen for LCZs 6 and 9 in winter between 40 and
50 km away from the center for CWS (Figure 7B), or for LCZs 4
and 5 in summer around 10 km away from the center for the REF
data (Figure 7C). Meanwhile, coefficient of determination R2,
i.e., the proportion of the temperature variation that is predictable
by analyzed dependence, exceeds 0.5 for several LCZ groups in
Figure 7 (LCZs 4 and 5, 6 and 9 for REF data in winter, 8 and 10
for CWS data in winter, 6 and 9 for REF data in summer), as well
as for several individual LCZs (see Supplementary S4). Hence,
distance to city center may explain up to 50% and even more of
intra-LCZ temperature variability.

These LCZ-dependent results are, to some extent, sensitive to
the thresholds used in the procedure of LCZ assignment for REF
and CWS sites (see the Local climate zones and city-descriptive

parameters section). Nevertheless, the key results and conclusions
do not change (not shown).

Quantifying the local-scale and mesoscale
drivers
Within a framework of simple correlation analysis, we analyzed
correlations betweenΔT and selected city-descriptive parameters,
λurb, λISA, λbld, and Vbld, defined on a 250-m grid and further
smoothed with several radii r from 250 m to 20 km.
Corresponding Spearman correlation coefficients (R) are
presented in Figure 8, separately for different seasons and
networks. Despite the differences in correlation strength
between REF and CWS data, both networks demonstrate the
following. First, there is only a small difference in R values
between selected city-descriptive parameters, which is not
surprising since they are highly correlated (all pairwise
correlation coefficients on 250 m grid exceeds 0.7). Only λurb,

FIGURE 6 | Boxplots representing the dependence between UHI intensity ΔT and LCZ type for winter (A, B) and summer (C, D) based on reference (A, C) and
CWS (B, D) observations. Digits in the plots indicate the number of reference stations or CWSs related to specific LCZ types.
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the CGLC built up area fraction, slightly stands out from the rest
and provides lower R values for smaller smoothing scales. This is
likely because λurb includes urban vegetation and weakly
differentiates more or less built-up urban areas (Varentsov
et al., 2020b; Samsonov and Varentsov, 2020). Second, there is
a tendency for the strength of the correlation to increase with
increasing r, especially for r < 2 km. For the REF data, R increases
until maxima are found for r in a range 1–2 km in summer and
2–10 km in winter. For the CWS data, R increases until the end of
the considered r range for summer, even though differences for
r > 2 km are small. For winter, the CWS data show R maxima at
similar radii as for the REF data (Figures 8A, B).

Results of the simple correlation analysis may be
misinformative due to cross-correlation between city-
descriptive parameters, smoothed with different radii. For
example, the correlation coefficient between λISA on the 250-m
grid and smoothed with a 10-km radius is 0.58. To avoid this, we
built MLR models with one local-scale and one mesoscale

predictors, as described by Eq. 2 in the Analysis strategy
section, and further analyzed partial correlation coefficients,
Pmeso and Ploc, for the best pairs of predictors.

Table 1 presents the results for the five combinations of
predictors with the highest Rreg, separately for different
seasons and CWS/REF data. Despite the variety of predictors
in these combinations, their common feature is the prevalence of
Pmeso over Ploc. A second common feature is that almost all best
combinations include one of the fields smoothed with r � 10 km
or higher as mesoscale predictor, except REF data for summer,
where best regressions are obtained with r � 2 or 3 km (Table 1).
For a more robust view, we consider Rreg values and Pmeso/Ploc

ratio, averaged over the top 25% of predictor combinations for
each pair or rmeso and rloc (four best combinations among 16 for
each pair). From Figure 9 it can be seen that the best results are
typically obtained when combining local-scale predictors with
500-m smoothing and mesoscale predictors with 10–15 km
smoothing. An exception is again the REF data for summer,

FIGURE 7 |Dependence between UHI intensity ΔT and distance from the city center for winter (A, B) and summer (C, D) for reference stations (A, C) and CWSs.R
in the legend denotes Spearman correlation coefficient, R2 denotes coefficient of determination.
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where optimal rmeso is shifted to lower values, and additional Rreg

maximum exists at rmeso � 2 km and rloc � 0. The Pmeso/Ploc ratio
generally decreases with increasing rmeso and increasing rloc, but

typically remains >1, indicating a larger contribution of the
mesoscale heterogeneity. For the REF data in summer, values
are <1 when using the local-scale predictor with highest

FIGURE 8 | Spearman correlation coefficients, calculated between UHI intensity and selected city-descriptive parameters, smoothed with different radii for winter
(A, B) and summer (C, D) periods, REF (A, C), and CWS (B, D) data. Zero radius means using the values on the original 250-m grid. The colors of the cells correspond to
the values.

TABLE 1 | Results of the multiple linear regression predicting of the summer and winter urban heat island (UHI) intensity based on reference network (REF) and citizen
weather station (CWS) data.

Data type
and season

xloc rloc, km xmeso rmeso, km Rreg Ploc Pmeso Rloc Rmeso

REF winter λurb 0.5 λurb 15 0.93 0.61 0.84 0.74 0.88
Vbld 0.5 λisa 10 0.93 0.61 0.75 0.82 0.88
Vbld 0.5 λurb 10 0.93 0.62 0.77 0.82 0.88
Vbld 0.5 λbld 5 0.93 0.54 0.64 0.82 0.88
Vbld 0.5 λurb 15 0.93 0.65 0.76 0.82 0.88

CWS winter λisa 0.5 λisa 10 0.83 0.39 0.48 0.77 0.79
λisa 0.5 λurb 10 0.83 0.40 0.48 0.77 0.79
λisa 0.25 λisa 10 0.83 0.38 0.55 0.74 0.79
λisa 0.25 λurb 10 0.83 0.39 0.55 0.74 0.79
Vbld 0.5 λurb 10 0.83 0.39 0.44 0.78 0.79

REF summer Vbld 0 λisa 2 0.90 0.47 0.75 0.74 0.85
Vbld 0.5 λisa 2 0.89 0.44 0.55 0.86 0.85
Vbld 0 Vbld 2 0.89 0.42 0.70 0.74 0.86
Vbld 0.5 λisa 3 0.89 0.56 0.51 0.86 0.79
Vbld 0 λbld 2 0.89 0.50 0.65 0.74 0.84

CWS summer Vbld 0.25 λisa 10 0.85 0.37 0.53 0.80 0.82
λisa 0.25 λisa 10 0.85 0.40 0.56 0.77 0.82
λisa 0.5 λisa 15 0.85 0.39 0.52 0.79 0.82
λisa 0.25 λisa 15 0.85 0.39 0.58 0.77 0.82
Vbld 0.25 λisa 15 0.85 0.35 0.55 0.80 0.82

Note: For each period and data type, results are shown for the top five predictor combinations with highest Rreg.
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smoothing (rloc � 0.5 km). In summer, the Pmeso/Ploc ratio is
generally lower than in winter, which is especially clear for
REF data and still noticeable for CWS data.

MLR models with multi-scale predictors, constructed as
described by Eq. 3 in the Analysis strategy section, allow to
compare the contribution of the specific scales of the surface

heterogeneity to the observed UHI. Figure 10 shows the relative
weights of predictors with different smoothing radius, averaged
over the top 25% of predictor combinations among the
randomly generated ensemble of 1,000 members. Despite
the differences between plots for REF and CWS data, both
networks demonstrate consistent patterns indicating the major

FIGURE 9 | Values of Rreg (A–D) and Pmeso/Ploc ratio (E–H), averaged over the 25% of best combinations for each pair of rloc and rmeso for winter (A, B, E, and F)
and summer (C, D, G, andH) periods, REF (A, C, F, andG), and CWS (B, D, F, andH) data. Zero rloc valuesmean using the data on the original 250-m grid. The colors of
the cells correspond to the values. Note the different color ranges in subfigures (A–G), compared with subfigures (E–H).

FIGURE 10 |Mean relative weights of predictors, smoothed with different radii, in the multi-scale MLRmodel, averaged over best 25% of predictor combinations in
randomly generated ensemble. R in the legend denotes mean regression coefficient over best 25% of predictor combinations.
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contribution of the scales corresponding to r between 0 and
2 km, and >10 km, and near-zero contribution from r between 3
and 7 km (these radii are almost not presented in the top 25% of
predictor combinations). Differences between plots for summer
and winter again suggest larger contribution of the smaller
scales in summer. Thus, both types of regression analyses
confirm the contribution of the mesoscale variation of the
city-descriptive parameters (on a scale of about 10 km and
higher) is comparable or even higher than the local-scale
variation of these parameters.

DISCUSSION

The UHI has been studied for decades, and it is one of the clearest
examples of inadvertent climate modification due to humans
(Oke et al., 2017). Land cover properties are known to play a
crucial role in its development, yet the role of their spatial
heterogeneity at various spatial scales remains unclear. The
current study addresses this issue by linking the latter to the
observed nocturnal canopy layer UHI of Moscow. Our results
thereby provide a systematic understanding of the spatial scales
affecting the UHI of a megacity.

The identified spatial patterns of the canopy layer UHI of
Moscow are consistent with studies for other cities. As found by
other studies focusing on LCZs and their thermal regimes
(Stewart et al., 2014; Fenner et al., 2017; Skarbit et al., 2017;
Beck et al., 2018a; Verdonck et al., 2018; Kwok et al., 2019;
Milošević et al., 2021), we revealed a dependence between ΔT
and LCZ type (Figure 6). The highest temperatures are found
for densely built compact LCZs (1–3), which are warmer than
open high-/mid-rise LCZs (4, 5), which again are warmer than
low-rise residential areas (LCZ 6, 9) and natural LCZs. At the
same time, intra-LCZ variability is comparable or even higher
than inter-LCZ differences, especially for the most frequent
LCZs in the study area (4, 6, and 9), which is consistent
with previous studies (Leconte et al., 2015; Fenner et al.,
2017; Skarbit et al., 2017; Quanz et al., 2018; Shi et al., 2018;
Kwok et al., 2019).

Meanwhile, we obtained a strong negative correlation
(R < −0.75) between ΔT and distance to the city center
(Figure 5), which is also visible within specific LCZ classes
(Figure 7). The dependence of ΔT to this distance may
explain more than 50% of the intra-LCZ variability that is
obtained for the whole city region (Figure 7, Supplementary
Table S4). In other words, a specific LCZ in the city center is
warmer than the same LCZ at the edge of the city. Such
dependency has, to date, gained little attention, reporting
ambiguous results. As strong correlation as for Moscow
(R < −0.7) was previously only reported for the medium-sized
city of Szeged, Hungary (Bottyán et al., 2005). Weaker
dependencies (R � −0.41) were found by Oswald et al. (2012)
for the nocturnal UHI in Detroit, United States. Kwok et al.
(2019) showed higher air temperature per LCZ class in regions
close to the city center of Toulouse, France, and lower values for
the same classes in regions farther away. Similarly, Gardes et al.
(2020) reported an impact of the distance to the city center on the

intra-LCZ variability for 42 French cities, yet with large scatter
around the average. In contrast, only a weak impact of the
distance to city center on the urban temperatures was found
for Augsburg, Germany (Straub et al., 2019), and Leipzig,
Germany (Franck et al., 2013).

In order to explore the impacts of the land cover heterogeneity
of different scales on the UHI spatial patterns, we suggest a novel
approach based on a set of the city-descriptive parameters,
defined on a 250-m grid, and further smoothed with several
radii (r) from 250 m to 20 km. Based on several types of statistical
analysis, our results indicate that the observed UHI is shaped by
both local and mesoscale land cover heterogeneity, with
comparable, or even dominant, contributions of the mesoscale
features. The local scale, which is considered as highly relevant for
urban climate studies, is defined as “hundreds of meters to several
kilometers” (Stewart and Oke, 2012), but is often associated with
only scales of a few hundred meters (Fenner et al., 2017; Skarbit
et al., 2017; Beck et al., 2018a), while the mesoscale is typically
associated with scales >2 km (Orlanski, 1975). Our correlation
analysis revealed that the local-scale (a few hundred meters)
urban land cover description is less correlated with nocturnal ΔT
compared with a smoothed r ≥ 2 km (Figure 8). Furthermore,
using MLR analyses with two predictors, representing
heterogeneity of the urban land cover on local (rloc ≤ 500 m)
and meso (rmeso > 1 km) scales, we found the best results of
rmeso ≈ 10 km and have shown a typically larger importance of
the mesoscale predictor (Table 1, Figure 9). Our final, more
comprehensive MRL analysis with predictors representing the
wide range of scales allowed to separate two dominant ranges of
contributing scales, r ≤ 2 km, and a second with r > 7 km
(Figure 10).

The presence of two dominant ranges of spatial scales suggests
their connection with different physical processes. The
contribution of scales with r > 7 km, which represents the
mesoscale UHI variability, is likely related to the horizontal
and vertical advection of warmer urban air by the larger-scale
airflow. UHI advection to the leeward side of the city was reported
by observation-based (Bassett et al., 2016; Bassett et al., 2017) and
modeling studies (Zhang et al., 2011; Heaviside et al., 2015). At
this scale, UHI advection takes place across the whole urban
boundary layer, and can extend to the countryside via heat
plumes (Clarke, 1969; Varentsov et al., 2018; Wang et al.,
2020). Available observations allow to demonstrate this
phenomenon for Moscow as well, which is shown by
comparing two cases with southwesterly and southeasterly
wind directions (Figure 11). In these examples, differences in
wind direction resulted in a shift of the UHI hotspot bymore than
10 km. Of course, UHI advection depends on the wind speed,
atmospheric stability, and other factors, which require accurate
quantification in further studies. Nonetheless, since the wind
direction during the sampled cases largely varies (see
Supplementary S3), one can expect that UHI advection in
different directions resulted in smoothing of the mean ΔT
fields on a scale of several kilometers and more. Advected air
is additionally mixed by boundary-layer turbulence. Moreover,
city-wide UHI smoothing may be forced by other atmospheric
phenomena, e.g., urban-induced circulations (urban breeze) in
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the urban dome (Lemonsu and Masson, 2002; Varentsov et al.,
2018). In the case of Moscow, smoothing with r ≥ 10 km turns the
observed heterogeneity of urban land cover to almost concentric
spatial structures (Figure 3), resulting in the observed
dependence of ΔT and distance to city center. Mesoscale UHI
smoothing also explains the dependence between maximum UHI
intensity and city size, which is known from observational (Oke,
1973; Zhou et al., 2017) and modeling (Varentsov et al., 2017; Li
et al., 2020) studies.

The range of contributing scales with r ≤ 2 km is more
difficult to interpret. On the local scale, the thermal
environment is expected to be uniform due to the
homogeneity of the land cover and building morphology,
and the surface-layer turbulent mixing, which can remain
quite intensive in urban canopy layer even at night (Oke
et al., 2017). However, in our case, the contributing scales
extend to a “gray zone” between local and mesoscales. For
example, r � 2 km corresponds to an area width of 4 km, which
still fits the “several km” from the local scale definition but is
generally larger than the definition typically used in many
urban climate studies. In Moscow, urban areas of such size are
typically highly heterogeneous and include parks, building
blocks, and industrial zones.

In order to relate the contributing spatial scales revealed in
our analysis to the heterogeneity of the LCZ classes in Moscow,
we estimated the typical surface area size of homogenous LCZ

patches. For this, we applied the “circle-based region width
estimation” method (Samsonov et al., 2019) that assigns—to
each pixel inside an LCZ patch—a characteristic radius. That
radius corresponds to the largest circle covering the pixel
without intersecting other LCZ classes (Supplementary
Figure S5.1). Analyzing these radii grouped by LCZ class
within the study area indicates that the typical LCZ class
radius (mean or median) does not exceed 500 m for all
LCZs, and is <300 m for all urban LCZs except 2 and 4
(Supplementary Figure S5.2). Such values are noticeably
smaller than the range of 1–2 km, which provide significant
contribution to the spatial UHI patterns (Figure 10). Hence,
the range of contributing scales with r between 1 and 2 km
cannot only be explained by the alteration of different LCZs.
Possible explanations for its contribution include two options.
The first one is the similarity of LCZ classes, e.g., 4 and 5, 6 and
9, A and B, etc. (Bechtel et al., 2017; Bechtel et al., 2020), as
discussed in the Local climate zones and city-descriptive
parameters section. The second option is atmospheric
mixing, forced by specific processes with typical scales of a
few kilometers, e.g., by advection between neighboring LCZs
(Quanz et al., 2018), and by coherent structures in the
atmospheric boundary layer, including local circulations,
induced by urban blocks or green areas. This could be
addressed in future studies using high-resolution modeling
approaches.

FIGURE 11 | Spatial patterns of UHI intensity ΔT for two specific winter cases demonstrating an UHI shift to the leeward side of the city by south-easterly (A) and
south-westerly (B)winds. Symbols are similar to Figure 4. The arrow in the top right corner shows the 10-mwind direction according to ERA5 reanalysis. The dotted line
indicates the area with maximum ΔT. Digits in the caption indicate date and time, maximum ΔT according to REF data, ERA5 wind speed and direction.
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CONCLUSION AND OUTLOOK

Based on dense reference and crowdsourced air temperature
observations, we analyzed linkages between the nocturnal
canopy layer UHI of Moscow and the land cover
heterogeneity on different spatial scales, ranging from a few
hundred meters to tens of kilometers. Land cover properties
were described using the local climate zone (LCZ) classification
and specific city-descriptive parameters, derived on a 250-m grid
and smoothed with different radii (r) to represent their variations
on different scales.

Our results underscore that the thermal environment in
Moscow is influenced by the heterogeneity of land cover
properties on different scales, including local scale (a few
hundred meters, r < 1 km) and mesoscale (from the first km
to the first tens of kilometers, with typical r ≈ 10 km). The
mesoscale contribution to the observed UHI spatial patterns is
established by smoothing the smaller-scale thermal
heterogeneity by atmospheric processes, including advection
and diffusion. For Moscow, with its symmetric planning
pattern, this mesoscale contribution is reflected in a
dependence between UHI intensity and distance to city
center, which is also visible for specific LCZ classes. This
mesoscale contribution is comparable to, or even exceeds,
the contribution of the local scale to observed UHI
intensity. Finally, we show a significant contribution from
the scale within a “gray zone” between local and mesoscales
(r � 1 ÷ 2 km). This is likely associated with the similarities
between different LCZ types and again with atmospheric
mixing at that scale, yet requires further studies.

Our results recommend considering the mesoscale
heterogeneity of land cover properties alongside the local-scale
heterogeneity in urban climate studies and practical applications,
especially for large cities. Our findings are especially relevant for
statistical modeling of the urban thermal environment. It can be
expected that the use of predictors reflecting mesoscale
heterogeneity of land cover properties will improve the
accuracy of temperature mapping for urban areas. Our results
are also relevant for urban planning, since they underline the
impact of local changes in specific areas (e.g., new urban
developments) to its neighborhood on a mesoscale.

In order to assess the robustness of our findings, we propose
the following research directions for follow-up studies:

• The proposed hypothesis should be tested for other
cities, including more complex geographic controls,
and for longer periods, since the sampling size in our
study is relatively small, especially for winter. Moreover,
the presented results are valid only for nocturnal cases
with a pronounced UHI signature. Different patterns of
air temperature may be expected during daytime and
should be further investigated.

• Further studies are needed for deeper understanding of the
physical processes beyond the revealed local-scale and
mesoscale drivers. Yet, our study is based on a coarse-
grained approach that analyzes the influencing scales of
land cover heterogeneity through spatial smoothing of the

city-descriptive parameters. Our results allow only
suggesting about the physical processes responsible for
such smoothing. More detailed and reliable knowledge
may be gained based on high-resolution numerical
simulations with mesoscale models, coupled to urban
canopy schemes. Such modeling seems to be the only
way to comprehensively analyze the interaction between
UHI and atmospheric processes at different scales and
different vertical levels from the surface up to the ABL.

• Despite the overall consistent results from the CWS and
REF data, further research is needed to understand
differences between the two types of stations, particularly
regarding their spatial representativeness. Differences in the
setup of the stations likely affect results regarding the
contribution of scales; yet to what extent is not understood.

• Follow-up studies could explore the use of machine learning
(ML) techniques that are already used to study and predict
UHI spatial patterns (Straub et al., 2019; Gardes et al., 2020;
Vulova et al., 2020). Simultaneously, existing ML-based
techniques could be improved by considering the
mesoscale heterogeneity of the urban environment.

• Additional attention should be paid to the scale smaller than
the local scale, i.e., the microscale, which is ignored in our
study. Yet, studies have shown that there is microscale
variability within LCZs or neighborhoods, even of similar
local-scale characteristic (see, e.g., Heusinkveld et al., 2014;
Ellis et al., 2015; Leconte et al., 2015; Quanz et al., 2018; Shi
et al., 2018; and Pacifici et al., 2019). Such an intra-LCZ
variability is expected due to microscale variations in
surface cover and morphology, exposure of the sensors, and
anthropogenic heat sources. In the case of CWS, one can argue
that due to their non-standard setup, the microscale influence
is more pronounced than for reference observations (Fenner
et al., 2017). This may explain the higher correlation coefficient
for the CWS data without smoothing (r � 0), compared with
the REF data (Figure 8). In order to further delineate micro-,
local-, and mesoscale influences on T and ΔT, datasets with
higher spatial resolution are needed to resolve features down to
few tens of meters. Such datasets should not only include
parameters representing the building spatial extent as in the
current study, but should also reflect their morphology,
thermal, and radiative characteristics, e.g., sky view factor or
albedo.

• In the end, our study highlights that further research is
needed to systematically understand the contribution of
spatial scales in urban thermal climate investigations across
geographic and climatic regions, and cultures. This could
lead to a possible extension of the LCZ concept to take
mesoscale settings of the urban environment into account,
further enhancing communication and reporting on the
UHI effect throughout the scientific literature.
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