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Most of the existing carbon emission studies based on the IPAT framework considered the
size effect rather than structure effect of population. However, it is proved with the micro-
data household evidence that the demographic structure explains the unexpected trends
better. To complete the framework, this study integrated the structure effects with the
STIRPAT model base on the household life-cycle consumption theory as different age
groups differ in carbon consumption behaviors. For further analysis with the frequent
extreme weather events caused by global warming and their catastrophic effect on human
activities, this study also harmonized Köppen criteria with the theories model by Syukuro
Manabe and Klaus Hasselmann and considers climate factors precipitation (PRE), annual
degree-day (DD), and temperature anomaly (TA) with the extended model to investigate
whether population aging trend provides room for or creates barriers to carbon reduction.
NASA night-time light (NTL) data DMSP/OLS and VIIRS/DNB is adopted as the proxy for
population density to weight the relevant climate data from over 30,000 weather stations
worldwide. The combined dataset is from 150 countries, and the period is during
1970–2013. The Panel Seemingly Unrelated Regression (SUR) method is used to
solve the problems of cross-sectional correlation, non-stationarity, and endogeneity
since sample countries are closely linked in the global meteorological system which
make each cross-sectional disturbance term likely to be contemporaneously
correlated, and endogeneity of carbon emission under the same global agreement
constraint. The empirical results show that the age structure had significant and
different impacts on carbon emissions. The general influence of age growth is an
inverted U shape as the younger group consumes less than the older group, and
offspring leave the family when the householder turns 50. The EKC theory is also
checked with the threshold model of per capita income on carbon emissions to
determine how many countries reached carbon peak. This study proved that the
aggregated carbon consumption pattern is aligned with the microlevel evidence on
household energy consumption. Another distinguished finding is that population aging
may generally lead to an increase in heat and electricity carbon emissions, contrary to what
some household energy consumption models would predict. We explain the uplifted tail as
the “effect caused by the narrowed adaptation temperature range” when people are
getting older and vulnerable. It should be noted that as the aging trend becomes severe
worldwide and extremeweather events happen with higher frequency, the potential energy
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spending and thus carbon emission on air conditioning will undoubtfully overgrow. One
important method is to improve the building energy efficiency by retrofitting old buildings’
insulations. Implementing new green building standards in carbon reduction must not be
ignored. Evidence shows that if the insulation of pre-1990s houses is reconstructed with
modern materials, carbon emissions caused by residential cooling and heating can be
reduced by about 20% every year. Overall, promoting an efficient building style provides
reduction capacity for the industrial sector, and it is a way to achieve sustainable growth.

Keywords: carbon emission, Age structure, Extended STIRPAT, Degree-days, Insulation and Energy efficient
buildings, Climate risk

1 INTRODUCTION

1.1 The General Situation of GHG Emission
and Climate Risks
The issue of carbon emissions and global weather cooperation is
undoubtedly the most critical and widespread topic in 2020, in
addition to COVID-19, as the global climate system suddenly
seems to reach a tipping point during 2020–2021, with more and
more extreme weather events happening everywhere and climate-
related disasters. In February 2021, the state of Texas suffered a
major power crisis, which came about as a result of three severe
winter storms sweeping across the United States. The rare low
temperature caught millions of residents unprepared, a power
crisis caused great inconvenience to residents’ lives, and the
health condition of the elderly was threatened. They did not
come singly but in pairs, more weather extremes all around the
world took place, an unprecedented surge including devastating
floods in South America and Southeast Asia, record-high
heatwaves and wildfires happened in Australia and the western
United States, an extraordinary Atlantic hurricane season came,
and devastating cyclones formed in Africa, South Asia, and the
Western Pacific.

In 2020, more than 11,000 scientists from 153 countries
signed on to publish World Scientists’ Warning of a Climate
Emergency 2021, in which researchers charted Earth’s
planetary vital signs based on real-world data and found
that 18 out of 31 indicators were at historic lows and highs,
showing an alarming trend. It is reasonable to assume that the
planet has entered a period of climate emergency, with 1990
jurisdictions in 34 countries have now officially declared or
recognized the climate emergencies. Furthermore, humans
have yet to make progress in addressing climate change
(Ripple et al., 2021). Of all the causes of climate
emergencies, greenhouse gas emissions and anomalous
increases in surface temperatures are much likely the
trouble makers.

Despite a recorded 7% drop in world carbon emissions in
2020, amidst the impact of global COVID-19 outbreaks, the
global average surface temperature is still 1.25°C higher than
the pre-industrial average during 1850 and 1900. Our heavy
reliance on fossil energy and the destruction of forests causes
the rise; as the total emissions yearly goes up with the economic
activities, the ability of nature to absorb carbon dioxide is
damaged and declined (Crippa et al., 2019). In 2020 and 2021,

three significant types of greenhouse gases, carbon dioxide,
methane, and nitrous oxide, all reached record-high for
atmospheric concentrations thus far, while 2020 also became
the second hottest year ever. Governments have gradually begun
to realize the seriousness of the problem. Only the efforts of the
Kyoto Protocol agreement period are not enough to reverse the
trend, which makes the Paris agreement increasingly crucial. In
December 2015, nearly 200 parties to the United Nations
Framework Convention on Climate Change reached an
agreement at the Paris Climate Change Conference. It will set
the post-2020 arrangements for global cooperation on climate
change and determine the global climate governance structure.

The long-term goal of the Paris Agreement is to limit the
increase in global average temperature to less than 2°C compared
to the pre-industrial period and to strive to limit the temperature
increase to less than 1.5°C. Only by achieving global peak carbon
and carbon neutrality as soon as possible can we reduce the
ecological risks posed by climate change to the planet and the
existential crisis it poses to humanity. However, according to the
International Renewable Energy Agency’s calculations, the
current established policies of countries related to energy
transition (including the autonomous contribution plan
submitted by the Paris Agreement) are too conservative. They
can only stabilize the situation rather than solve the problem, and
the planned renewable energy replacement power is 60% lower
than the actual need in 2030.

In terms of sectors that generate the GHG emission, according
to the International Energy Agency (IEA1) calculation, industry,
transportation, and buildings are the main energy-using sectors,
each accounting for close to 30%. Residential dwellings take up
70% of a building’s sector energy consumption, while commercial
and public buildings are more energy-efficient than households.
The top source of global carbon emissions is thermal power
generation, accounting for 42% of total carbon emissions,
followed by the transportation sector with 25% and industry
with 23%. In Figure 1, national comparisons of carbon emissions
in different sectors are shown.

In summary, to control energy consumption and carbon
emission, the prior sectors to pay attention to are residential
electricity and transportation, both of which are closely related to

1IEA, Global energy-related CO2 emissions by sector, IEA, Paris https://www.iea.
org/data-and-statistics/charts/global-energy-related-co2-emissions-by-sector.
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FIGURE 1 | Carbon emissions in different sectors.
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residents’ daily lives. In classical consumption theory, the life
cycle phase of the family is critical, so our study takes the age
structure as the entry point for analysis.

1.2 Impacts of Carbon Emissions on
Climate: Frequent Extreme Weather Events
and Difficulty in Adapting to Environmental
Temperatures for the Elderly Population
According to the world economic forum, extreme weather events
are becoming increasingly frequent and more severe due to
climate change (Gleason et al., 2008; Stott, 2016). They are
already a harsh reality for communities worldwide. Between
1998 and 2017, an estimated 526,000 people lost their lives

due to extreme weather, while economic losses amounted to
$3.47 trillion (in PPP), according to the climate risk report by
Germanwatch. In relative terms, poorer developing countries
suffer a much more significant impact from these natural
disasters, and the report has highlighted their vulnerability to
the planet’s changing climate.

Another paper from The Lancet by Zhao et al. (2021) has even
more striking findings. Their results indicate that abnormally
high and low temperatures are occurring more frequently as
climate change accelerates, and these temperature anomalies will
cause an additional 5 million deaths per year globally. The cross-
nation study analyzed mortality and temperature data from 750
sites in 43 countries between 2000 and 2019, with global
temperatures rising by 0.26°C per decade during the survey

FIGURE 2 | The world population aging trend with estimation from WPP 2019. Here, red line stands for the year 2050.
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cycle. It is estimated that globally, 9.4% of deaths per year are
caused by extreme cold and hot temperatures, equaling 74 excess
deaths per 100,000 people. Heat-related deaths increased by
0.21%, as deaths associated with colder temperatures decreased
by 0.51% over the 20 years as the planet warms.

Moreover, over 50% of the excess deaths occurred in Asia,
particularly in low-lying and crowded coastal cities in East and
South Asia. This result underscores how daunting it is for Asian
countries to reduce the adverse effects of temperature on local
population health and the enormous challenges to their health
care systems. New results strongly suggest that non-optimal
temperatures are one leading cause of disease burden for
population health.

At the same time, there is a new trend in global demographics
as the underlying driver of the economic phenomenon of energy
consumption and carbon emissions - namely, population aging.
The proportion of the world’s population over 60 almost doubled
from 2015 to 2050, from 12 to 22%. By 2050, there will be 120
million older people in China alone and 434 million older people
worldwide. By 2050, 80% of older people will be living in low- and
middle-income countries, as shown in Figure 2.

As United Nation’s < world population ageing highlight 2019>
indicates, the aging trend developed faster in Eastern and South-
Eastern Asia, Latin America, and the Caribbean. This geographic
distribution coincides with the geographic distribution of excess
mortality due to heat and cold, raising the more demanding
challenge that regions with low-temperature comfort levels have
the highest proportion of temperature intolerant populations,
and that this problem can only be solved by regulating ambient
temperatures, leaving these countries with less leeway to reduce
carbon emissions.

Considering what potential impacts the increase in elderly
proportion may impose on total carbon emissions, one intuition
is that energy consumption will become lower if the elderly is less
involved in economic activity. Thus, carbon emissions will
decrease, and population aging also implicitly decelerates
economic growth, especially in terms of innovation or labor
supply; consider the lackluster society where most citizens are
elderly and in need of care as the extreme case, the intuition is
easy. At the same time, we should realize that the increase in
extreme weather events and their challenge to the environmental
resilience of the elderly population will take this prognosis of
impact in an uncertain direction. We cannot say whether the
reduction in carbon emissions due to the rate of increase in the
share of the elderly population relative to young adults will have a
more substantial impact or the increase in carbon emissions due
to the increased energy demand of the elderly population due to
unusual weather. Our study answers this question by verifying
that carbon emissions from cooling and heating needs from the
elderly population also need to be taken into account.

While increasing the supply of electricity and more scientific
deployment of electricity resources is certainly one approach, one
aspect that has been neglected in past studies and policies is how
to achieve energy savings while maintaining the proper ambient
temperature effectively. In previous studies, the discussion of
carbon emissions from buildings has focused more on the carbon
emissions associated with the production of the various raw

materials used in buildings. However, our study considers the
carbon emissions from the intersection of building use and
residential life. The potential of energy-efficient buildings to
reduce emissions is not negligible and can be an essential
reduction channel. With findings by Balaras et al. (2005),
comparison with the heating energy consumption of 193
European residential buildings from five countries shows that
38% of the audited buildings had annual heating energy
consumption higher than the European average (174.3 kWh/
m2). In developed countries, where residential energy
consumption accounts for about 1/3 of total energy
consumption, households are significant contributors to GHG
emissions and global warming. Over the past decades, there have
been significant improvements in building energy efficiency by
introducing new building codes and the construction of low-
energy buildings.

1.3 Literature Reviews
There are two main theoretical explanations for the discussion on
population and carbon emissions, one is a modified version of the
PATmodel, the STIRPATmodel, and the other is the EKC curve.
The main difference between the two theories is whether the
relationship between income and carbon emissions is linear or
quadratic and whether the population coefficient is different
from unity.

As for the determinants, the scientific community has
conducted many analyses on carbon emissions, and it is
generally accepted that CO2 emissions are determined by the
level of technology, affluence, energy structure, economic
structure, and population structure. Early studies considered
energy consumption as the primary source of carbon
emissions and did not consider the influence of population
and technology (Shi, 2003). Other studies consider both
population, technology, and the economy as essential factors
influencing carbon emissions (Englman, 1994; Cole et al., 1997;
Meyerson, 1998; Schmalensee et al., 1998), and further argue that
the impact of these factors is heterogeneous among countries
(Shi, 2003). Ever since the STIRPAT model, a large number of
studies have started to use multi-country samples. Dietz and Rosa
(1997), York et al. (2003a) conclude that the elasticity between
carbon emissions and population growth is about 1, Shi (2003)
calculates elasticities between 1.41 and 1.65, Fan et al. (2006)
shows that the effect of economic growth is the largest for all
countries, while the effect of the population share between the
ages of 15 and 64 is the smallest. Li et al. (2011) used a
combination of PATH analysis and STIRPAT model to study
the China sample and found the elasticity coefficients of the
urbanization rate is positive (Ji and Chen, 2017).

Liddle has studied the environmental impacts of population
age structure on carbon emissions in Liddle and Lung (2010),
Liddle (2014). In Liddle (2015), residents are divided into
different age groups. The conclusions are consistent that the
U-shaped effect of the age structure on carbon emission exists,
as though the relationship may change with the different
indicators for carbon emission. Other similar studies have
examined the heterogeneity effects of factors with regional
data such as Pakistan (Shahbaz et al., 2017), Guangdong
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(Wang et al., 2013), Taiwan (Yeh et al., 2016), the Middle East
(Tarazkar et al., 2020), Fujian (Su et al., 2020), and South Korea
(Kim et al., 2020), and OECD (Shafiei and Salim, 2014),
respectively.

The most recent literature, on the other hand, makes the
extension of the STIRPAT model based on climate and
socioeconomic factors, energy intensity (Poumanyvong and
Kaneko, 2010; Kais and Sami, 2016; Hao et al., 2016; Vélez-
Henao et al., 2019), trade openness (Kais and Sami, 2016; Wang
and Zhang, 2021), industrialization (Wang et al., 2020),
urbanization (Ghazali and Ali, 2019; Salim et al., 2019; Ahmed
et al., 2020), and energy mix (Sheng and Guo, 2016). Considering
the mobility of greenhouse gases, spatial models such as Spatial
Durbin might be more suitable (Lv, Chen, and Cheng, 2019).

It can be concluded from above that previous studies mainly
focus on the impact of socioeconomic development on carbon
emissions. However, the factors affecting carbon emissions can be
complex, climate changes are involved though seldom tested. As
York et al. (2003b) point out, the climate type of the country
impacts the magnitude of different determinates’ carbon
elasticity, climate factors such as precipitation and mean
temperature should be included in the analysis. However, little
attention has been paid to the impact of environmental factors,
including climate change. Therefore, this paper coordinates
climate variables, and economic and age structure factors into
the STIRPAT model to reveal the driving mechanism of carbon
emissions under the combined effect of climate factors and
socioeconomic factors.

In this paper, the STIRPAT model is modified to examine
demographics and climate impact. Based on the theory of the
household consumption life cycle, we divided the population into
four age groups and verified the heterogeneous impact of age on
carbon emissions in the macro-level. From the perspective of the
earth science model, this study discussed the climate
heterogeneity in the relationship of population-carbon
emission. Three long-term and short-term climate indicators,
Temperature Anomaly, Precipitation, and Degree-Days, are used
to verify their impact on carbon emission, and the discussion
based on Köppen grouping is also added. It is confirmed that the
increase of heat and electricity carbon emission is due to the
elderly population having declined physical adaptability,
resulting in more air conditioning energy demand. With the
population aging becoming a global issue, the role of energy-
saving buildings and green buildings concept in carbon emission
reduction should be paid attention to.

The rest of the paper is arranged as follows: Section 2 reviews
literature with micro-level evidence to provide explanations why
age structure and climate factors should be considered in carbon
STIRPAT models and deduction of the corresponding seemingly
unrelated equation sets; Section 3 introduces the climate
indicators used and various sources of meteorological data;
Section 4 presents the empirical results of the model, results
interpretation, and heterogenous analysis of emission patterns
with various robustness checks; Section 5 concludes the main
findings and suggests that national differences in economic
development stages should be considered in international
climate cooperation to make the plan more fair. A new

standard for energy efficient buildings should be set with
insulation upgrade projects funded by governments to reach a
possible reduction from the energy sector.

2 THE CLIMATE-EXTENDED STIRPAT
MODEL

2.1 Classic STIRPAT Model
Ehrlich andHoldren (1971) first proposed the IPATmodel (I=PAT)
to measure the impact of human activities on the environment,
which specifies that environment quality (I) is influenced by three
factors: the population (P), affluence (A), and technology (T). The
IPAT model is restricted in use as it relies on solid presumptions
(Shi, 2003). Dietz and Rosa (1997) proposed the stochastic version of
IPAT as STIRPAT, then York et al. (2003a) refine the STIRPAT
model. Indicators such as modernization (urbanization and
industrialization) are also considered, and climate is found to
have a multiplier or diminutive effect on factor influences.

I � P*A*T (1)
Here I denotes environmental impact, P denotes population,

A denotes wealth or per capita consumption, and T denotes the
impact of technology, usually employs carbon intensity as an
indicator. Notice that the input factors of the IPAT model are
limited to the same exponent, which creates difficulties for
practice, so the STIRPAT model improves the applicability of
the IPAT model by considering a stochastic form as:

Ii � αi × Pb
i × Ac

i × Td
i × εi (2)

The subscript i represents the cross-sectional unit (i.e., country
or distinct), α is a constant, b c d are the parameters to be
estimated, and εi is the error term. Rewrite the above equation in
log-linear form, the estimated parameters can be considered as
the corresponding elasticities.

LnIi � Lnαi + bLnPi + cLnAi + dLnTi + Lnεi (3)
In practical application, I is generally taken as CO2 or GHG

emissions, and researchers continue to isolate various control
variables from εi. Our study also followed this idea, and reasons
for separating age structure and climatic factors are described below.

2.2 Why Age Structure Also Matters in
Determining Carbon Emission
How does population influence energy consumption and thus
total carbon emissions?We divide it into two channels: Aggregate
effects and structural effects. In addition to the aggregate
population effect, the main channel through which the
population affects carbon emissions is the household energy
consumption behavior (if we do not limit the number of
household members), which directly consumes energy and
generates carbon emissions, mainly through electricity and
transportation. Much literature has examined the impact of
population age structure factors on energy consumption, while
minor literature directly discusses the relationship between
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overall population age structure and carbon emissions. Studies on
micro-level survey data sufficiently demonstrate that different
household characteristics (e.g., age of head of household, number
of household members) result in different economic activity
patterns.

An earlier study by Fritzsche (1981) on American household
energy consumption patterns mainly considered that income, age
structure, number of family members, and consumption habits
fluctuated with household life stages. The study found that
household energy consumption rises and then falls with the birth
of a child, declines after the child leaves home as an adult but remains
higher than in the younger years until there is only one spouse and
energy consumption rapidly falls below the single stage. The total
energy consumption pattern is an inverted U-shaped distribution,
with the right side of the U higher than the left side. It is also noted
that people who suffer as summer temperatures rise are also those
who suffer most when winter temperatures fall. There is a negative
correlation between the width of people’s thermal preference range
and their residential energy consumption.

Leading us to wonder whether energy consumption would be
greater if the proportion of the population having a relatively
narrow (ambient temperature) thermal preference range raises as
older people tend to be less able to function physically.

Follow-up scholars have also studied the effect of population age
structure on energy consumption based on data from more
countries. However, a unified conclusion has not been reached
about the energy consumption of different age groups and
whether aging reduces energy consumption and carbon
emissions. For example, York (2007) argues that populations with
a higher proportion of older people (older cohorts) consume more
energy than populations dominated by younger people, which differs
from the findings of Fritzsche (1981).We believe that environmental
temperature suitability may be a vital source to explain the
differences in research findings. York’s study also used the
STIRPAT model and data from 14 EU base countries for
1960–2000 to estimate the impact of demographic and economic
factors on energy consumption. His result indicates that countries
with a higher proportion of older people consumemore energy than
other countries. However, the demographic variable in the study
refers to the percentage of the population over 65 years old, not the
age structure of the entire population by age group. At the same time,
the results cannot completely exclude the effect of low fertility, which
we know can change the distribution of family structure (size) in
society. To explain the differences, we need data support at a more
micro level, in two sectors, looking for supporting literature evidence
according to two components: home activities and transportation,
where households consume energy, respectively. According to the
IPCC’s classification of emission sources, this study selected three
sectors to examine the environmental impact of the population

structure from three channels: total carbon dioxide emissions,
transportation carbon emissions, electricity, and heat
consumption carbon emissions.

The demographic structure can be an important factor
affecting a country’s carbon emissions. Detailed discussion is
provided in the subsequent sections, but we can start by giving a
presumption based on the effect of household size composition
on total carbon emissions. People in different age groups have
different incomes and consumption behaviors. This study divides
residents into four age groups: 20–34 years old, 35–49 years old,
50–64 years old, and over 65 years old. Such grouping considers
the economic activities in different life cycle stages are different,
and the number of family members is also different (Liddle and
Lung 2010). The age group led structural difference is explained
in Table 1; this classification of age groups is aligned with the
reality of most developed and developing countries.

Usually, the 35- to 49-year-old population has the largest average
family size and should show lower energy intensity. People over 65
stay at homemore, have lower transportation needs, and are sensitive
to ambient temperature. They may consume more electricity for
heating and cooling. Young and middle-aged people (20–34 years
old) are energetic, and their wealth is in the accumulation stage, but
their household expenses are lower, consumption higher, travelmore,
and they may have the highest per capita carbon emissions, so in
general the hypothesis is proposed as follows:

H1.a: Arranged age groups in order from young to old,
20–34 years old, 35–49 years old, 50–64 years old, and over
65 years old, there is an inverted U-shaped relationship
between the share of each population age group and total
carbon emission, the higher the share of middle-aged people,
the higher the total carbon emission, while the carbon emission
elasticity of the share of young and old people is lower.

2.2.1 Micro-Evidence of Household Transport Energy
Consumption Pattern
Age is essential for travel distance because older people and
children do not travel for work (Sovacool et al., 2018). In
addition, travel is also influenced by gender, as women work
more often than men in or near downtown areas with good
access to public transportation, while men often work in
manufacturing plants far from downtown areas (Vilhelmsson,
1988). Carlsson-Kanyama and Lindén (1999) investigated the
travel patterns of different socioeconomic groups in Sweden.
The results show that older people, low-income people, and
women do not generally travel extensively. Middle-aged people,
high-income earners, and men travel much farther. Energy
consumption varies considerably by mode of travel, with
automobiles being the dominant mode of transportation for all
demographic groups, airplanes being used primarily by high-

TABLE 1 | Household life cycle and different age groups

Age 0–19 20–34 35–49 50–64 65+

Household life
cycle

Children and teenagers,
lived with parents

Start leaving home, begin
to work and having
children

Period between when offspring
become teenagers and leave
home

Only one with one’s spouse, the
children are left to build new
home

People getting old and
spouse might be dead
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income earners and men, and public transportation is used
primarily by young people and women. Men between the ages
of 35 and 54 travel the farthest distance, while older women travel
less than 1/3 of that distance. Even young children between the ages
of 6 and 14 travel farther than older women, and children are the
most frequent travelers in various vehicles for commuting to and
from school and leisure activities.

Here we determine that there may be an inverted U-shaped
relationship between age structure and transportation energy
consumption, with travel and trips increasing incrementally
with income at younger ages, peaking at middle-age and older
ages, and decreasing to a minimum at older ages.

H1.b: From young to old, there is an inverted U-shaped
relationship between the share of each population age group
and transport carbon emission, middle aged travels more and
elderly less.

2.2.2 Micro-Evidence of Residential Energy
Consumption Pattern
Yun and Steemers (2011) used the 2001 US Residential Energy
Consumption Survey (RECS) to analyze how human behavioral,
physical, and socioeconomic factors affect household cooling
energy consumption. They found that the influence of human
behavioral factors is more significant than that of climatic factors,
and they argue that there is a relationship between these variables,
as shown in Figure 3. As we can see, the age and income of the
householder affect all these variables and directly affect cooling
energy consumption. However, their empirical part uses the
linear form function to verify the impact of age, and this
setting may be problematic considering that the total energy
consumption of a household may present a curve process that
rises and then falls as householder’s age changes. So, the
significant negative correlation between age and energy
consumption in their findings deserves further verification.

More detailed summary of the influencing factors is presented
in Bhattacharjee et al. (2012). The study reviews approximately 50
literatures on the factors influencing energy consumption in the
residential sector. Pachauri (2004) used micro-level household
survey data from 1993–1994 in India and showed that the age of
the householder and energy consumption were positively
correlated, with per capita energy demand being about 7%

higher when the householder was between 25 and 29 years old
than when the householder was younger than 25, and increases to
13% when the age of the householder is over 50.

Much of the energy used by older adults is related to their health
and comfort, and some of the reasons for the increase in per capita
energy consumption with age are the lack of information and
knowledge about energy conservation, the inertia to make changes,
and the importance of subjective well-being. The energy
consumption required to achieve environmental well-being is
undoubtedly an essential factor influencing energy consumption
and carbon emissions in old age. Long et al. (2019) investigated the
relationship between household consumption and energy demand
at the urban level using an urban-scale input-output model and an
urban residential consumption inventory in Tokyo, Japan.
Furthermore, the age grouping of the study is very detailed,
with a 5-year interval grouping between 30 and 69 years old,
and an apparent change in life-cycle energy consumption habits
can be observed, and their findings show that (1) household
emissions vary significantly across age groups; per capita
emissions are generally higher in older households; (2)
temperature decline is the main reason for the increase in
emissions in older households, while this is not a significant
factor; and (3) high per capita emissions in older households
indicate inefficient energy use by senior citizens, which strongly
suggests that aging societies will face long-term emission increases
if appropriate measures are not taken.

H2: The coefficient of the cross-term between the aging
dummy and DD is positive, considering the existence of the
greater need to regulate the ambient temperature of the elderly.

The literature evidence suggests that culture is also an
important consideration. As with all other analyses of
consumption habits, differences brought about by culture and
social convention also encompass energy consumption habits.
For example, the Confucian cultural circles, known for their
frugality, may present different patterns from Westerners
(Yang and Wang, 2020). Chen et al. (2013) used data from a
survey of residents in Hangzhou, China, to investigate the causes
of increased building energy efficiency but not decreased energy
consumption and found that the occupants’ age had a more
significant impact on energy consumption than income. Unlike
previous results in the literature, the study found that older

FIGURE 3 | Household features and air conditioning energy demands.
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residents showed more frugal behavior patterns than younger
people. This opposite result, we believe, may be related to China’s
particular economic development history and culture; the
country is still in the materially scarce stage during the early
years of older residents. The process of changing consumption
habits is gradual, so it cannot be as rapid as the change in
economic data, for which numerous literatures can provide
relevant evidence on cautious consumption habits of the Chinese.

Still, most studies support the inverted U-shaped relationship
between the age of the householder and household energy
consumption. Leahy and Lyons (2010) proved 45- to 65-year-
old householders use more electricity than those aged 35–44. In
addition, electricity consumption decreases when the
householder gets older than 64. Belaïd (2016) explores the
determinants of household energy consumption using data
from the French National Housing Survey of 43,000
households in 2006. Energy consumption increased by 1% for
every 10-year increase in the age of the householder. Energy
consumption increases rapidly in the early years of one’s life, and
it becomes more gradual as the householder gets old.

H1.c: From young to old, there is an inverted U-shaped
relationship and uplifted tail between the share of each
population age group and heat and electricity carbon emission.

Therefore, most studies showed this inverted U-shaped trend
of the age-carbon emission relationship, while a few reached
different conclusions, making us realize that the analysis of this
issue must be seen in the context of the specific development
history and the particular cultural factors of a given country, so a
relevant heterogeneity analysis is also set up in the empirical
section to analyze how these shared characteristics and
features arise.

2.3 The Climate Types and Influences on
Carbon Emission
The previous section’s micro data on household energy
consumption pathways and influencing factors also show
that climate (especially temperature) is undoubtedly an
essential factor in energy consumption. However, there is
little literature on this issue from a macro perspective - what
role does climate play in carbon emissions? On the one hand, we
believe the problem may come from the difficulty to obtain data,
as the processing of climate data is complex and there is no
uniform method to choose an accurate metric, for example, how
to weigh a comprehensive climate indicator in a large country;
on the other hand, there is a lack of theoretical basis for the
detailed influence mechanism. The process might be non-linear,
and the mechanism is more complex than simply add-up. We
can only assume its functional form than judging it directly.
Nevertheless, it is worthwhile to address the relation between
carbon emissions, climate, and demographics, as comparative
studies at the national level are too scarce compared to
behavioral studies at the micro-level.

2.3.1 The Köppen Climate Types
If we consider the spatial mobility of GHG and the heterogeneity
of energy demand, the climate is an important aspect that cannot

be ignored. Although studies such as York et al. (2003b), Liddle
and Lung (2010) pointed out its importance, their analysis was
limited to group comparisons, such as tropical vs. non-tropical
areas. Until recently, studies such as Yang et al. (2018) used actual
climate indicators such as precipitation, temperature anomaly,
and cooling/heat degree days. To address the issue of climate
influence on the heterogeneity of demography-carbon emission
relationship in previous literatures, it is necessary to define what
is climate and consider which classification standard can be used
to distinguish it. This required the chosen method to be publicly
acknowledged, containing crucial and simple climate variables to
which carbon emissions are closely related.

Based on the above criteria, this study selects the Köppen
climate type classification. It provides an efficient way to describe
climatic conditions with parameters such as temperature and
precipitation and their seasonality with a single metric. It also has
the widest acceptance in various studies and standards worldwide
as the climatic conditions identified are ecologically relevant,
giving us a solid basis for studying human activities and
associated carbon emissions in the ecological context.

The Köppen classifies the global climate according to its
latitudinal position, from the equator to the poles, into five major
climate regions: A. Tropical (tropical climate), B. Arid (dry climate),
C. Temperate (subtropical climate), D. Continental (temperate and
subtropical climate), and E. Polar (polar climate). Each major
category can be subdivided into a number of subcategories, and
the global climate is divided into 31 subcategories, each of which is
graded in detail using two to three letters of the alphabet. The
detailed global classification is shown in Figure 4.

Average precipitation and temperature are strictly essential to
Köppen classification. So, along this line of thinking, we choose three
key climate indicators affecting carbon emissions, namely: annual
mean precipitation (PRE), annual degree-day (DD), and
temperature anomaly (TA). Detailed in Section 3, the calculation
of PRE andDD is derived from the accumulation of short-term terms
that distinguish between climate types and the actual weather for
that year in a certain country. The annual precipitation indicator is
direct to classify the climate type of country andDDnot only captures
and represents the daily temperature variation at a given location
more effectively than the annual mean temperature, but also
straightforwardly represents the building energy demand.
Meanwhile the TA, a sign of long-term climate change by
definition, reflects the degree of change in a country’s climate
relative to the pre-industrial era, is a good implication for how
bad the global warming situation becomes, and it is also set as
IPCC’s goal for comparison with the Global Carbon Reduction
Cooperation. The mechanisms by which the three channels affect
carbon emissions is described in the next section.

With the theories model by 2021 Nobel Prize winners in
Physics, Syukuro Manabe and Klaus Hasselmann, the relations
can be generalized below, and specific forms of each equation
with the mechanism hidden behind in the following, and briefly
framed as shown in Figure 5. Hasselmann (1976) considered the
ecosystem of earth consisted of two parts: rapidly varying
“weather” system (essentially the atmosphere) and a slowly
responding “climate” system (the ocean, cryosphere, land
vegetation, etc.). Here we used TA as the proxy for slowly
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changing climate, and the annual sum of DD and PRE is used as
the proxy for rapidly changing weather systems.

⎧⎪⎨⎪⎩
C � ϕ1(TA); long term, Thermal radiation equation
C � ϕ2(PRE); short term, Carbon sink role of nature
C � ϕ3(DD); short term, General circulation model of the atmosphere

2.3.2 The Climate Mechanism on Carbon Emission
According to the National Oceanic and Atmospheric
Administration (NOAA), TA refers to temperature
deviation from the reference value or long-term average
value. For the studies related to global warming issues, the

FIGURE 4 | The Köppen climate types map with (1901–2000) grid datasets.

FIGURE 5 | The interactive mechanisms between carbon emission and the stability of the meteorological system, in accordance with the box diagram of the basic
structure of the mathematical model of global climate in Syukuro and Stouffer (1980).
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reference value is often set at the pre-industrial level, and the
latest benchmark is the land and ocean surface average
temperature from 1901 to 2000. A positive TA value
indicates the observed temperature in certain place is
higher than the reference value. In Figure 6, the value of
temperature rises in major cities around the world since the
21st century is shown. It can be observed that the surface
temperature rise in higher latitudes is more pronounced than
in lower latitudes. This is one of the serious consequences of
global warming.

TA (long-term climate change term) is the main indicator of
climate change in global meteorological cooperation, as it is the
most direct representation of the long-term impact of carbon
emissions from human activities on climate. TA affects the
possible lag effect between the implementation of policies that
specifically produce effects; at the same time, the larger the TA
value, the greater the probability of countries experiencing
extreme weather events, and the stronger the willingness of
governments to carry out carbon emission reduction after
considering economic and human losses. The hypothesis is
proposed as follows:

H3: As TA increases, the total carbon emissions should
decrease, this channel may have a lagged effect and a
threshold effect related to the degree of economic development.

In meteorology, precipitation is defined as any product of the
condensation of atmospheric water vapor that falls under
gravitational pull from clouds. The main forms of
precipitation include drizzling, rain, sleet, snow, ice pellets,
graupel, and hail. As for the channel of precipitation on

carbon emission, there are two paths, climate ecosystem
and human activities: for climate ecosystem, precipitation
itself circulates in the global climate system, and the
deposition of dissolved organic carbon and carbonate will
complete the role of terrestrial and marine carbon sink (Fang
et al., 2017). Second, precipitation affects plant physiological
processes in the ecosystem. The growth of natural vegetation
is closely related to the increase of precipitation and
humidity, thus affecting plant carbon sink (Nemani et al.,
2002; Gemechu Legesse et al., 2021).

Another chain is about the impact of precipitation on carbon
emissions of human activities, such as traffic carbon emissions.
On the one hand, due to inconvenient travel, accidents, delay
rates, and other reasons (Zhan et al., 2020), rainy or snowy days
have a negative impact on highway traffic volume and public
transport passenger volume, and the decline on weekends is more
significant than that on weekdays (Changnon, 1996) The report
issued by US Department of Transportation shows that the rain,
snow, and precipitation process affects the free-flow speed and
capacity of traffic, and these parameters will change with the
change of precipitation intensity (Hranac et al., 2006 and
United States. Federal Highway Administration. Road Weather
Management Program. 2016), When the traffic flow pattern
changes suddenly or the number of vehicles increases,
especially during peak hours and special events, the emissions
from roadsides and intersections will be affected. Vehicles
queuing at traffic intersections spend a long time in idle
driving mode and produce more pollutant emissions per unit
time (Gokhale and Pandian, 2007).

FIGURE 6 | Temperature appreciation in major cities in the 21st century (largest cities local temperature change use 1900 as the base line) with original data from
Berkeley Earth Lab.
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So, in general, PRE (short-time weather term accumulated in
year) is the representative indicator of annual precipitation
intensity and quantity, when its value becomes larger, the
carbon contents in the air would reduce due to the carbon
sink effect of water and plants in the earth’s ecosystem; on
the other hand, rain and snow days affect people’s traffic
trips, while the traffic volume goes down, the traffic
conditions deteriorate and this may lead to traffic
congestion and increase carbon emission per unit time
due to changing traffic flow patterns. The overall
influence is ambiguous. The research hypothesis is
proposed as follows:

H4: As the PRE value increases, the total carbon emission
decreases (because of the enhanced carbon sink effect of water
and plants); however, the direction of the impact of PRE on
transportation carbon emission is uncertain; total traffic volume
will decrease, but carbon emission may increase due to
congestion.

Defined by the US Environmental Protection Agency, and
being one of the key set of indicators related to the causes and
effects of climate change, DDs measure the difference between
outdoor temperatures and what people typically consider
comfortable indoor temperatures. It is calculated as the
absolute value of the difference between the average daily
temperature and the equilibrium point temperature (15.6°) of
which the definition of comfortable temperature varies from
agency to agency, with NOAA still using the standard of 65°F,
and Energy CAP’s survey for modern buildings determining a
comfortable temperature of 60°F. The degree-day level indicates
how much energy people may need to use to heat and cool their
homes and workplaces. It is first introduced by Thom (1952), was
widely employed as a measurement of climate change (Pardo
et al., 2002; Mirasgedis et al., 2006; Pilli-Sihvola et al., 2010),
providing an understanding of how climate change affects
people’s daily lives and financial situations.

DD (short-time weather term accumulated in year) measures
the degree of ambient temperature suitability for people, which
will directly affect the frequency and intensity of use of ambient
temperature regulation equipment such as air conditioners. In
addition, with analysis in Section 2.2.2, this consumption habit
varies with the age of residents, so it will also vary with the
proportion of the population of each age group, but overall, the
positive impact is predictable. So, the research hypotheses for DD
is proposed as follows:

H5: The larger the DD, the more the total carbon emission, the
more the heat and power sector carbon emission, and there may
be an interaction effect between the effect of DD and the
percentage of age grouping.

2.4 How the Climate and Age Structure Can
Be Incorporated in a STIRPAT Model
With the above analysis on the impact mechanism of
demographic structure - carbon consumption habits and
carbon in global meteorological systems, the original STIRPAT
model formula of Section 2.1 can be rewritten as:

LnIit≊Lnαi + b1Ln(1 −∑AG(m,n))it + b2lnPit + cLnAit + dLnTit

+ εit (1)

Assuming that 1-x is small enough, here we have ln(1 + x)Ħ x
according to the principle of equivalent infinitesimal substitution,
and the original equation becomes:

LnIit � Lnαi +∑ bkAG(m,n)it + b2 ln pit + cLnAit + dLnTit

+ εit (2)

The effects of climatic factors (precipitation, temperature
anomalies, degree-days) on total carbon emissions are
included in the original error term part considered their linear
relationship with carbon emissions, noted here the coefficients
before age ratio stands for the deviation degree of different age
group’s carbon emission elasticity from the average carbon
emission elasticity of the whole population, the corresponding
estimating equation is:

LnCit � αi +∑ bkAG(m,n)it + β2lnPit + β3LnAit + β4LnTit

+ β’X’
control + β6lnDDit + β7PRE + β8TA + εit

2.4.1 The SURE Setting for Extended STIRPAT Model
Considering that there are 247 countries and regions in the world,
each country has its own carbon consumption equation. As for our
sample, there should be 150 equations to describe the actual
pattern. The influencing factors of carbon emission in each
country may be different, that is, some variables do not exist in
all models, and different influencing factors (explanatory variables)
may be included in the equations of different countries, although
the carbon emission patterns among countries with close
geographical location or similar development may have the
same characteristics. Obviously, the carbon emission equations
of various countries seem independent, but they exist in the same
earth ecosystem, and there is some connection between them. This
relationship can be explored by testing the joint distribution of
disturbance terms. It is considered that the simultaneous
correlation of error terms is reasonable, that is, these equations
seem independent and uncorrelated, but they are only seemingly
unrelated (Biørn, 2004). A.

A typical SURmodel is constructed as follows, consisting of M
multiple regression equations.

yi � Xiβi + εi, i � 1, 2, 3 . . . ,M

Here yi is T-dimension vector with elements yti, Xi is T × Ki

matrix represents explanatory variable’s T-th observation in the
i-th equation; and βi is ki vector, εi is T disturbance vector with
the expanded form like:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

X1 0 . . . 0
0 X2 . . . 0

..

.

0

..

.

0

1
. . .

..

.

Xm

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

β1
β2
..
.

βm

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ +⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
ε1
ε2
..
.

εm

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Frontiers in Environmental Science | www.frontiersin.org March 2022 | Volume 9 | Article 71916812

Liu et al. Age Structure and Carbon Emission

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Moreover, for estimation it requires that the variance of all εti
is constant, the contemporaneous covariance between εti and εtj
is constant for all time, and intertemporal covariance of εti is zero.
The estimation should be implemented with multistep maximum
likelihood method (Minh Nguyen and Hoa Nguyen, 2010). Here
we have carbon emission from different sectors, if we write the
equations in pairs, then:

⎧⎪⎪⎨⎪⎪⎩ LnCit � αi +∑ bkAG(m,n)it + β2lnPit + β3LnAit + β4LnTit

+ β5URit + β6lnDDit + β7PRE + β8TA + εitLnTCit

� αi +∑ bkAG(m,n)it + β2lnPit + β3LnAit + β4LnTit

+β5URit + β6PREit + εitLnECit

� αi +∑ bkAG(m,n)it + β2lnPit + β3LnAit + β4LnTit

+β5UR + β6lnDD + β7lnDD × Doldit + εit

The subscript it represents the ith country and the tth period,
CO2 is the total carbon emissions, and POPU, AG(m,n), A, and T
are the total population, proportion of different age groups, GDP
per capita, and energy intensity (energy consumption per unit of
output value). The constant term α is other characteristic factors
of the country, εit is the error term, TO represents the degree of
openness to trade (measured as the proportion of GDP in total
import and export value), UR is the urbanization rate (the
proportion of urban population to the total population), and
PRE is annual precipitation, TA is the annual average
temperature abnormal value (based on the pre-industrial era
of 8.5°C as the standard, NOAA), DD is the number of degree
days, the sum of HDD and CDD, and refers to a period of time
(year or season) where the daily average temperature is higher
accumulated degrees below 60 or 65°F (18.3°C) represent
residents’ demand for cooling and heating. The equation for
analyzing traffic and electricity carbon emissions is similar but
with minor modification according to the mechanism and
assumptions. The same symbol meanings hold as above, EC
denotes residential electricity carbon emissions, Doldit is a
dummy variable for aging society according to the UN
classification criteria, noting that the proportion of a country’s
population aged 65 years and older exceeds 7% as 1, and 0 for
the rest.

2.4.2 Threshold Model for Determining Carbon
Emission Peaking by Country
Considering that the carbon emission stage of various countries may
have differentiated with economic development and industrial
structure changes, namely, some developed countries may have
reached the peak of carbon emission, while some developing
countries are still in the rising stage before the peak. If the
judgment standard is set as the growth rate of carbon emissions
becomes lower than the growth rate of GDP, most developed
countries may have already reached the carbon emissions peak

from the 1970s–1980s and transferred the high input and high
pollution enterprises outward by participating in the global value
chain. From previous literatures, there are four main determining
methods for carbon emissions peak: LMDI driving factor judgment,
various sector carbon emission trends, carbon decoupling index, and
Environmental Kuznets Curve (EKC). Considering that other
methods have high requirements for the analysis of a country’s
own characteristics, in order to be comparable, this study uses the
EKCmethod to judge whether a country’s carbon emissions peak or
inflection point has been reached.

Besides, taken the environmental Kuznets hypothesis into
consideration, for countries at different income levels, the
relationship between demographic structure and carbon
emissions may also change. To verify the fact, this study
adopts the panel income threshold model of Hansen (1999).
The threshold effect refers to the change in the direction or
quantity of another economic parameter after a certain economic
parameter reaches a certain value. The specific value of the
economic parameter that triggers the change is the
threshold value.

For the estimation process, first the total carbon emission is
used as the dependent variable, then divide the data sample into
different groups with the threshold value of per capita income,
finally use the fixed effects and random effects models to regress
with sub-sample for testing and comparison. After grouping
according to the threshold value, the carbon emission is again
used as the dependent variable, and the age structures become the
core explanatory variables, while the per capita income as the
threshold variable to examine the non-linear impact of per capita
income on carbon emissions at different stages of economic
development. According to Hansen (1999) the general form of
the panel threshold model is set as follows:

Yit � β0 + β1XI(incomei < � h) + β2XI(incomei > h) + εit (4)
where Yit represents CO2 emissions, i is the individual country, t
is the year, and X is the control variables vector, including
indicators such as carbon technology level, age structure, trade
openness, urbanization level, precipitation, temperature
anomalies, and degree-days.

3 DATA AND CLARIFICATION

3.1 Carbon Emission and Carbon Tech
Indicators
Carbon emissions and sub-sectoral carbon emissions data was
obtained from EDGAR [Emissions Database for Global
Atmospheric Research (EDGAR) v5.0 (1970–2015), (European
Commission, 2021), Joint Research Centre (EC-JRC)/
Netherlands Environmental Assessment Agency (PBL)]. The
EDGAR database uses international annual statistics, from
1970 to the current year, the previous year’s carbon dioxide
data, and other greenhouse gases (respectively, air pollutant
and particles) data are delayed by 2 or even 4 years. The data
uses technology-based emission factor methods to calculate
emissions, and the sample includes all countries in the world.
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The national and regional divisions of the Global Carbon
Emission Database use a spatial grid unit of 0.1° × 0.1°

(spherical latitude and longitude coordinate system) to allocate
the source of carbon emissions. The geographic database
established using the spatial proxy data set includes energy
and manufacturing facilities, road networks, shipping routes,
human and animal population density, and the time-varying
location of agricultural land. Since EDGAR data is satellite grid
synthesized, it provides a better view for the research on regional
carbon emissions than the data calculated from the energy
consumption balance sheet. The latest IPCC 2006 code
division standard is used for the main regression Olivier and
Janssens-Maenhout (2015).

As for the indicator for carbon technology, main regression
used carbon intensity, electricity production ratio by fossil source
is added as the technical index for robustness test2. The original
data collected from BP energy report (activity data are mainly
based IEA (2019) world energy balances) only provides electricity
in TWH from different sources, considered that the carbon
production efficiency of different fossil fuels is different. We
need to eliminate the influence of burning coefficient according to
the 2006 IPCC Guidelines for National Greenhouse Gas
Inventories. First we determined that the power generation
belongs to the energy industry sector (sub sector in electric
energy and thermal energy). The comparison of emission
factors among different sources in the energy industry sector
is shown in Supplementary Table S1. Based on this, the weighted
proportion of BP data is calculated:

Efossil �
10
6 pecoal + egas + 7

6peoil
sum (ex) , here x stands for all source list

3.2 The Climate Change and Weather
Indicators
3.2.1 Temperature Anomaly
According to the NOAA definition, temperature anomaly refers to
temperature deviation from a reference value or long-term average
value. A positive value indicates the observed temperature is higher
than the reference value (Table 3). The temperature anomaly data
we use was obtained from the Berkeley Earth: Land Only Monthly
Average Temperature Time Series Data (1750 – Recent). The
metadata used by them comes from the three most authoritative
institutions for recording surface temperature—Hadley/CRU, the
Climate Research Office of the British Meteorological Agency, and
NASA (Aeronautics and Space Administration) GISS in the
United States with the National Climate Data Center NCDC of
NOAA (Ocean and Atmospheric Administration), the original data
is daily image data from satellite.

The baseline value of the pre-industrial era is shown in
Supplementary Table S2, at the reference value of the land
and ocean surface the average temperature from 1901 to 2000
provided by NOAA, from which we use the revised global surface
temperature of the Berkeley Earth Lab to subtract the NOAA
average temperature reference value to get the annual
temperature abnormal value of each country from 1970 to
2020. Another point that needs to be emphasized about
temperature is the separation of weather and climate. Weather
is considered a short-term concept and climate is a long-term

TABLE 2 | Variable data sources and descriptive statistics.

Variables Description Sources Mean SD. Min Max

CO Total carbon emission (equaling) in Mt EDGAR 6.0 145.7023 626.5873 0.022002 10258.01
EC CO2 emissions from electricity and heat production in kiloton (multiple by

% of total fuel combustion)
WDI 2020 66798.76 272780.3 0 5452794

TC CO2 emissions from transport in kiloton (multiple by % of total fuel
combustion)

27732.333 56067.781 66.854 860249.56

TPOPU Total population in millions 35.71687 134.9441 0.065114 1391.883
TECH Carbon intensity (kg/kg of oil equivalent energy use) 2.228 3.254 0.084 109.238
TECHE Weighted electricity production ratio with fossil (% of twh) BP energy report 0.789 0.431 0 1.667
INCOM GDP per capita (constant 2010 US thousand dollars) WDI 2020 11.84876 17.1752 0.1641919 116.2327
TO Export and import of goods and services % of GDP 77.098 48.559 0.021 437.327
UR Urban population (% of total) 53.319 24.023 4.178 100
PREM Average annual precipitation in mm NOAA CPC 698.354 659.085 0 3406.565
PRET Total annual precipitation in mm 173,057.07 552,718.03 0 5,721,872.5
TEMPA Temperature anomaly in °C Berkeley Earth and

NOAA CPC
11.055 8.651 -28.358 21.627

DD Cooling and heating days in °C 3323.777 1269.241 1147.47 12,908.79
AG2034 Age 20–34 ratio % WPP 2021 0.235 0.03 0.165 0.458
AG3549 Age 35–49 ratio % 0.164 0.043 0.095 0.328
AG5064 Age 50–64 ratio % 0.105 0.045 0.039 0.224
AG65UP Age above 65 ratio % 0.069 0.049 0.007 0.246
AG20T Number of people age 00–19, in thousands 15,620.886 56,598.097 28.3 50,0545.78
AG35T Number of people age 20–34, in thousands 9419.122 36,921.796 13.654 363,877.09
AG50T Number of people age 35–49, in thousands 6785.406 27,973.759 7.551 352,987.22
AG65T Number of people age 50–64, in thousands 4232.35 16,886.744 6.094 245,894.34
AG101T Number of people age above 65, in thousands 2451.236 8832.718 3.478 120,801.01

2Thanks to the suggestion by Prof. Shahzad.
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concept. See the Supplementary Appendix or methodology
provided in Muller et al. (2013), Rohde et al. (2013b),
Wickham et al. (2013) for the process of separating these two
indicators from real-time temperature measurement observed.

3.2.2 Annual Precipitation
In meteorology, precipitation is any product of the condensation of
atmospheric water vapor that falls under gravitational pull from
clouds. The main forms of precipitation include drizzling, rain, sleet,
snow, ice pellets, graupel, and hail. Standard rain gauge is generally
regarded as the standard for measuring precipitation. A summed
global annual precipitation distribution is shown in Supplementary
Figure S1, with shades of blue representing intensity and blanks
representing missing observations although it is not feasible to use it
in many areas (vast oceans and remote land areas). The strength of
this is that the source is from a higher density of meteorological
sampling stations, and the limitation is that the instrumentation in
tropical Africa and Antarctica is not sufficiently advanced and the
quality of analysis varies with the density of the measurement
network. There may be discontinuities in the analysis field across
national boundaries due to different definitions of the end time of
daily accumulation in each country. Also, there are some annual data
missing or interrupted, which may be caused by hinders from
dissemination of meter observation data due to social, technical,
or administrative problems.

3.2.3 Degree Days (Heating/Cooling Degree Days)
In Section 2.3.2, we introduce the definition of DD and know that
its calculation mainly depends on two parts, ambient temperature
and the selected appropriate temperature standard. The number
of completed DDs is shown in Supplementary Figure S2, and it
can be seen that the magnitude of this indicator differs for

countries with different climate types. Although the
temperature changes greatly in a day, considering the large
gap between the daily variation range and the order of
magnitude of annual aggregation, in order to simplify the
calculation, land only monthly average temperature time series
data (1750 – recent) provided by Berkeley Earth is selected. This
data set deals with five main problems raised by global warming
skeptics: data selection, data adjustment, poor site quality,
potential deviation of urban heat island effect, and IPCC’s
over-reliance on large and complex global climate models.

3.2.4 Nighttime Light Data
For climate-related data, most data are from tens of thousands of
weather stations sampled across a country, compared to other
macro data, either regional summation within a country or daily
to annual time summation or averaging are issues that should
calculated with proper reasons, the goal is to ensure the
representativeness of the climate data for a country. An
effective indicator for human distribution on spatial is the
NASA night-time light (NTL). NTL data can characterize the
intensity of human activities and urbanization, and the most
widely used NTL data are the visible infrared imaging linear
scanning operational system (OLS) data carried by the U.S.
Defense Meteorological Satellite (DMSP) and the visible near-
infrared imaging radiation (VIIRS) sensor data carried by the U.S.
New Generation National Polar Satellite (Suomi-NPP). Both data
sets have their own advantages and disadvantages, the better
choice is the integrated long-term lighting data. The harmonized
global nighttime light dataset from 1992 to 2018 is provided by Li
et al. (2020).

The data processing process concludes as: Overlay a certain
climate index (INDC) satellite map with NTL data (DN/RD

TABLE 3 | Basic results of age structure and carbon emission

VARIABLES (0)
TOTAL
CO2

(1)
TOTAL
CO2

(2)
CO2 FROM

ELECTRICITY and
HEAT

(3)
CO2 EMISSIONS

FROM TRANSPORT

(4)
TOTAL
CO2

(5)
CO2 FROM

ELECTRICITY and
HEAT

(6)
CO2 EMISSIONS

FROM TRANSPORT

LP 1.236*** 1.545*** 1.460*** 1.028*** 1.504*** 1.212*** 0.753***
(15.88) (11.06) (3.91) (4.80) (42.69) (9.98) (13.02)

LTECH 0.627*** 0.598*** 0.889*** 0.762*** 0.606*** 0.918*** 0.742***
(9.94) (8.74) (5.01) (9.34) (51.19) (22.20) (38.35)

LINC 0.474*** 0.697*** 0.592*** 0.806*** 0.586*** 0.367*** 0.881***
(7.37) (6.87) (3.14) (5.76) (27.53) (5.02) (25.34)

AG2034 2.272*** 3.589*** 2.617***
(14.60) (6.74) (10.31)

AG3549 2.972*** 6.338*** 0.306
(16.85) (10.45) (1.06)

AG5064 1.922*** 3.350*** −1.972***
(7.06) (3.59) (−4.45)

AG65UP 2.879*** 1.962* −0.551
(8.53) (1.69) (−1.00)

OBSERVATIONS 3545 3545 3449 3481 3545 3449 3481
R-SQUARED 0.800 0.812 0.406 0.738 0.838 0.431 0.751
NO. OF ID 128 128 114 114 128 114 114
COUNTRY FE YES YES YES YES YES YES YES
YEAR FE YES YES YES YES YES YES

Robust t-statistics in parentheses, *** implies p < 0.01, ** for p < 0.05 and * for p < 0.1.
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map), for each longitude and latitude grid (with a resolution of 1°

× 1°), take indcp(layer3) � indc(layer1)prd(layer2)with Raster
Calculator, mask the obtained third map (layer3), and crop the
layer3 data using the vector administrative boundary of TM
WORLD BORDERS for an individual country. Then, the
regional analysis of spatial analysis tools is used to display the
zonal statistics of INDC values of various countries in tables. The
precipitation and temperature data are taken as the average value
within the national region. The calculation is simplified as
follows:

indc � mean(indcijprdij)
mean(indcij) , i and j stands the raster

included within conutry’s region

The time range of NTL data is from 1992 to 2018, while
other indicators are as far as 1970, so for the convenience of
calculation and the comparability between weighted data, we
uniformly set the global NTL weight value as 2000, which is
feasible considering that the development process of the city is
granular, and the population will not be relocated suddenly on
a large scale.

3.3 Variable Description
Since some climate data are derived from grid data, countries and
regions with too small areas such as the Faroe Islands are not able
to obtain value. The combined data sets are from 1970 to 2014,
climate data from 1979 to 2014, power generation data from 2000
to 2014, and complete data sets are from 150 countries from 1970
to 2014. Variables and sources of the panel data are shown in
Table 2. By changing the unit, we control the magnitude of most
data at the same level except for percentages indicator variables.
In order to reduce the influence of heteroscedasticity, the absolute
numerical variable is taken in natural logarithmic form ln (x + 1)
before regression.

4 EMPIRICAL RESULTS

Considering the possible heterogeneity slope and cross-sectional
correlation in panel data with long T and large N, we applied the
wild cluster method and SUREmodel for the main regression, the
threshold effect model to test for carbon peaking in each country
under the EKC hypothesis; the robustness test is completed with
changing indicators, adopting the panel mean group method and
heterogeneity analysis with country classified by geographical
region and climate types.

4.1 Baseline Regression Results
Based on the model described in Section 2, the empirical tests are
conducted with panel data in 150 countries and regions from
1979 to 2013 (time restricted by climate data). At the same time,
we will make group comparisons based on transportation and
electricity carbon emissions. The Hausman test results support
fixed-effects models. Table 3 presents the results after eliminating
heteroscedasticity using weighted robust standard errors. In
addition, the wild cluster bootstrap standard errors method

(Yan and Lin, 2020) proposed in Cameron, Cameron et al.
(2008) was used for later estimations. It can be observed that
the coefficients of different age groups followed an inverted
U-shape for total and heat and electricity carbon emissions,
while transport carbon emissions are more likely to decrease
by age.

The carbon intensity indicator adopted here denotes how
many standard units of carbon dioxide emissions are
generated by one standard unit of energy consumption, which
corresponds to the weighting average of the country’s energy mix
(oil, coal, natural gas, clean energy, etc.) and energy efficiency or
technology (some countries have higher oil utilization technology
than others) in general. Suppose one country uses more clean
energy than fossil, its carbon intensity (carbon emissions
corresponding to energy consumption) will be smaller. At the
same energy consumption level, countries that produce more
carbon use more non-clean energy and inefficiently, so their
technology level is considered to be lower (at least for energy use
and carbon emissions) while the indicator gets larger. The
positive coefficient of technology implies the relation that if a
country adopts more renewable energy or improves energy
efficiency, its carbon emission will decrease.

4.2 The Empirical Results of Age Structure
and Climate Impacts on Carbon Emission
Columns (1)–(4) of Table 4 are the empirical result of the basic
STIRPAT model. The results show that population, economic
scale, and technology level are undoubtfully the main factors
affecting carbon emissions. Generally, total population has the
biggest impact on the total carbon emission. Technology level is
very important for heat and electricity carbon emission, and the
per capita income level is more important for transportation
carbon emission. In column (4), the effect of population on
carbon emission is separated into size effect and age structure
effect. Population size effect is significantly positive with the
elasticity coefficient is 1.078, very close to unity that carbon
growth is in the same pace with population growth.

As for technology, carbon intensity also has a significantly
positive effect, with a coefficient of 0.805, that is, for every 1%
reduction in carbon intensity due to advances in energy
utilization technology, total carbon emissions will decrease by
0.806%, so upgrading and promoting green technology is still an
efficient and feasible means to achieve carbon emission reduction
especially for the heat and electricity sector with coefficient 2.024.
There is also significant positive correlation between economic
level and total carbon emissions, with a coefficient of elasticity of
0.507, so overall the growth speed of carbon emission is slower
than economic, which implies the promising future of carbon
emission reduction and carbon neutrality. This can be explained
by the fact that countries with higher levels of economic
development pay more attention to environmental protection
with the more advanced the technology of energy saving and
emission reduction, but the total amount of energy consumption
is still huge, so generally the efforts can only slow down the
inevitable, the increase in per capita GDP still leads to total
carbon emission increase. Our result is aligned with various
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previous studies (Poumanyvong and Kaneko, 2010; Zhukov et al.,
2014; Shahbaz et al., 2017, Xu and Lin, 2015b, Liu and Bae, 2018).

4.2.1 Age Structure Impact on Carbon Emission
For total carbon emissions, the results of wild cluster bootstrap in
column (4) shows that the age carbon emission coefficient of the
population conforms to the inverted U-shape with uplift tail,
notice each coefficient here stands for age-group specified
deviation from the average impact of the total amount, for
example, the carbon elasticity of the population aged 20–34 is
2.351% higher than the average carbon emission elasticity of the
whole population, so every percentage change in 20–34
population ratio would lead to 2.351% change in total carbon
emissions accordingly. Generally, column (4)–(6) of Table 4
shows that for the total carbon emission, the influence pattern
of age structure conforms to the hypothesis H1. The consumption
elasticity increases the start from the age of 20 (+2.351), reaches
its peak value of carbon consumption at the age of 35–49
(+3.190), and decreases to lower than the average (−2.026) at
the age of 50–64. After the age of 65, the carbon consumption
starts to increase (+0.792) compared with the previous stage, and
the inverted U-shaped curve begins to form an uplift tail. In terms
of overall patterns, SURE and wild cluster bootstrap are basically
showing the same results, increasing at first and then decreasing,
and at last rising at the tail. The difference lies in the age of the
peak carbon consumption, which may need further investigation
into sub samples and more age groups. It can also be seen from
variation of the coefficient in the transport sector that the pattern

may exist though not at high significance level, the assumption
H1 might still hold (see Section 4.4), the carbon emission
decreases more (−4.011) after middle age, while the results of
SUR show that the age peak on traffic carbon emission may be
earlier than expected, closer to 35, decrease afterward, and then
rise again after middle-age.

Both SURE and wild cluster bootstrap results indicate that the
age peak of heat and electricity carbon emission is between 35 and
49. The difference lies in the increase and decrease range of the
previous and latter age groups, sharper or milder in curve, which
also confirms the H1 assumption. It is worth noting that the
deviation of carbon consumption from people over 65 exceeds the
previous peak value of young adults in both results, namely the
tail is higher than the hump. For this strong uplifting tail
phenomena, we have tests for Hypothesis 2 and found the
explanation: the temperature regulation demand caused by the
decline of physical adaptability along with age.

4.2.2 Cross-Effects of Population Aging and
Degree-Days
From the above results, we find that aging does not slow down
carbon emissions as expected, and the results of sub-sectors also
suggest the existence of heterogeneity, from the real-life
circumstance it can be observed that older people have more
cooling and heating energy demand due to their body’s reduced
environmental adaptability, which explains to some extent the
rise in carbon emissions in the older age group. To verify the
existence of this mechanism, the World Bank’s Ageing society

TABLE 4 | Results of climate-extended STIRPAT with wild cluster bootstrap and SURE method

VARIABLES Wild cluster SD Seeming unrelated model

(1) (2) (3) (4) (5) (6) (7) (8) (9)
TOTAL TRANSP ELEC TOTAL TRANSP ELEC TOTAL TRANSP ELEC

LP 1.080*** 1.089*** 1.195*** 1.078*** 1.074*** 1.223*** 0.968*** 1.057*** 1.000***
(36.42) (28.00) (21.38) (39.36) (26.65) (20.15) (328.35) (343.70) (166.21)

LINC 0.509*** 0.729*** 0.348*** 0.507*** 0.747*** 0.331*** 0.491*** 0.853*** 0.327***
(7.04) (10.65) (2.84) (6.90) (9.76) (2.71) (70.53) (117.69) (22.98)

LTECH 0.742*** 0.537*** 1.860*** 0.805*** 0.516*** 2.024*** 0.907*** 0.511*** 2.230***
(11.89) (8.30) (12.11) (14.70) (6.61) (12.83) (125.80) (68.80) (151.39)

AG2034 2.771*** 0.958 3.069* 2.351*** 0.889 3.382* 2.908*** 12.907*** −0.866**
(3.37) (0.85) (1.81) (2.77) (0.74) (1.87) (16.09) (74.97) (−2.38)

AG3549 3.665*** −0.235 8.292*** 3.190*** 0.113 5.899*** 1.935*** −1.121*** 1.526***
(4.01) (−0.18) (4.69) (3.75) (0.08) (3.33) (10.66) (−5.97) (4.08)

AG5064 −1.954 −4.271** −1.974 −2.026 −4.011* −2.188 2.368*** 0.494* 0.234
(−1.10) (−1.96) (−0.71) (−1.14) (−1.84) (−0.76) (8.52) (1.73) (0.41)

AG65UP 2.639* 2.469 3.447 0.792 1.722 5.125* −1.528*** 4.797*** 7.812***
(1.82) (1.40) (1.19) (0.56) (1.01) (1.78) (−6.33) (18.84) (15.78)

TEMPA −0.018*** −0.031***
(−2.75) (−72.01)

LDDY 0.104 0.521** −0.276*** 0.342***
(0.78) (2.42) (−46.67) (26.56)

LPRE −0.016*** 0.009 −0.003*** 0.005***
(−3.04) (1.52) (−3.49) (4.09)

CONTROL YES YES YES YES YES YES Yes Yes Yes
CON FE YES YES YES YES YES YES N N N
YEAR FE YES YES YES YES YES YES N N N
OBSERVATIONS 3,545 3,481 3,449 3,276 3,238 3,319 2,685 2,685 2,685
R-SQUARED 0.940 0.924 0.867 0.948 0.922 0.875

z-statistics in parentheses, ***p < 0.01, **p < 0.05, *p < 0.1.
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criteria is used to set the country-specific dummy variable oldit ,
and put its interaction term with degree-days into the equation.
Results are presented in Table 5. From it we can see that the
coefficient of the cross term DegreeDays × old is significantly
positive, corroborating our Hypothesis 2 above. So, it proved that
the uplifted tail of the inverted U-shaped carbon consumption
pattern in the heat and electricity sector is indeed caused by the
environmental temperature regulation demand of the elderly
population for their declined physical adaptability. Despite the
reduction of activities, the elderly need to keep their body
comfortable, so as to consume more energy thus produces
more carbon emissions.

4.2.3 Climate Impact on Carbon Emission
As for the climate indicators, columns (4) and (7) of Table 4 show
temperature anomalies have significant negative impacts on the
total carbon emission, for every 1° rise in abnormal temperature,
the global climate cooperation will be promoted and thus reduce
the total carbon emission (in mt) by 1.8–3.1%. Note that the
carbon emission decline and TA change here are the average
values of long-term changes, the actual impact may be greater,
which is in line with Assumption H3.

Columns (4) and (5) of Table 4 present that average annual
precipitation (measured in mm) also has significant negative
influence on total carbon emission (−0.003 to −0.016) and
columns (7) and (8) show positive effect on transport sector
(0.005–0.009), consistent with Assumption H4. For every 1%
increase in precipitation annual mean (unit mm), the total carbon
emission (in mt) will be down by 0.003–0.016% due to the overall
effect by carbon sink of water and plants after canceled out by
traffic jam effects; and the transport carbon emission (in mt) will
be increased by 0.005–0.009% as the traffic congestion caused by
bad weather conditions.

DD has the greatest impact among others, when annual DD
increases by 1%, the change of total carbon emissions will be –
0.276–0.104% as in column (4) and (6), Assumption H5 is

proved. This impact of DD is relatively large, especially in the
heat and electricity sector from column (7) and (9), that for every
1% change in DD, the carbon emission will be increased by about
0.34–0.52%, that is stronger influence than the impact of per
capita income growth on carbon, which reminds us that the
improvement of building insulation technology is very necessary
for carbon reduction.

4.3 Test of the Income and Technology
Threshold on Carbon Emission
Table 5 reports the test results with carbon emission intensity and
per capita income as the threshold. It can be seen that when per
capita GDP and carbon emission intensity are used as the
threshold variables, the corresponding F value passed the one-
threshold and two-threshold models, and both were within 1%
(error) Level passed the significance test. The significance level of
the single threshold for per capita GDP is higher than the double
threshold and the triple threshold. Therefore, we choose the
single threshold for income, similar for carbon emission
intensity. Under the single threshold hypothesis test, the
logarithmic per capita GDP threshold value is 8.1, which is
approximately $3,581.7257 USD per year, and according to the
World Bank income category the transition value is near the low
middle income dividing line, it also fits the heterogeneous results
in Table 6. The carbon emission intensity threshold is 0.6026,
which is 1.8269 kg/kg oil equivalent.

These results confirm our previous results on the impact of
demographic structure, but reveal that countries in different
income status did have different pace in their carbon reduction
along aging, thus calling for international cooperation in
technology innovation on carbon reduction. Judging by the
income thresholds, 97 out of 150 sample countries reached their
peak carbon emissions before 2013 (Table 7).

To support this inverted U-shaped relationship regarding
carbon emissions-income, we grouped the sample of countries
according to the World Bank classification criteria (June 2019),
noting that the criteria changed throughout the sample period, as
each year the World Bank revises the classification of world
economies based on the previous year’s GNI per capita, the
standard value for the classification criteria are also increasing
due to inflation. For the current 2020 fiscal year, using the World
Bank Atlas method, low-income economies are defined as those
with the GNI per capita of $1,025 or less in 2018; lower middle-
income economies are those with the GNI per capita between
$1,026 and $3,995; upper middle-income economies are those with
the GNI per capita between $3,996 and $12,375; high-income
economies are those with the GNI per capita of $12,376 or more.

The results of the income threshold test show that the turning
point is between lowermiddle-income to upper middle-income, so
it would be expected that the low-income and high-income groups
would show different results, andTable 7 presents the results. Here
we can notice that the high-income and low-income subgroups do
behave differently in terms of carbon emissions. The results are also
consistent with previous expectations too, with carbon emission
coefficients for age fits the inverted U-shaped trend in high-income
and lower-middle-income countries, while carbon emissions in

TABLE 5 | The interaction effects of degree-days and population aging on
electricity carbon emission

VARIABLES (1) (2) (3)
RE FE MLE

AG2034 1.476*** 0.982** 1.354***
(3.10) (1.99) (2.84)

AG3549 2.688*** 2.167*** 2.554***
(5.10) (3.89) (4.80)

AG5064 −1.854** −2.172*** −2.021***
(−2.51) (−2.81) (−2.71)

LN DD 0.577*** 0.604*** 0.597***
(5.05) (4.67) (4.99)

DD*OLD 0.016*** 0.015** 0.015**
(2.59) (2.53) (2.54)

CONTROL VARS. YES YES YES
COUNTRY FE YES YES YES
OBSERVATIONS 3319 3319 3319
R-SQUARED 0.515
NUMBER OF ID 114 114 114

Note: z-statistics in parentheses, ***p < 0.01, **p < 0.05, *p < 0.1.
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upper-middle-income countries in transition presenting the
pattern of fall and then rise with age, with significant upward
tail in low-income countries, this phenomenon we consider related
to the fact that life expectancy does not even reach 65 years in most
low-income countries, due to factors such as lacking proper
health care and war. Their carbon consumption habits might
be more related to emergencies rather than the full-scale life
cycle pattern.

4.4 Robustness Check
4.4.1 Changing the Demographic and Technology
Indicator
If the percentage of the population in each age group is replaced
with the absolute number, the conditions for the transformation

of the logarithmic term into an additive relationship may not be
met, but it is still possible to observe the trend through the sign of
the grouping coefficients, as shown in Supplementary Table S3,
where the coefficients show a strong inverted U-shaped trend, the
hump pattern of carbon consumption along the age growing is
very clear in all three carbon emission sectors.

What’s more, the sharp increase in carbon consumption in the
population over 65 is interesting phenomenon, especially
compared with the effect of people between 51 and 64 that
turns negative, i.e., people in this age group show less carbon
consumption compared to the whole life cycle average. This may
be the result of that the older population, due to reduced physical
adaptability, generate more need for cooling and heating andmay
also be less able to undertake the energy-efficient modes of travel

TABLE 6 | Threshold tests and confidence intervals for GDP per capita and carbon intensity

Threshold variable N F-statistic
(p-value)

Confidence level Threshold value 95% confidence
interval10% 5% 1%

LN INCOME 1 1687.68*** (0.0000) 606.6979 618.7519 641.6046 8.1836 [8.1831, 8.1881]
2 1881.27 (1.0000) 2.4e+03 2.4e+03 2.4e+03 8.1836 [8.1831, 8.1881]

8.1642 [8.1636, 8.1804]
3 1201.29 (1.0000) 5.9e+03 5.9e+03 6.0e+03 8.1836 [8.1831, 8.1881]; [8.1636, 8.1804] [8.1387, 8.1273]

8.1642
8.1387

LN TECH 1 4694.43*** (0.0000) 233.9918 238.4751 251.2299 0.6026 [0.6026, 0.6056]
2 577.38 (1.0000) 981.9296 994.9628 1.0e+03 0.6026 [0.6026, 0.6056]

0.6386 [0.6383, 0.6393]
3 9664.44*** (0.0000) 284.4954 287.7450 291.0153 0.6026 [0.6026, 0.6056]

0.6386 [0.6383, 0.6393]
0.6393 [0.6386, 0.6396]

TABLE 7 | Sample group divided by World Bank income level standard

VAR. Carbon emission from different sectors

TOTAL TRANSPORT HEAT&ELECTRICITY

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

HIGH LOW LM UM HIGH LOW LM UM HIGH LOW LM UM

AG2034 2.970*** −0.651 −0.719 1.808*** 2.897*** −1.550 0.662 5.034*** 2.087*** 0.476 0.695 −0.927
(10.72) (−1.46) (−1.57) (3.88) (7.16) (−1.25) (1.02) (8.91) (3.25) (0.17) (0.52) (−0.71)

AG3549 3.619*** 0.719 1.075** 0.524 2.168*** −2.431 0.515 4.200*** 3.329*** 20.842*** −1.275 −4.636***
(9.69) (1.28) (2.31) (0.99) (3.98) (−1.56) (0.79) (5.43) (3.85) (5.72) (−0.95) (−2.65)

AG5064 1.880*** 6.754*** 2.711*** −1.655** −1.765** 16.920*** 0.380 1.723** 2.247** −10.516 2.289 −0.661
(3.93) (5.75) (4.35) (−2.56) (−2.53) (5.33) (0.44) (2.24) (2.06) (−1.41) (1.26) (−0.39)

AG65UP 0.675** 9.892*** −2.502** 0.553 0.500 0.898 4.186*** 1.872 1.908*** 1.402 2.382 3.632
(2.46) (6.05) (−2.56) (0.49) (1.25) (0.20) (3.04) (1.33) (2.94) (0.13) (0.89) (1.14)

LPRE −0.003*** −0.000 −0.003 −0.001 0.001 0.004 0.002 −0.001
(−2.59) (−0.05) (−1.31) (−0.73) (0.55) (0.86) (0.54) (−0.42)

LDDY 0.160*** 0.559*** 0.169* 0.228*** 0.319*** 1.418** 0.315 0.682***
(3.69) (4.78) (1.90) (3.08) (3.09) (2.13) (1.22) (3.65)

TEMPA 0.004 −0.016*** −0.005 −0.003
(1.54) (−3.85) (−1.18) (−1.05)

CONTROL VARS YES YES YES YES YES YES YES YES YES YES YES YES
OBSERVATIONS 804 594 808 548 803 579 789 535 828 578 799 582
R-SQUARED 0.784 0.891 0.804 0.752 0.727 0.685 0.742 0.731 0.524 0.189 0.571 0.412
NUMBER OF ID 42 40 65 52 41 35 59 48 42 35 60 53
COUNTRY FE YES YES YES YES YES YES YES YES YES YES YES YES

Note: Robust t-statistics in parentheses, ***p < 0.01, **p < 0.05, *p < 0.1.
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such as walking and cycling. The impact of other climate factors is
consistent with the previous assumptions and results.

If we use the weighted electricity production ratio by fossil
source (with the IPCC carbon emission factors) as the indicator for
carbon technology level to check for robustness, the regression results
with the new technology indicators are shown in Supplementary
Table S4. We can see the inverted U-shape of age carbon
consumption pattern still exists, in total carbon emissions, the age-
carbon emission elasticity reaches its maximum at the ages between
35–49, and in heat and electricity carbon emissions, the pattern is the
same, the carbon emission elasticity of age above 65 is greater than
that cohort between 50 and 64, while this tail-up change does not
occur in transport carbon emissions, and as we mentioned in the
previous analysis, this tail-up patterning in heat production and
electricity carbon emissions is caused by the reduced
environmental resilience of the elderly population.

Whereas the effect of this technology indicator on transport
carbon emissions is not significant, as carbon technology for
electricity is indeed not directly correlated with carbon technology
for transport, in contrast to the total energy carbon intensity indicator
shown in the main regression, which may be more representative of
the level of carbon technology at the national economic level.

As for climate indicators, TA’s negative effects on total carbon
emission is in accordance with our assumption and previous
results as well as DD and PRE, and for DD in heat and electricity
carbon sector there may exist the multicollinearity problem that
leads to the insignificance, though sign of coefficients are fitted
with assumption. The negative effect of precipitation on carbon
emissions from traffic also confirms the assumption that
congestion leads to an increase in carbon emissions per unit time.

4.4.2 Sub-sample by Continents and Climate Types
In line with the directions for further improvement mentioned in
previous studies, it may be more reasonable to use climate type
groupings to proxy the effects of climate heterogeneity than to
examine patterns by grouping country samples by continent to
which they belong. Though considering that the carbon emissions
data used in the study were derived from EDGAR analysis of
satellite imagery and the spatial spillover effects of greenhouse
gases are normal, we have included regression results by regional
grouping in this part for comparison. The following tables are
arranged in the order of total carbon emissions, transport carbon
emissions, and heat and electricity carbon emissions, all
regressions are fixed effects based on the Hausman test.

Comparing the results in Supplementary Table S5 of the six
continents, we find that there are two different patterns of carbon
consumption by age. For the European and North American
countries, as the population becomes more environmentally
conscious with age, the average carbon consumption of the age
group is lower compared to that of younger people, which is
reflected in the decreasing carbon emission coefficient to the right
side of the inverted U-shaped curve. In contrast, Asian, African,
and South American countries still conform to the inverted
U-shaped curve, except for the age range of carbon emissions
peak. This confirms our results from the threshold effect test of the
EKC hypothesis, which suggests that Europe and the US have

already crossed the carbon peak and are moving toward a more
sustainable consumption pattern.

Most of the results for climate factors are consistent with the
hypothesis of the previous analysis, none of the PRE’s effects are
significant, for the mechanisms of precipitation effects on carbon
emissions are too complex. As we can see from Supplementary
Table S6 results that in North America, Oceania, and South
America, the effect of traffic congestion carbon emissions caused
by precipitation is greater than the carbon sink effect, so the total
carbon emissions effect of precipitation is still positive.

The effect of DD on carbon emissions is significantly positive
in Africa, Asia, Europe, and North America, with the largest effect
from Asian countries, which is also consistent with the results
shown in Supplementary Table S7. The reason is that Asian
countries are more severe in aging and elderly have a higher
demand for heat and electricity; and the impact of TA is
significantly negative in the Asian and African subgroups,
indicating these countries have undertaken the strongest
implementation of policies to reduce carbon emissions, and
thus far, working effectively in the global climate cooperation.

For transport carbon emissions, similar findings of differential
carbon emissions by age group hold, with the difference being the
age cohort at which peak consumption is reached, which reflects the
different household structures and travel habits caused by dominant
cultural differences across continents. The positive effects by
precipitation are significant in North America, Oceania, and
South America, and reflect the fact that traffic fluidity in these
regions is more likely to be affected by precipitation due to the
combination of road design, vehicle composition, and guidance
ability of transportation system factors. Moreover, for heat and
electricity carbon emissions, similar findings of differential carbon
emissions by age group hold, with the difference being the age cohort
at which peak consumption is reached.

To examine the impact of climate heterogeneity, in addition to
directly using climate indicators such as TA DD PRE in the
regression, it can also be verified by comparing the regression
results of Köppen group to explore whether there are differences in
the impact of carbon emission determinations between different
climate groups. As shown in Table 8, there are four climate groups
(polar climate is ignored due to few samples), here ARD stands for
arid, CONT stands for continental, TPR stands for temperate, and
TROP stands for tropical. Detailed descriptions of the various
climate types are in the Supplementary Appendix. It can be seen
that differences in coefficients between climate types do exist.

Taking the changes in total carbon emission as an example, in arid
countries age-carbon elasticity began to rise from 20, decreased in the
age of 35–49, and began to rise again in the age of 50–64. The carbon
emission of the population aged 35–64 in the continental countries is
lower than the average impact of population. Similar to the
conclusion of the SUR results in Section 4.2, the age for peak
carbon emission in tropical and temperate regions is close to
35 years old, and the lowest carbon emission is in age between 50
and 64, then increases after people turn 65 years old. Compared with
the change dynamic in heat and electricity sector, it can be judged that
this uplift tail is caused by the demand for temperature regulation,
which verifies our hypothesis H5 for degree-days.
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4.4.3 Results With the Mean Group Estimators
With Blackburne and Frank (2007) and Eberhardt (2012) as
reference, considered the cross-nation datasets used in this study
are large enough in time periods T and N that it is possible to
estimate each nation separately to avoid the heterogeneous slopes
in terms of big N (Pesaran and Smith, 1995; Shi, 2003; Pesaran et
al., 1997; Pesaran et al., 1999; Phillips and Moon, 2000) and time
series nonstationary problem raised by long T (Pesaran et al.,
1997; Pesaran et al., 1999).

One solution is to use the mean-group estimator (Pesaran and
Smith, 1995) or pooled mean-group estimator (Pesaran et al., 1997;
Pesaran et al., 1999), the basic idea of mean-group is deal with
everyone’s time series separately and to get the arithmetic average of
coefficients as the results. With the MG estimator, intercepts slope
and error variances are all allowed to differ. This study followed the
recent work by Pesaran et al. (1997), Pesaran et al. (1999) and used
the PMG estimator which allows intercepts, short-run slopes, and
error variances to differ while the long-run coefficients are the same
across groups, basically utilizing the advantage of both pooling and
averaging. The results are shown in Supplementary Table S8.

The inverted U-shaped pattern of age coefficient still holds for
total carbon emission, transport carbon emission, and heat and
electricity carbon emission. In addition, for climate factors, the
negative impact of temperature anomaly, the negative impact of
precipitation, and the positive impact of degree-days on total
carbon emission are consistent with our previous analysis and
results, and degree days also has great impact on heat and
electricity carbon emission, which should be paid attention to.

5 CONCLUSION AND POLICY
IMPLICATIONS

5.1 Conclusion
This study confirms the different effects of age group proportion
on carbon emission, that is, the inverted U-shaped relation
indicates young people consume and generate carbon along
with their age growth to the periods when they have family
and offspring, as children grow up, the emission reached the peak.

Then emission decreases as offspring become older enough to
leave home. The consumption goes down as people retire and
spouses pass away. The right side of the curve is not lower than
the left side as older people also generate more carbon due to the
narrowed preferable thermal range as their body gets weak, which
fits the existing findings with micro-level data on household
energy consumption pattern. So, the phenomenon
demonstrated that aggregate data also indicate the same trend
the household consumption pattern validated.

Specifically, the more people between 20 and 34 and above 50
were, the less carbon emission there will be, people in their prime
of life carry the peak influence effect for carbon emission. The
percentage of the population aged 35–49 has the most significant
positive influence on total carbon emissions, followed by age
group 20–34, and after the age of 50 the influence begins to turn
with a negative trend, the percentage of the population aged
50–64 has little influence on total carbon emissions (maybe the
effects of differences within the group cancel each other out). In
contrast, the percentage of older people (above 65 years old) has a
significantly negative influence on transport carbon emissions.
This result is acceptable considering that the population aged
20–50 has more abundant wealth, the largest consumption
expenditure in all categories, and the largest number of family
members and is consistent with the inverted U-shaped relation
findings mentioned in the theoretical parts.

For climate variables, the impact of degree-days on electricity
and total carbon emissions is significantly positive, and the
coefficient is relatively large. In the cross-examination with the
aging degree, we found that the coefficient is also positive,
suggesting that the aging population’s weaker environmental
tolerance makes them demand more by cooling and heating,
thus accelerating the growth of electricity carbon emissions.

5.2 Policy Implications
5.2.1 Global Cooperation Still Needed to Reduce
Carbon Emissions
The role of global climate cooperation is still important, countries
at different stages of development should plan a reasonable path
to reach the carbon peak and reduce carbon emissions according

TABLE 8 | Sample group divided by climate types with carbon emission

VARIABLES Total Transport HEAT AND ELEC

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

KÖPPEN ARD CONT TPR TROP ARD CONT TPR TROP ARD CONT TPR TROP
AG2034 1.233*** −0.348 1.444*** 3.729*** 2.967*** −0.939 3.386*** 3.567*** −0.005 −16.572*** −1.653*** 13.922***

(3.58) (−0.46) (5.56) (13.79) (6.30) (−0.37) (11.12) (6.75) (−0.01) (−5.21) (−2.77) (10.59)
AG3549 −0.755 −8.165*** 1.075*** 2.902*** 1.250* −4.624 5.229*** −1.179** −2.237** −23.370*** −1.803** 11.497***

(−1.44) (−8.05) (3.32) (11.48) (1.74) (−1.35) (13.79) (−2.36) (−2.25) (−5.37) (−2.44) (9.29)
AG5064 1.855* −3.954*** −1.760*** −2.444*** 2.820** 0.858 2.093*** −3.909*** −1.363 −15.151*** −7.107*** −0.207

(1.81) (−3.62) (−4.46) (−5.37) (2.02) (0.23) (4.53) (−4.40) (−0.70) (−3.26) (−7.83) (−0.09)
AG65UP −2.678 −1.467 −0.556 1.750*** −3.120 −4.391 1.726*** 0.161 −2.183 −12.094*** −0.120 5.185**

(−1.38) (−1.50) (−1.62) (4.08) (−1.18) (−1.33) (4.29) (0.19) (−0.60) (−2.93) (−0.15) (2.53)
CONTROL VARS. YES YES YES YES YES YES YES YES YES YES YES YES
OBSERVATIONS 590 223 1277 1455 590 223 1273 1395 589 217 1263 1380
R-SQUARED 0.831 0.835 0.750 0.908 0.770 0.698 0.797 0.789 0.691 0.398 0.535 0.490
NUMBER OF ID 21 10 42 55 21 10 41 42 21 10 41 42

t-statistics in parentheses, ***p < 0.01, **p < 0.05, *p < 0.1.
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to both international requirements and its capability, while
pursuing a relatively fair distribution of carbon emission
reduction responsibilities. The realities of developing countries
should be taken into account when negotiating. For those
countries that are far away from the carbon transition, the
priority should still be promoting the economic development,
then they were able to adopt energy-saving technologies and
grasp the overall pace of carbon reduction; while those developed
countries should act as the carbon reduction role models,
providing institutions, policies, development models, and
technologies for latecomers to learn from.

Developed countries should also continue to invest in low carbon
technology innovations, raise the overall international level of carbon
technology, lower the threshold for learning low carbon technology,
and pull up the level of other developing countries by technology
spillover; developing countries should strive to learn to catch up with
the level of advanced technology, and develop and implement low
carbon technology by upgrading routes according to the strengths
and weaknesses of their industries.

As we can see the transportation sector and heat and electric
sector are major carbon-emitting industries, there still is some room
to improve the efficiency, it is a good start to replace fuel vehicles
with more electric vehicles, another attempt should be using more
renewable sources in power generation, countries with different
energy resource endowment should start cooperating with
neighboring countries to control and replace the proportion of
thermal and coal power; and it should also be noted that the
stability of the power system cannot be ignore as the need to
regulate the ambient temperature increased dramatically under
extreme weather. As the integration of multiple energy sources
being the common trend, new scientific methods are also needed
to identify systematic solutions for organizing clusters of energy hubs
according to demands (Chen et al., 2018).

5.2.2 Insulation Projects and More Energy Efficient
Buildings
As we can see from the empirical results, among all influential
factors, HDD/CDD explains a lot for the carbon emission, which
is intuitive and fits our observations in life. So, the question
becomes “how to make our buildings green” in a sense that not
only requires the materials for a building process be
environmentally friendly, but also the whole life cycle emits
less dangerous chemicals.

The concept is similar to [energy efficient buildings] code, essential
is how to make our buildings more livable and maintain a particular
temperature moderation function under the natural solar energy
system so that the energy demand for the air conditioner will
naturally decrease, and thus our carbon emission. While being less
discussed by economic studies, the [insulation] or its relationship with
GHG emission has been thoroughly discussed in engineering fields.
As for the protocol of energy-efficient buildings, the Trias Energetica
concept is proposed with aspects: bioclimatic buildings - shape and
orientation of buildings, solar protection, and passive solar systems.
Among all the other factors, insulation of the envelope is undoubtfully
thefirst step to improve energy efficiency. Taking the renovationwork
of old buildings as an example, we could hardly adjust the building
orientation and structure once the construction finished; insulation

material upgrade seems to be the only amendment. Also, it has been
well discussed and proved that thermal insulation should be ranked at
the top of themost effective investments for energy saving. A relatively
small carbon footprint’ investment’ in thermal insulation materials
yields significant savings in the operational time of a building because
it saves energy in each heating season (Alam et al.,2011;Monahan and
Powell, 2011; Singh and Limbachiya, 2011; Mazor et al., 2011;
Jeanjean et al., 2013; Takano et al., 2014a; Stazi et al.,2015; Kunič,
2017).

In addition, different regions have different climates
types–long winter or long summer, residents have different
cooling and heating needs, so governments should take into
account their own climatic features in updating the building
standards, requiring the cradle-to-site assessment of the building
using the Life Cycle Assessment (LCA) framework as an option
(Takano et al., 2014b; Stazi et al., 2018; Strza\lkowski and
Garbalińska, 2018; Pajek et al., 2017; Rodrigues et al., 2019).
In addition to the improved design standards, retrofitting older
houses is equally essential for reducing emissions as Li and
Densley Tingley (2021) present, the cumulative carbon
reduction potential from 2021 to 2050 is predicted to be 268
MtCO2, with all Victorian houses in Britain retrofitted. It is
feasible for the government to initiate some infrastructure
projects or housing renovation schemes to provide some
financial subsidies for insulation upgrades, which is the cost-
effective option in terms of the green economics. With the global
outlook on carbon reduction, the revolution is coming for
building contractors, building material manufacturers, and
distributors. Coping with that, engineers need to change the
design philosophy toward energy-efficient, and material
suppliers should abandon polluting and inefficient materials
and turn to green materials; for residents, it is important to
understand the knowledge and choose ambient temperature
devices with higher carbon efficiency.
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