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In recent years, the collection and utilisation of crowdsourced data has gained attention in
atmospheric sciences and citizen weather stations (CWS), i.e., privately-owned weather
stations whose owners share their data publicly via the internet, have become increasingly
popular. This is particularly the case for cities, where traditional measurement networks are
sparse. Rigorous quality control (QC) of CWS data is essential prior to any application. In this
study, we present the QC package “CrowdQC+,” which identifies and removes faulty air-
temperature (ta) data from crowdsourced CWS data sets, i.e., data from several tens to
thousands of CWS. The package is a further development of the existing package
“CrowdQC.” While QC levels and functionalities of the predecessor are kept, CrowdQC+
extends it to increaseQCperformance, enhance applicability, and increase user-friendliness.
Firstly, two new QC levels are introduced. The first implements a spatial QC that mainly
addresses radiation errors, the second a temporal correction of the data regarding sensor-
response time. Secondly, new functionalities aim at making the package more flexible to
apply to data sets of different lengths and sizes, enabling also near-real time application.
Thirdly, additional helper functions increase user-friendliness of the package. As its
predecessor, CrowdQC+ does not require reference meteorological data. The
performance of the new package is tested with two 1-year data sets of CWS data from
hundreds of “Netatmo”CWS in the cities of Amsterdam,Netherlands, and Toulouse, France.
Quality-controlled data are compared with data from networks of professionally-operated
weather stations (PRWS). Results show that the newpackage effectively removes faulty data
from both data sets, leading to lower deviations between CWS and PRWS compared to its
predecessor. It is further shown that CrowdQC+ leads to robust results for CWS networks of
different sizes/densities. Further development of the package could include testing the
suitability of CrowdQC+ for other variables than ta, such as air pressure or specific humidity,
testing it on data sets from other background climates such as tropical or desert cities, and
to incorporate added filter functionalities for further improvement. Overall, CrowdQC+ could
lead the way to utilise CWS data in world-wide urban climate applications.
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INTRODUCTION

Cities modify atmospheric conditions and amongst these
alterations the urban heat island (UHI) phenomenon,
i.e., generally higher temperatures within the city compared to
its rural surroundings, is likely the best documented one (Arnfield
2003; Oke et al., 2017; Stewart 2019). Despite high variability in
atmospheric conditions within cities due to heterogeneity in
underlying surface cover, morphology, thermal properties, and
anthropogenic heat emissions (Oke et al., 2017), there is a dearth
of observations to monitor these. While a growing number of
cities is now equipped with dedicated urban climate observation
networks (see review by Muller et al., 2013), mostly run by
research institutions [e.g., Amsterdam, Netherlands (Ronda
et al., 2017), Berlin, Germany (Fenner et al., 2014; Langer
et al., 2021), Birmingham, United Kingdom (Chapman et al.,
2015; Warren et al., 2016), Novi Sad, Serbia (Šećerov et al., 2019),
Szeged, Hungary (Lelovics et al., 2014; Skarbit et al., 2017)], for
the broad majority of urban regions across the globe little to none
is known about their urban climate conditions through
observations.

In recent years, the collection and utilisation of vast amounts
of data via crowdsourcing, i.e., the collection of data from non-
traditional sources via the internet (Muller et al., 2015), has
gained much attention. Such non-traditional, opportunistic
sources of data are, e.g., smartphones (e.g., Overeem et al.,
2013b; Mass and Madaus 2014; Droste et al., 2017), smart
wearable devices (Nazarian et al., 2021), cars (e.g., Haberlandt
and Sester 2010; Bartos et al., 2019), commercial microwave
links (e.g., Messer et al., 2006; Overeem et al., 2013a; Chwala
and Kunstmann 2019), and privately-owned weather stations,
called citizen weather stations (CWS) in the following (e.g.,
Steeneveld et al., 2011; Wolters and Brandsma 2012; Bell et al.,
2013; Madaus et al., 2014; Chapman et al., 2017; de Vos et al.,
2017; Venter et al., 2021). Each type of these data sources alone
or multiple combined can be used in different meteorological
and climatological applications, such as weather forecast (e.g.,
Mass and Madaus, 2014; Nipen et al., 2020), operational
weather monitoring (e.g., de Vos et al., 2019), mesoscale
model evaluation (e.g., Hammerberg et al., 2018),
hydrometeorological analyses and modelling (e.g., Smiatek
et al., 2017; de Vos et al., 2020), high-resolution mapping of
air temperature (e.g., Venter et al., 2020; Vulova et al., 2020;
Zumwald et al., 2021), thermal-comfort assessment (Nazarian
et al., 2021), and urban climate investigations (e.g., Fenner
et al., 2017, 2019; Droste et al., 2020; Feichtinger et al., 2020).
The potential of CWS data is especially large for cities, where
population density and thus also CWS network density is high
and where traditional meteorological observations are sparse.

By investigating CWS data and crowdsourced data sets of air-
temperature (ta) measurements, Bell et al. (2015) and Meier
et al. (2017) identified different sources of uncertainties or
errors. These are issues related to metadata (e.g., incorrect,
incomplete), the device design (flaws of the station that lead
to inaccurate measurements, e.g., radiative errors, slow
response), installation (e.g., CWS set up inappropriately near
building walls), calibration (e.g., constant offsets or sensor drift

over time), and communication and software errors (lead to
missing data) (Bell et al., 2015; Meier et al., 2017). For other
variables than ta, other sources of uncertainty may also arise
[see, e.g., de Vos et al. (2019) for precipitation, and Droste et al.
(2020) for wind speed]. Design flaws leading to radiative errors
and to slow sensor-response times are common among many
different types of CWS (Bell 2015). This holds particularly true
for the Netatmo CWS (https://www.netatmo.com/en-us/
weather), a popular CWS especially in Europe. Due to its
compact built form and its aluminium shell with poor
ventilation and without a proper radiation screen it is
particularly affected by both types of errors (Meier et al.,
2017; Büchau 2018). Despite the abundance of CWS,
especially in urban areas, crowdsourced CWS data sets can
hence not be used in urban climate research without prior
rigorous quality control (QC).

To address sources of uncertainties associated with CWS
data and to remove erroneous data from a data set of
crowdsourced CWS observations, a number of studies has
developed QC procedures, either relying on reference data
from professionally-operated weather stations (PRWS), or
using statistical approaches that are independent of
additional meteorological observations. Several QC
procedures for CWS that make use of PRWS data have
been developed, all with different complexity and focusing
on different variables: for ta (e.g., Bell 2015; Meier et al., 2017;
Hammerberg et al., 2018; Cornes et al., 2020), for precipitation
(Bárdossy et al., 2021), for wind speed (Droste et al., 2020;
Chen et al., 2021), and for multiple variables (Clark et al., 2018;
Mandement and Caumont 2020). Recently, Båserud et al.
(2020) introduced an automatic QC package for ta and
precipitation, which aims at identifying possibly faulty
values from meteorological observations based on a series of
(spatial) tests. The applicability of that specific QC is
highlighted by the fact that it is implemented in the
operational weather forecast of the Norwegian
Meteorological Service (Båserud et al., 2020; Nipen et al.,
2020).

One core potential benefit of CWS data is their availability in
regions where traditional and high-quality meteorological
observations are sparse or even non-existing. Hence, a QC
that is independent of such additional data makes it
particularly useful for application in such areas and
transferable across regions. For precipitation from CWS, de
Vos et al. (2019) developed an automatic QC that can be
applied in (near-)real time for operational weather monitoring.
For ta, Chapman et al. (2017), e.g., used a relatively simple
statistical approach of mean and standard deviation to filter
potentially faulty measurements from CWS in London,
United Kingdom. Napoly et al. (2018) developed a more
comprehensive QC for ta, also working without reference
meteorological data and being available as a package in R (R
Core Team 2021) under the name of “CrowdQC” (Grassmann
et al., 2018). CrowdQC is a statistically-based QC with four main
and three optional QC levels that are applied sequentially,
removing erroneous data based on the assumption that the
whole crowd of CWS knows more than each individual station
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(“wisdom of the crowd”). Since its release, CrowdQC has
successfully been applied in a number of studies to quality-
control CWS ta data for further analyses (e.g., Fenner et al.,
2019; Feichtinger et al., 2020; Venter et al., 2020, 2021; Vulova
et al., 2020; Benjamin et al., 2021; Potgieter et al., 2021; Zumwald
et al., 2021). Its large-scale applicability was only recently
demonstrated by the study of Venter et al. (2021), using
CrowdQC to quality-control data from >50,000 CWS in 342
urban regions in Europe for a summer month.

While CrowdQC already provides good performance
regarding identifying and removing possibly faulty values in
the CWS data set (Napoly et al., 2018), Feichtinger et al.
(2020), e.g., identified that when applying CrowdQC for
Vienna, Austria, radiative errors remained in the filtered
data set. Similar issues were reported by Venter et al.
(2021). To address the remaining radiative errors,
Feichtinger et al. (2020) introduced additional filter levels,
adopting filter functions developed by Meier et al. (2017).
These additional filter functions rely on measurements of
global radiation and ta data from PRWS. Further,
Feichtinger et al. (2020) had to collect and quality-control a
whole month of CWS data, even though their investigation
period lasted only eleven days during that month. This was due
to the functionality of CrowdQC, which only worked on a fixed
monthly basis and not being flexible towards periods of other
lengths.

While radiative errors have been addressed by the various QC
procedures available for CWS data, none of them has tried to
address errors due to slow sensor response. Sensor-response times
are dependent on the type of sensor, its built form, radiation shield,
location, and weather conditions, which makes it non-trivial to
implement such a correction for crowdsourced CWS data. The
question is, whether it is nonetheless possible to reduce such errors
due to slow sensor response, in absence of additional meta data and
other meteorological observations. Since Netatmo CWS are all
built identically, it might be possible to reduce errors in a
crowdsourced data set of hundreds of these CWS in a
simplified manner by correcting the data with a uniform time
constant.

This study introduces and describes CrowdQC+ as a further
development of CrowdQC. CrowdQC+ builds on its
predecessor, keeping the QC concepts, software and QC
design, and existing QC levels. The core aim of CrowdQC+
is to retain the existing applicability of CrowdQC, i.e., providing
a QC for CWS data that is independent of reference
meteorological data, thus exploiting the “wisdom of the
crowd” and being applicable universally around the world.
The main idea of CrowdQC+ is that there is trustworthy
information in a large group of individual measurements,
which can be used to check individual values. With several
enhancements and added functionalities, the aim of CrowdQC+
is to increase applicability and performance of the QC,
effectively removing faulty data while retaining as much data
as possible. The core enhancement of CrowdQC+ is the
introduction of two new QC levels: The first implements a
spatial QC that mainly addresses radiative errors, the second a
temporal correction of the data regarding sensor-response time.

Besides, a number of modifications and bug fixes to the existing
package are implemented, as well as several helper functions
that target the user-friendliness of the package.

The following sections aim at providing on overview of the
open-source package CrowdQC+ with its additional
functionalities and extensions. Both CrowdQC and
CrowdQC+ are applied to two data sets in Amsterdam
(Netherlands) and Toulouse (France), where PRWS data
exist, used as benchmark. In the end, two applications
highlight the applicability of CWS data in urban climate
research.

DATA AND METHODS

Data
Cities and Investigation Periods
Two cities were selected for this study: Amsterdam (52.37°N,
4.89°E) and Toulouse (43.60°N, 1.44°E). Figure 1 displays both
regions and corresponding weather stations, Table 1 provides a
brief overview of the cities and the respective investigation
periods. Both investigation periods cover 1 year: 2019 and
2020 for Amsterdam and Toulouse, respectively. The cities
and investigation periods were selected due to the availability
of reference data from PRWS for comparison with CWS data,
relatively dense CWS networks, different background climates,
and different city settings.

Amsterdam lies in the north of the Netherlands and is
strongly influenced by maritime air from the North Sea
(distance to coast <50 km). In addition, the surroundings
contain large waterbodies (to the north-east of the city) and
canals are found throughout the city centre region. The region
of interest (ROI) for Amsterdam (cf. definition of ROI in Station
Selection section) has a flat topography, with an altitude
approximately at mean sea level. Central areas of the city are
mainly composed of LCZ 2 (compact midrise). Surrounding
these areas, LCZ 6 (open low-rise) and 8 (large low-rise)
dominate the built-up areas, natural surroundings of the city
are mainly composed of LCZ D (low plants) and G (water)
(Figure 1A).

Toulouse is an inland city in the south of France,
approximately 80 km north/north-east of the Pyrenees
mountain range. The river Garonne runs through the city.
Overall, topography is flat, with a mean ROI altitude of
approximately 150 m above mean sea level (amsl). Central
parts of Toulouse are composed of LCZ 2 and 5 (open
midrise), while largest built-up areas consist of LCZ 6, 8, and
9 (sparsely built). Natural landcover surrounding the city is
mainly LCZ D and A (dense trees) (Figure 1B).

Citizen Weather Stations and Crowdsourcing
Data from CWS were collected from the Netatmo network
(https://weathermap.netatmo.com/) via the company’s
Application Programming Interface API (https://dev.netatmo.
com/).

The Netatmo CWS is a smart device, sold by the French
company “Netatmo.” The station consists of an indoor and an
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outdoor module, each enclosed by a cylindrical shell made of
aluminium. Upon purchase, Netatmo CWS do not contain a
proper radiation shield such as lamella-type radiation screens,
making it prone to shortwave radiative errors if set up in
unshaded locations. Additional radiation screens can be fitted
to the sensor but are likely only found at a marginal percentage of
Netatmo CWS, since the company does not offer such a screen.
The outdoor module measures ta (specified accuracy ±0.3 K,
−40°C to 65°C) and relative humidity at 5-min resolution. Data is
automatically and wirelessly sent to the Netatmo server, from
which the owner can retrieve the data. If the owner consents to
share the data, the outdoor measurements are publicly shared and
can be retrieved via the API at no cost. Meier et al. (2017)
investigated the accuracy of the sensor, showing that the specified
accuracy is met for the tested range 0°C–30°C, with only a small
positive bias at 0°C. Fenner (2020) further showed that even after
several years in the field the sensors did not show a systematic
drift and still met the specified accuracy.

CWS ta data was crowdsourced at an hourly resolution using
the “getmeasure” API endpoint. Beforehand, station metadata
(station identifier, latitude, longitude, altitude) were collected and

updated regularly using the “getpublicdata” API endpoint,
retrieving new metadata and comparing it to previously-
obtained metadata. Each CWS received a unique internal
station ID. If a change in position for an existing CWS was
detected, a new internal station ID was assigned to this CWS, in
order to keep the time series consistent (similar to Meier et al.,
2017). Metadata for each CWS are limited to geographical
position and altitude, and no further information regarding,
e.g., a possible additional radiation shield or the specific setup
of the sensor are available from the Netatmo API. This is in
contrast to other CWS platforms such as Weather Underground
(https://www.wunderground.com/pws/overview) or the Weather
Observations Website (https://www.wow.metoffice.gov.uk/),
where such metadata can be provided by station owners and
which can then be obtained by API users. However, the Netatmo
network surpasses other CWS platforms regarding network
density, especially in Europe, and offers the advantage of a
consistent station design and sensor quality throughout the
whole network.

Netatmo CWS data are one-hourly mean values. Netatmo
time stamps obtained from the API were valid for the beginning

FIGURE 1 | Study regions (A) Amsterdam and (B) Toulouse with the location of weather stations and Local Climate Zones LCZ. Citizen weather stations (raw data
availability) are displayed as black circles, professionally-operated weather stations as black squares. A more detailed description of the LCZ scheme can be found in
Stewart & Oke (2012).

TABLE 1 | Overview of the professionally-operated weather stations in each city used in the investigations. KGC: Köppen-Geiger classification after Beck et al. (2018b). KNMI,
Koninklijk Nederlands Meteorologisch Instituut–Royal Netherlands Meteorological Institute; AAMS, Amsterdam Atmospheric Meteorological Supersite (Ronda et al., 2017).

City KGC Period Network/Provider Number of
stationsa

Temporal resolution
(minutes)

Sensor Accuracy
(K)

Amsterdam Cfb 01/01–31/
12/2019

KNMI 1 60 Pt500 (active ventilation) 0.1
AAMS 23 5 Decagon VP-3 (active ventilation with

global radiation >100 W m−2)
<0.5

Toulouse Cfa 01/01–31/
12/2020

Toulouse Métropole/
Météo France

38 15 Davis Vantage Pro II ISS (natural ventilation) 0.3

aIn analyses, after QC, aggregation, and clipped to each cities’ ROI.
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of each aggregation interval, which was modified (+3600 s/+1 h)
to represent the end of each interval. Then, CWS data were
prepared for the QC according to the requirements of the
CrowdQC and CrowdQC+ packages, resulting in a data table
(Dowle and Srinivasan 2021) with column names as required by
the packages [ta, time information, station ID, and corresponding
coordinates (latitude, longitude)].

Professionally-OperatedWeather Stations and Quality
Control
Data from PRWS were collected from different institutions for
both cities. The respective temporal availability, temporal
resolution, instrumentation, and number of stations are
displayed in Table 1. Data from these PRWS are especially
suitable for our purpose, as networks in both cities cover
extended areas with stations being located in a variety of local
settings, yet with a focus on city-centre regions where CWS data
are also especially dense (Figure 1). PRWS data for Amsterdam
from the Amsterdam Atmospheric Meteorological Supersite
(AAMS, Ronda et al., 2017) have previously been used in the
evaluation of and comparison with CWS data (e.g., de Vos et al.,
2020; Droste et al., 2020). PRWS data from the network in
Toulouse was already used in the study by Napoly et al.
(2018) to evaluate the performance of CrowdQC, yet with a
much lower number of sites than in this study. Sensors of both
PRWS networks are installed on lampposts or street signs at a
height of approximately 3–4 m above ground level.

Data from PRWS were quality-controlled to remove
unrealistic values. The QC steps and corresponding thresholds
were adapted from several sources (Shafer et al., 2000;
Zahumenský 2004; Fiebrich et al., 2010; Estévez et al., 2011;
Cerlini et al., 2020). The QC consisted of four individual tests, all
working on the individual station level:

1) Gross-error limit test: All values outside the range [−40°C,
60°C] were flagged as FALSE.

2) Spike-dip/step test (temporal consistency): If the difference
between a value and its previous value was above a threshold
value, this value was flagged as FALSE. The threshold was
adapted to the temporal resolution of the data (5-min
resolution: 6 K, 15-min resolution: 10 K, 1-hourly
resolution: 20 K).

3) Persistence test (temporal consistency): If a value persisted for
a certain period of time, these values were flagged as FALSE.
The threshold was adapted to the temporal resolution of the
data (5-min resolution: 2 h, 15-min resolution: 3 h, 1-hourly
resolution: 6 h).

4) Manual visual check: This last step was performed to identify
any additional flawed data based on a visual inspection of each
time series.

The QC tests were always applied at the highest available
temporal resolution at each station. If any of the tests failed
(FALSE flag), this value was set to missing value. After QC, all
data were aggregated to hourly mean values. A minimum of
>80% of valid data per hour had to be available for the
aggregation, otherwise this value was set to missing value.

Further, each month of a station was only kept if >80% of
hourly data were valid.

Local Climate Zone Maps
For each city, an LCZ map (Figure 1) was produced using the
LCZ Generator (Demuzere et al., 2021, https://lcz-generator.rub.
de/). This web application translates the default WUDAPT
protocol (Bechtel et al., 2015; Ching et al., 2018) into a cloud-
based web application, thereby using all recent advancements of
LCZ mapping as described in Bechtel et al. (2019) and Demuzere
et al. (2019a,b; 2020).

Methods
Station Selection
A ROI was set for each city. Each ROI extended from the
minimum to the maximum in common geographical coverage
among the PRWS and CWS networks (based on latitude and
longitudes of all stations), adding (subtracting) 0.05° to the
maximum (minimum) latitude and longitude. Only stations
within each ROI were selected for further analyses (Figure 1).
The ROI for Amsterdam (506.54 km2) is about half the size of
that for Toulouse (1,130.90 km2), while the maximum network
density in time for raw CWS data (calculated per hourly data
availability) is similar for both cities with 0.85 CWS/km2 and
0.86 CWS/km2 for Amsterdam and Toulouse, respectively.

Height Correction
For comparisons among stations after QC, ta data were corrected
for elevation differences among stations to a reference height per
city, using the environmental lapse rate of −0.0065 K m−1. The
reference height was set to the mean of the elevation of all PRWS
in each city, rounded to the nearest integer value (Amsterdam:
3 m amsl, Toulouse: 155 m amsl). The elevation of each station
was extracted from the nearest grid-point value from the hole-
filled Shuttle Radar TopographicMission SRTMdata (Jarvis et al.,
2008). Additionally, the sensor height was considered in the
height correction, using the available metadata for PRWS and
assuming a uniform sensor height for the CWS of 2 m above
ground level, as in Fenner et al. (2017).

Classification of Stations to Local Climate Zones
All CWS available in the ROI were considered in the application
of CrowdQC and CrowdQC+. For comparison between CWS
and PRWS, an LCZ was assigned to each station following
Fenner et al. (2017) and Varentsov et al. (2021), using the
geographical position of each station and the LCZ maps. First,
the nearest-pixel LCZ value was assigned to each station.
Second, for a buffer with a radius of 250 m around each
station, the surface-cover fraction of the modal LCZ was
calculated (using pixels of the LCZ map). Third, a weighted
surface-cover LCZ fraction in the same buffer was calculated
(Varentsov et al., 2021), applying “similarity weights”
(Figure 3B in Bechtel et al., 2020) between the modal LCZ
and all other grid points (LCZ pixels) within the buffer.

Only those stations (CWS and PRWS) were considered if 1)
the nearest-pixel LCZ was identical to the modal LCZ in the
buffer, 2) the modal LCZ covered a surface fraction within the
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buffer of >0.5, and 3) the weighed-LCZ fraction of the modal LCZ
was ≥0.75. This procedure was applied to select only those
stations that are located in homogeneous surroundings
regarding the LCZ scheme, to obtain a locally-representative
signal (Fenner et al., 2017).

Statistics
Four statistical metrics were calculated to compare CWS with
PRWS ta data.

Mean deviation MD:

MD � 1
N

∑N
i�1

tai, CWS − tai,PRWS

where tai,CWS and tai,PRWS are ta at CWS and PRWS, respectively,
at time i.

Mean absolute deviation MAD:

MAD � 1
N

∑N
i�1

∣∣∣∣tai, CWS − tai,PRWS

∣∣∣∣
Root-mean-square deviation RMSD:

RMSD �

���������������������
1
N

∑N
i�1
(tai, CWS − tai,PRWS)2

√√
Centred root-mean-square deviation cRMSD (Taylor 2001):

cRMSD �

�����������������������������������������
1
N

∑N
i�1

[(tai, CWS − tai,CWS) − (tai,PRWS − taPRWS)]2
√√

where taCWS and taPRWS are temporal mean ta across the whole
investigation period at CWS and PRWS, respectively.

For comparisons when these statistical metrics were calculated
per PRWS (e.g., Table 3), all CWS within a 2000 m radius around
each PRWS, belonging to the same LCZ as the PRWS (cf.
Classification of Stations to Local Climate Zones section),
where firstly identified (Amsterdam: 200 CWS from 531 in the
original data retained, Toulouse: 497 CWS from originally 1,354).
Secondly, the metrics were calculated for each of these CWS-
PRWS pairs and then averaged per PRWS. Lastly, the metrics
where averaged across all PRWS for city-scale results. This
approach was chosen in order to have an as direct as possible
comparison between the two types of networks, even though a
large percentage of CWS was omitted. If the statistical metrics
were calculated on the network basis, i.e., averaging ta per
network first and then calculating the metrics, overall lower
deviations were obtained (not shown).

DESCRIPTION OF CROWDQC+

CrowdQC+ is an improved version of the existing CrowdQC R
package (Grassmann et al., 2018; Napoly et al., 2018),
implementing several additional or modified functionalities. In

the following, all available functions are briefly described. Focus is
given to the additions and modifications of CrowdQC+. Table 2
provides an overview of the QC levels and additional functions
that are available.

As in CrowdQC, a data table with CWS data and meta data is
used as input in CrowdQC+. Each QC level adds an additional
column to the data table with boolean flag values TRUE (QC level
passed) and FALSE (QC level failed). Only values flagged TRUE
in the previous QC level are used in the subsequent level.

Main Quality-Control Levels
m1–Metadata Check
In QC level m1, function cqcp_m1 performs a metadata check
based on available latitude and longitude values and removes
stations with identical values (similar also to filter A0 in Meier
et al., 2017). This function is unchanged compared to CrowdQC
and primarily targets CWS that were faultily installed by the user
with automatic assignment of geographic coordinates based on
the IP address of the user’s internet connection. This error is a
common feature in data sets of Netatmo CWS.

m2–Distribution Check
In main QC level m2 the distribution of ta at each time step for
the whole ROI is checked and values that are statistical outliers at
the lower and upper ends of the distribution are removed.
Respective cut-off values can be specified by the user. This QC
level primarily targets radiative errors that lead to unrealistically
high ta values, and errors due to CWS installed indoors, showing,
e.g., lower ta during daytime than CWS installed outdoors. A
height correction, i.e., lapse-rate adjustment of ta, can be applied
(default: TRUE) to account for elevation differences in the data
set. Compared to CrowdQC, where only the environmental lapse
rate could be applied, cqcp_m2 now provides the option to the
user to specify any lapse rate in the height correction. Then, a
normal distribution is assumed in QC level m2 to calculate critical
values for flagging outliers at the lower and upper ends of the
distribution at each time step. Yet, if the available number of
stations is low (<100, value discussed in Effect of Different
Distribution Functions in m2 section), the assumption of
normal distribution may no longer hold. In such a case,
critical values can be more robustly calculated assuming a
Student-t distribution (Gosset, 1908). This functionality
(parameter “t_distribution”) was added in CrowdQC+.

m3–Data Validity
Main QC level m3 checks each station for the amount of values
that were flagged FALSE in QC level m2. If too many values
(default: 20%) are flagged FALSE in a certain period of time, it is
assumed that this station is to erroneous to be kept. In CrowdQC
this period of time was fixed to monthly episodes. In CrowdQC+,
cqcp_m3 offers the possibility to specify any period of time
(“duration”) for this check. The user can also choose to use
the complete data set (“complete � TRUE”).

m4–Temporal Correlation
In QC level m4, a temporal correlation between each station and
the median of all stations is carried out for a specified period of
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time. As in QC level m3, this was formerly set to correlations per
month. In cqcp_m4, analogously to cqcp_m3, any period of time
can be specified or the complete data set can be used (default:
month). If the complete data set or the specified duration is short
(sample size <100) considering the temporal resolution of the
data set, the correlation is still calculated, yet a warning is given.
This QC level primarily targets CWS that are set up indoors and
thus show a weak temporal correlation with the median of all
CWS, which are assumed to be installed outdoors.

m5–Spatial Buddy Check
This new main QC level m5 performs a spatial buddy check,
i.e., an outlier detection within the neighbourhood of a station.
Analogously to QC level m2, it is assumed that a (large) number
of individual observations contain robust information, justifying
that individual stations can be flagged as erroneous when
deviating too much from spatially adjacent stations. This QC
level aims at identifying faulty values that remained after all
previous QC steps, primarily single unrealistically high values due
to radiative errors. The QC level is comparable to the spatial
buddy check implemented in the TITAN package (Båserud et al.,
2020). There, mean and standard deviation are calculated across
the buddies to then identify statistical outliers. For CrowdQC+, it
was decided to apply the same robust statistics in the buddy check
as in QC level m2, i.e., median and Qn estimator (Rousseeuw and
Croux, 1993), the latter being an efficient alternative of the

median absolute deviation, instead of the arithmetic mean and
standard deviation. CWS data sets typically contain outliers that
could affect these statistics, while median and Qn/median
absolute deviation are less influenced by them.

In cqcp_m5, the spatial neighbours, i.e., buddies, of each
station are first identified within a given radius (default:
3000 m). If a sufficiently large number of neighbours with
valid data are available (default: five), median and Qn are
calculated per time step, excluding the station that is checked.
Then, comparable to the check in cqcp_m2 (see Napoly et al.,
2018 for the detailed description), a z-score Z is calculated as

Z �
∣∣∣∣∣∣∣∣tai,j −median(tai, buddies)

Qn(tai, buddies) ∣∣∣∣∣∣∣∣
where tai,j is the ta value at time i and station j, and tai,buddies are
the ta values of the buddies at time i. Based on the Student-t
distribution and a specified significance level a (default: 0.1),
critical cut-off values (two-tailed approach, default: a � 0.1, which
translates to probabilities of 0.05 and 0.95 at the lower and upper
tail of the distribution, respectively) are calculated per station and
time step. All values for which Z < cut-off and for which the
number of buddies is sufficiently high are flagged as TRUE,
otherwise FALSE. Additionally, a second column “isolated” is
added to the data table, indicating whether (flag “isolated” �
FALSE) or not (flag “isolated” � TRUE) enough buddies are
present for each station.

TABLE 2 |Overview of the quality control QC levels and additional functions available in CrowdQC+. Italic lines mark functions that were modified regarding their functionality
compared to the original CrowdQC, bold lines mark functions that were added in CrowdQC+.

Level Details Modification to CrowdQC Comment Default values

Main QC levels

m1 Lat/Lon check cutOff � 1
m2 Distribution check Student-t distribution

possible, other lapse rate
possible

low � 0.01, high � 0.95, heightCorrection � T,
lapse_rate � 0.0065, t_distribution � F

m3 Validity Other time span possible cutOff � 0.2, monthly basis
m4 Temporal correlation Other time span possible cutOff � 0.9, monthly basis
m5 Spatial buddy

check
New With(-out) height correction, with(-out)

elevation check, removing/keeping isolated
stations

radius = 3000, n_buddies = 5, alpha = 0.1,
heightCorrection = T, lapse_rate = 0.0065,
check_elevation = T, max_elev_diff = 100,
keep_isolated = FALSE

Optional QC levels

o1 Interpolation maxLength � 1
o2 Daily validity cutOff � 0.8
o3 Duration validity Other time span possible cutOff � 0.8, monthly basis
o4 Sensor lag New Known sensor lag no default

Additional functions

Input check New Tests for column names, temporal
coverage, data regularity, geographical
extent, number of stations

Padding New Make regular and complete for each station
Add digital
elevation model
height

New Automatic download of elevation data
possible

Output statistics New Data availability after each QC level
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In order to avoid the influence of vertical temperature
gradients in this check, the data can be corrected for height
differences using a lapse-rate adjustment, as in cqcp_m2 (default:
TRUE). This is done prior to the statistical calculations detailed
above. Additionally, and independently from the height
correction, the user can specify that only stations within the
radius are considered, if their elevation does do differ too much
from the elevation of the station that is checked (default: 100 m
elevation difference).

Since at least the specified number of buddies/valid
observations has to be present within the given radius, QC
level m5 also flags isolated stations (flag “m5” � FALSE).
While this will lead to the exclusion of stations and negatively
affect spatial coverage, it provides greater trust in the overall
quality-controlled data set, since data from individual CWS are
doubtful in absence of comprehensive metadata (Fenner et al.,
2017; Napoly et al., 2018). Nonetheless, for certain applications or
especially where network density is low, it might be desirable to
keep these isolated stations, which an optional parameter allows
(“keep_isolated � TRUE”).

By setting the minimum number of buddies to a low number
or specifying a large radius, the user has the possibility to adjust
this to the region under investigation, depending on, e.g., network
density.

Optional Quality-Control Levels
After the main QC levels, four optional levels are included in
CrowdQC+. Altogether, they aim at further improving data
quality, yet are not considered essential. The benefits of these
levels depend on the specific application.

o1–Temporal Interpolation
In optional QC level o1, function cqcp_o1 carries out a temporal
linear interpolation for missing values between the two closest
valid values in a time series. This function is unchanged
compared to CrowdQC and aims at increasing data availability
by having as continuous time series as possible.

o2–Daily Validity
For robust calculation of daily values, function cqcp_o2 checks if a
predefined fraction (default: 0.8) of valid values is available at
each station on each calendar day. Again, this QC level is
unchanged compared to CrowdQC.

o3–Validity in Time Period
Optional QC level o3 was modified compared to CrowdQC to
handle other time spans than full months, to be consistent with
the main QC levels m3 and m4. Function cqcp_o3 checks if a
predefined fraction (default: 0.8) of valid values is available at
each station during the specified duration.

o4–Correction for Time Constant
The optional QC level o4 was introduced in CrowdQC+ in order
to correct values for a known time constant τ of the sensor at each
station. τ is typically defined as the time that a sensor needs to
respond to approximately 63% of a step change in conditions
(here: ta). Typical high-quality sensors deployed in

meteorological measurement networks have τ values of a few
seconds. However, CWS might suffer from design flaws, leading
to a slow response time of the sensor (Bell et al., 2015). Netatmo
sensors, e.g., have a slow thermal response due to their compact
form and cylindrical enclosure, as noted by previous works
(Meier et al., 2017; Büchau 2018).

In function cqcp_o4, a time-constant corrected air temperature
ta_corr is calculated (similar to Miloshevich et al., 2004 for
humidity):

ta corri �
tai − (tai−1pe−(ti−ti−1)/τ)

1 − e−(ti−ti−1)/τ

where tai is the ta value at time ti, tai-1 the ta value at the previous
time step ti-1, e Euler’s number, and τ the time constant.

In CrowdQC+ it is assumed that τ is the same for all stations
and that it is constant, regardless of weather conditions. In the
correction itself, it is assumed that a step change in air
temperature happens from one time step to the next. The
correction is applied to the original values (“ta”) and not to
the interpolated values obtained in QC level o1 (“ta_int”). Hence,
the correction can be applied after any QC level. Diverging
from all other QC levels, no additional flag variable with
TRUE/FALSE values is added to the data table during
cqcp_o4. The user can thus select the corrected values at any
QC level. In addition, cqcp_o4 is not carried out with any default
values, as the time constant is specific to each possible sensor type.
CrowdQC+ is, however, not limited or specific to any type of
station or sensor.

Additional Functions
On top of the actual QC functions, four additional functions are
implemented in CrowdQC+ to provide the user with support in
preparing the input data for the QC and to obtain quick statistics
on data availability at each QC level. These functions do not carry
out actual QC of the data.

Input Check
The cqcp_check_input function checks the input data table for
compliance with CrowdQC+ and can be used before starting the
actual QC functions. Five individual tests are performed to check
that 1) all relevant columns (“p_id”, “time”, “ta”, “lon”, “lat”) are
present, 2) the temporal coverage of all stations is identical, 3)
data for all stations are at the same temporal resolution and
regular, 4) the geographical extent is not too large
(<100 km×100 km), and 5) the absolute number of available
stations is sufficiently high. The function prints information
regarding these tests in the console or to an output file, or
outputs the results of the tests as a list. The latter output is
especially useful in automated workflows. The function further
provides hints to the user to resolve errors in case some of the
tests fail.

Padding
The padding function cqcp_padding makes sure that all stations
cover the same period of time with the same temporal resolution
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and is helpful in the preparation of the data for CrowdQC+. For a
specified temporal resolution, data at each station is set to the
nearest, next upper, or previous lower time step. If multiple values
per time step are present, the mean is calculated across these. This
function is especially useful if, e.g., the original station data have
gaps, do not cover the same period of time, or have time stamps
that are not regular.

Adding Digital Elevation Model Height
If the user does not have elevation information at each station
available but wants to apply the height correction of the
measurement data in main QC levels m2 and m5,
cqcp_add_dem_height adds data from a digital elevation
model (DEM) to each station. Any DEM data can be
provided by the user via a RasterLayer object or a path to a
GeoTIFF. If none of the two is given, SRTM data is downloaded
automatically via the getData function from the raster package
(Hijmans 2021). The downloaded data can be cropped to the
extent of the CWS data and stored as a GeoTIFF. Note that
SRTM data is only available between 60°N and 56°S. In case the
region under investigation is located outside that range the
user should make use of other available DEM data sets, e.g.,
the “Multi-Error-Removed Improved-Terrain DEM (MERIT
DEM)” (Yamazaki et al., 2017).

Output Statistics
After CrowdQC+ was carried out, cqcp_output_statistics provides
basic statistics, i.e., the absolute number of valid observations, the
percentage of valid observations compared to the raw data, and
the number of unique stations with at least one valid observation
after each QC level. The information is printed to the console or
to an output file. This function is for illustrative purposes to the
user to see, e.g., what effect the choice of a different threshold in
one of the QC functions has on data availability.

RESULTS AND ANALYSES OF NEW
FUNCTIONALITIES

In this section, mainly the results for Amsterdam are shown as
figures and tables. Similar figures and tables for Toulouse can be
found in Supplementary Material A and will be referred to in the
following sub-sections.

Overall Performance and Comparison With
CrowdQC
Comparing overall deviations between CWS and PRWS in
Amsterdam, both QC packages show a strong improvement in
all statistical metrics along the annual cycle compared to the raw

FIGURE 2 | Deviations in hourly air temperature (ta) between CWS and PRWS in Amsterdam during 2019 per month and for the whole year. Displayed are values
for the raw data set, after applying CrowdQC and CrowdQC+ in their respective default settings (cf. Table 2). Shown are values at QC level o3. Deviations were
calculated between each PRWS and each CWS within a radius of 2000 m around the respective PRWS, located in the same LCZ type as the PRWS. Deviations were
then averaged per month and year across all CWS and PRWS. Error bars denote the standard deviation across all CWS and PRWS per month and year. MD, mean
deviation; MAD, mean absolute deviation; RMSD, root-mean-square deviation; cRMSD, centred RMSD.
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data, except for MD (Figure 2). MD is higher after applying the
QC packages compared to the raw data. This is due to the fact that
a large number of CWS in Amsterdam show values just above 0°C
and around −20°C (Figure 3A) at the raw data level. These
stations are likely set up indoors in refrigerated warehouses or
fridges, as they also display no distinct annual cycle but display
relatively constant values. Similar features were noticed by Meier
et al. (2017) for likely indoor stations in Berlin, which showed
relatively constant values around 20°C. After applying the QC
functions, both data sets are cleaned of these outliers bymisplaced
CWS (Figure 3B, Supplementary Figure S2).

Overall, positive deviations are visible in CWS ta compared to
PRWS ta (Figure 2, Supplementary Figure S1), as noted in
previous studies (e.g., Chapman et al., 2017; Meier et al., 2017;
Napoly et al., 2018; Venter et al., 2021). Deviations are reduced
after application of CrowdQC and CrowdQC+, with stronger
reduction for Amsterdam than for Toulouse. Statistical metrics
further show that while CrowdQC already provides a strong
improvement compared to the raw data, CrowdQC+ provides
further improvement with overall lower deviations than
CrowdQC (Figure 2, Supplementary Figure S1).
Improvements are stronger during the warmer months of the
year for all metrics in Amsterdam andmore variable for Toulouse
(Supplementary Figure S1). Comparing both cities, Amsterdam
shows generally lower deviations than Toulouse and displays a
more distinct annual cycle with higher deviations during summer
compared to winter months (Figure 2).

The overall better performance of CrowdQC+ is, however,
accompanied with lower data availability after QC (Table 3). QC
level m1 already reduced data availability by 30% and removed 163
CWS for Amsterdam. The high percentage of invalid values at QC
levelm1 is specific to theAmsterdamCWSdata set andmuch higher
than for Toulouse (Table 3) and what was found for Berlin,
Germany (Meier et al., 2017; Napoly et al., 2018). In fact, most
of these removed CWS in Amsterdam with invalid latitude and
longitude values as defined by QC level m1 show no distinct annual
cycle in ta (not shown) and are thus likely set up indoors. QC filters
m2 and m5 (CrowdQC+) further reduced data availability by
approximately 10% in both cities. Due to the reduction in data
availability in QC level m5, roughly 20% of the raw CWS data at
nearly 200 CWS are retained after QC level o3 with CrowdQC+ in
Amsterdam, compared to 41% from 281 CWS with CrowdQC
(Table 3). For Toulouse, the difference in data availability after QC
level o3 between CrowdQC and CrowdQC+ is similar, with
approximately 55% and nearly 30%, respectively.

Figure 4 shows mean ta differences between CWS and PRWS
along annual and diurnal cycles in 2019 with the stations grouped
by LCZ type. Across all LCZ a distinctive pattern is visible, which
is related to the diurnal cycles of ta and incoming shortwave
radiation. Higher differences are generally found after midday
during the months April to September with highest differences in
the late afternoon in summer, while for other times differences
are generally lower and consistent. The CWS data set is thus likely
still influenced by radiative errors induced by the design of the

FIGURE 3 | Hourly air temperature (ta) in Amsterdam during 2019. Each grey line corresponds to data from a single CWS, the red line displays the spatial median
across all CWS, the blue line the median across all PRWS (barely visible as similar to red line). Sub-figure (A) shows raw CWS data, sub-figure (B) CWS data at QC level
m5 of CrowdQC+ with default settings (cf. Table 2).
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Netatmo CWS without a proper radiation shield and the setup of
CWS in unshaded locations, leading to these higher differences.
This might impair analyses of daytime ta conditions in cities
when absolute values are of relevance, yet might be of lower
relevance when calculating spatial differences among (groups of)
CWS, as in, e.g., UHI analyses. Night-time differences are lower
and consistent both in time (along annual cycle) and space
(across LCZ types), underlining the high applicability of
Netatmo CWS in urban climate investigations that focus on
night-time. Other types of CWS might be less influenced by

radiative errors during daytime due to a better design with
lamella-type radiation shields and would thus allow for more
reliable daytime analyses. Yet, they might show other deficiencies
such as a systematic bias or a sensor drift over time, which have
not been observed for Netatmo CWS (Meier et al., 2017; Fenner
2020).

LCZ D displays a different pattern with higher deviations
during night-time and late afternoon and negative differences
during winter, spring, and autumn months during daytime
(Figure 4). This pattern resembles typical urban heat island

TABLE 3 | Percentage of CWS hourly data availability and number of available CWS (given in brackets) at each QC level in Amsterdam (2019) and Toulouse (2020) after
application of CrowdQC and CrowdQC+ in their respective default settings (cf. Table 2). Values for CrowdQC+ for QC levels m5 to o3 are given with isolated stations in
QC level m5 removed (first values per field) and retained (second values per field, italic).

QC level Amsterdam Toulouse

CrowdQC CrowdQC+ CrowdQC CrowdQC+

raw 100.0 [531] 100.0 [1354]
m1 69.4 [368] 92.0 [1214]
m2 59.9 [362] 82.5 [1214]
m3 59.4 [354] 82.2 [1185]
m4 58.2 [332] 81.4 [1170]
m5 47.1 [324]/48.9 [332] 69.2 [1146]/ 70.6 [1163]
o1 58.5 [332] 47.8 [324]/49.6 [332] 81.8 [1170] 70.2 [1146]/ 71.5 [1163]
o2 53.0 [331] 36.9 [323]/38.5 [331] 72.4 [1165] 52.6 [1123]/ 53.8 [1140]
o3 41.0 [281] 20.7 [197]/22.1 [205] 54.9 [971] 29.5 [700]/ 30.5 [715]

FIGURE 4 |Hourly air-temperature difference (Δta) between mean CWS andmean PRWS ta in Amsterdam per Local Climate Zone LCZ during 2019. CWS data at
QC level m5 after CrowdQC+ with default settings (cf. Table 2). CWS and PRWS data were averaged across all stations in the respective LCZ. Missing episodes are
displayed in grey.
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characteristics along annual and diurnal cycles (compare, e.g.,
Fenner et al., 2014; Skarbit et al., 2017). This could indicate that
the CWS in LCZ D in Amsterdam contain an “urban” signal in
their ta data (due to a set up close to buildings, compared to the
PRWS in LCZD, Schiphol airport. Note though that this PRWS is
likely also not completely uninfluenced by man-made surfaces,
considering its setup on the airport ground between runways.
Another possible reason for this pattern could be related to
advective effects. While Schiphol airport is located upwind of
Amsterdam (most south-western PRWS in Figure 1A, main wind
direction along the annual cycle south-west, not shown), most
CWS located in LCZ D are located downwind of built-up areas.
Advection of warm air from cities to the surroundings has been
reported by observational (e.g., Brandsma et al., 2003; Bassett
et al., 2016, 2017) and modelling studies (e.g., Zhang et al., 2012;
Heaviside et al., 2015; Bassett et al., 2019).

For Toulouse, mean ta differences between CWS and PRWS
along annual and diurnal cycles in 2020 per LCZ type show a
different pattern with higher positive deviations during night-
time and generally near-zero to negative deviations during
daytime (Supplementary Figure S3). To understand these
differences, it needs noting that there is a systematic difference
in the setup of stations between the CWS and the PRWS network.
While CWS are likely located in all kinds of settings, ranging from
setups close to building walls and within street canyons to more
open settings in residential gardens, the majority of PRWS is
located in open areas with little shade. This difference in the setup
leads to two possible effects, likely both acting at the same time,
which could explain the pattern found. Firstly, ta conditions are
different at the sites. CWS located in street canyons and shaded
environments experience less radiative heating of the air during
daytime than open areas where the PRWS are set up and
thus measure lower ta. During night-time, due to reduced sky
view factors (SVF) at CWS sites compared to the more open
PRWS sites, cooling of the air is hindered, leading to higher ta.
This is similar to the first hypothesis brought forward above to
explain the deviation for LCZ D in Amsterdam (Figure 4).
Secondly, radiative errors contribute to the deviations. Even
though the PRWS are of much higher quality than the CWS,
especially regarding the station design (Netatmo CWS with
aluminium shell around the sensor with little ventilation,
Davis Vantage Pro with lamella-type radiation shield, naturally
ventilated), the type of PRWS used is not free of radiative errors
(Cornes et al., 2020). Comparing the radiation biases of two Davis
Vantage Pro with natural ventilation, one in a rural setting with
relatively unobstructed airflow and one in a more enclosed
residential setting, Cornes et al. (2020) found that
measurements at the site in the residential setting experienced
radiative errors of >1 K duringmidday and the warmer months of
the year, compared to ≤0.6 K at the rural site. It was suggested
that this difference is due to increased airflow at the rural site that
aided the ventilation of the radiation screen, reducing radiative
errors.

Based on these results and since the majority of PRWS in
Toulouse are located in urban, yet open settings with little
shading, radiative errors can be expected. On the other hand,
radiative errors in the CWS data set should largely be reduced by

the QC. Further, hypothesising that the majority of CWS is
located in shaded environments, the network of quality-
controlled CWS contains less radiative errors during daytime
which could then, in the end, lead to the deviations that were
found (Supplementary Figure S3). Positive deviations between
CWS and PRWS ta for Toulouse during night-time might also be
linked to differences in setup. At locations close to building walls,
where CWS are typically installed, ta might be higher during
night-time than further away from the wall, yet predominantly
for walls that were exposed to solar radiation during the day
(Nakamura and Oke 1988). The hypotheses brought forward
require further systematic investigations, yet go beyond the scope
of this study.

Note that all displayed deviations between CWS and PRWS
are not all errors of the CWS data set with respect to the PRWS
data. Firstly, variation in ta can be expected in the 2000 m radius
around each PRWS (used in the calculations of the deviations),
even if located in the same LCZ type as the PRWS. Secondly,
deviations in ta are likely due to differences in the setup of
stations. CWS are typically installed closer to buildings than
PRWS, leading to differences in exposure andmicro-scale settings
at each site, which affect ta (Chapman et al., 2017; Fenner et al.,
2017).

Effect of Different Durations
In QC levels m3,m4, and o3 different durations can be defined in the
filter applications. To investigate their influence on overall ta
deviations, six experiments were run, applying durations from
3 days to the complete data set (1 year) (Table 4, Supplementary
Table S1). Overall, differences in deviations between the experiments
are small, indicating a robust behaviour of the QC regarding this
parameter. When looking at the best results per metric and variable
(bold numbers in Table 4 and Supplementary Table S1), choosing
the complete data set shows generally best performance. However,
using the complete data set atQC level o3 for a 1-year data set reduces
final data availability to about 13% of hourly data (compared to the
raw data) from 58 CWS in Amsterdam and to nearly 15% from 157
CWS in Toulouse. This is mainly due to QC level o3, checking for
data availability per station for the specified duration and flagging a
complete station with FALSE in case of not enough valid values
(default: fraction of 0.8, i.e., 80% data availability). With marginally
higher deviations, but retaining a much higher fraction of data after
QC, the use of a shorter duration could be advisable (Table 4,
Supplementary Table S1). Based on the obtained results, we
recommend to use a duration between 7 days and 1month.
Shorter durations, one the one hand, lead to less robust
correlations in QC level m4 with hourly data (sample size at best
72), leading to overall higher deviations. Longer deviations, on the
other hand, lead to much more data being excluded, with only a
marginal benefit in terms of deviations to PRWS data.

Setting parameter “complete � TRUE” is especially useful in
cases when only a shorter period of time is under investigation.
Further, it could be useful in near-real time applications, when
data shall be quality-controlled and used in operational weather
monitoring. In such a case, the user could provide data for the
past, e.g., 14 days to the QC and use this complete data set for
the QC.
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Effect of Different Distribution Functions
in m2
To test the effect of using the normal distribution or the Student-t
distribution when calculating the critical cut-off values in QC
level m2, the following experiment was run. After applying QC
level m1 and removing all CWS that only provide invalid data
after this QC level for each city’s investigation period, a bootstrap
approach was chosen to randomly select a subsample of a
specified number of CWS from each city’s data set. Then, QC
level m2 was carried out, once assuming the normal distribution
(parameter “t_distribution � FALSE,” default in cqcp_m2) and

once assuming the Student-t distribution (parameter
“t_distribution � TRUE”). Afterwards, deviations between
CWS and PRWS at QC level m2 were calculated for both data
sets for the whole investigation period as described at the end of
Statistics section. Finally, deviations were averaged across the
number of bootstraps (n � 100). Seven subsample sizes were
chosen in the experiment: 10, 25, 50, 100, 150, 200, and 250.

Figure 5 displays the results of the experiment for both cities.
Deviations are highest when ten CWS were randomly selected in
the bootstrap runs in both cities. With a higher number of CWS,
deviations are lower and relatively similar when comparing the

TABLE 4 |Mean annual deviations in hourly air temperature (ta) and in aggregated daily values of mean (ta_mean), maximum (ta_max), and minimum (ta_min) between CWS
and PRWS in Amsterdam, and remaining data availability during 2019 after applying CrowdQC+ in its default setting (cf. Table 2). Displayed are values at QC level o3with
different “durations” (in QC levels m3, m4, o3). Bold values mark best results per metric and variable, italic values second best. Deviations were calculated between each
PRWS and each CWS within a radius of 2000 m around the respective PRWS, located in the same LCZ type as the PRWS. Deviations were then averaged across all CWS
and PRWS. MD, mean deviation; MAD, mean absolute deviation; RMSD, root-mean-square deviation; cRMSD, centred RMSD.

Metric Variable 3 days 7 days 14 days 21 days 1 month Complete

MD (K) ta 0.32 0.27 0.28 0.29 0.28 0.32
ta_mean 0.30 0.25 0.27 0.27 0.26 0.31
ta_max 0.50 0.45 0.46 0.48 0.44 0.48
ta_min 0.33 0.30 0.35 0.33 0.32 0.30

MAD (K) ta 0.76 0.70 0.69 0.70 0.70 0.64
ta_mean 0.61 0.56 0.55 0.55 0.55 0.52
ta_max 0.93 0.88 0.88 0.90 0.87 0.82
ta_min 0.77 0.69 0.70 0.68 0.69 0.58

RMSD (K) ta 1.01 0.92 0.91 0.92 0.92 0.87
ta_mean 0.75 0.68 0.68 0.67 0.67 0.65
ta_max 1.20 1.14 1.14 1.15 1.13 1.11
ta_min 0.93 0.83 0.84 0.83 0.83 0.72

cRMDS (K) ta 0.83 0.77 0.77 0.77 0.77 0.75
ta_mean 0.52 0.49 0.48 0.47 0.48 0.50
ta_max 0.95 0.91 0.90 0.89 0.90 0.93
ta_min 0.58 0.54 0.53 0.54 0.55 0.51

Data availability % of raw data 26.7 24.9 23.0 22.0 20.7 13.1
No. of CWS 303 268 244 227 197 58

FIGURE 5 |Mean annual deviations in hourly air temperature (ta) between CWS and PRWS in (A) Amsterdam during 2019 and (B) Toulouse during 2020 after QC
level m2 for subsamples of the CWS data set. Subsamples were randomly selected after QC level m1 in a bootstrap experiment (n � 100). Deviations were calculated per
bootstrap run between each PRWS and each CWSwithin a radius of 2000 m around the respective PRWS, located in the same LCZ type as the PRWS. Deviations were
then averaged across all CWS and PRWS, the whole investigation period of each city (cf. Table 1) and all bootstraps. MD, mean deviation; MAD, mean absolute
deviation; RMSD, root-mean-square deviation; cRMSD, centred RMSD.
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sample sizes. For both distribution functions deviations are
overall similar when ≥100 CWS were selected. Generally,
deviations are lower for the assumption of a normal
distribution. Differences in deviations between the two
distributions are small but more distinct for a low number of
CWS (≤50 CWS, Figure 5).

These results firstly show the robustness of QC level m2 to the
underlying assumption of distribution for a range of CWS sample
sizes. Secondly, it shows that even for CWS networks with a
relatively low number of stations per city such as 50–100 CWS,
CrowdQC+ yields comparable deviations in the quality-
controlled data set compared to networks with more CWS.
This highlights the applicability of CrowdQC+ for cities with
different CWS network sizes/densities. The fact that assuming a
Student-t distribution for the calculation of cut-off values in QC
level m2 leads to higher deviations, particularly for low number of
CWS, can be explained by the fact that the Student-t distribution
assumes heavier tails than the normal distribution. This leads to
lower (higher) critical Z-scores for the lower (upper) tail of the
distribution, which in turn leads to less values being excluded in
QC level m2 when assuming a Student-t distribution.

Based on the results, we suggest to apply the Student-t
distribution in QC level m2 if data sets of <100 stations are
checked. Considering the statistical hypothesis behind this QC
level, the use of the Student-t distribution leads to statistically
more robust cut-off values. As a side effect, it will lead to less
values being excluded from the already small data set.

Buddy Check
To illustrate the effect of the buddy check in QC level m5,
Figure 6 and Supplementary Figure S4 exemplarily display
the ta distribution in Amsterdam and Toulouse, respectively,
for a day- and night-time situation during a hot summer day.
Both figures show that those values that deviate too much from

the stations in the immediate surroundings are identified and
removed in QC level m5. Additionally, isolated sites are identified
and removed, as their quality cannot be assessed due to the lack of
available neighbours. In regions where the CWS data set is
heterogeneous, the filter retains all values. Here, the ta
distribution within the radius is wide and none of the values
can be considered a statistical outlier.

In order to highlight the effect of QC level m5 for longer
periods of time, Figures 7, 8 display data for Amsterdam for the
whole year 2019 (cf. Supplementary Figures S5, S6 for
Toulouse). Figure 7 displays scatter plots between PRWS and
CWS ta at levels m4 and m5. At the individual PRWS level
(Figures 7A,B), as well as considering the whole network of
stations (Figures 7C,D), deviations between PRWS and CWS are
reduced in all four statistical metrics after QC level m5.
Deviations after applying QC level m5 are especially lower for
daily maximum ta (Figure 7), compared to daily mean, daily
minimum, and hourly ta (all not shown). Hence, higher ta in
CWS data during daytime, likely resulting from radiative errors,
are now better filtered with the new spatial buddy check.
Summarizing, using information from neighbouring CWS to
filter likely faulty values in the whole data set is beneficial, also
highlighted by others (e.g., de Vos et al., 2019; Båserud et al., 2020;
Nipen et al., 2020; Chen et al., 2021).

Figure 8 further highlights that the improvement in the
statistical metrics is consistently found along the annual cycle,
with strongest improvement in the warmer months of the year
(April-August), when deviations are higher compared to the
rest of the months. Overall, MD is approximately 1 K during
summer and <0.3 K during winter at QC levels m4 and m5,
being within the specified accuracy of the Netatmo sensor
(Meier et al., 2017). For Toulouse, MD is relatively constant
throughout the year and always <1 K (Supplementary Figure
S5). MAD and RMSD are higher, yet ≤1.5 K after QC level m5

FIGURE 6 | Air-temperature (ta) distribution in Amsterdam for (A) June 29, 2019 13:00 UTC and (B) June 30, 2019 01:00 UTC as measured by CWS (circles) and
PRWS (squares). CWS data are displayed at QC level m4, crosses mark values that were removed in QC level m5 (radius: 3000 m, minimum number of buddies: 5,
alpha: 0.1). Note the different colour scales in the two subplots. Underlying landcover derived from the LCZ map (natural: LCZ A-F, built: LCZ 1-10, water: LCZ G).
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in all months. cRMSD shows that the unsystematic deviation
between CWS and PRWS is between 0.6 and 1.3 K in the
monthly means after QC level m5 in Amsterdam and
Toulouse. Annual averages show that mean CWS ta data
on a city scale is ∼0.5 and ∼0.8 K higher than PRWS data
after the main QC levels for Amsterdam and Toulouse,
respectively (Figure 8, Supplementary Figure S6).

In its current form, the buddy check neglects any spatial
gradient in ta in its calculations. Within cities, horizontal
gradients in ta might arise in particular from elevation
differences among stations on mountain slopes or due to
differences in land cover/land use. While the former is
addressed in CrowdQC+ with the height correction being
carried out, plus the additional check for elevation differences
among buddies, the latter is difficult to implement without
additional information on underlying surface characteristics.
Here, the concept of LCZs might be a suitable candidate to
characterise a station in terms of its local surroundings. Such
an (optional) addition could be a further extension of CrowdQC+
in the future, yet requires in-depths investigations and might

impair subsequent LCZ-based analyses. Per default, a radius of
3000 m is used in QC level m5, which is based on tests for the two
investigated cities (not shown) and similar to recommendations
by Båserud et al. (2020). In cities with heterogeneous surface
cover and morphology, a smaller radius might be more
appropriate, as ta will hence be “patchier,” especially during
dry, cloud-free, and calm conditions that promote spatial ta
gradients (e.g., Parry 1956; Oke 1973; Erell and Williamson
2007; van Hove et al., 2015; Arnds et al., 2017; Fenner et al.,
2017; Beck et al., 2018a). Analogously, for urban regions with
extensive and homogeneous surface cover and morphology, a
larger radius could be applied.

The buddy check is the computationally most expensive of the
QC levels. For data sets from several hundred or few thousands
of CWS and for extended periods of time such as a year (as in
this study), this filter might take several minutes. For near-real
time applications such as operational ta monitoring at (half-)
hourly resolution this would not be an issue, if a data set of the
past, e.g., 14 days is used to perform the complete QC. Further
developments of CrowdQC+ will focus on the improvement of

FIGURE 7 | Relation between daily maximum air temperature (ta) at PRWS and CWS in Amsterdam during 2019. (A) and (B) for one PRWS (station “2229”;
52.3719°N, 4.89568°E) and themean of all CWSwithin a 2000 m radius around the PRWS in the same LCZ type (2–compact midrise). (C) and (D) as the mean across all
PRWS and all CWS. (A) and (C) display CWS ta at QC level m4, (B) and (D) CWS ta at QC level m5. MD, mean deviation; MAD, mean absolute deviation; RMSD, root-
mean-square deviation; cRMSD, centred RMSD; n_PRWS, number of PRWS; n_CWS, number of CWS; N, number of daily values.
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this QC level in order to reduce the time spent to perform the
buddy check.

Time-Constant Correction
Büchau (2018) determined τ of the Netatmo sensor (investigating
in total seven Netatmo stations) by conducting cooldown and
warmup tests in a laboratory environment. He determined a
mean τ across the sensors of 22.46 and 26.89 min for the two
experiments, respectively (Figure 2.3 a and b in Büchau 2018).
Based on these results, we apply a mean of these two values in the
time-constant correction, using τ � 1480.5 s. The effect of the
time-constant correction is illustrated in the following.

ComparisonMeasurementsWith One Netatmo Sensor
Firstly, we investigate data from a 1-year long comparison
measurement in Berlin in 2015 between one Netatmo sensor
and a reference sensor (Campbell Scientific CS215, accuracy
±0.4 K in range 5–40°C). Both sensors were set up at 2 m
above ground level, the Netatmo sensor inside a wooden
Stevenson Screen, the reference sensor inside a small lamella-
type radiation shield, actively ventilated during sunlit periods
(Figure 9A). Netatmo data was collected at the original 5-min
resolution (approximately) from the user interface of Netatmo,
reference data was sampled at 1-min resolution. This data set was
previously used in the study by Meier et al. (2017). Figure 9B

shows a distinct diurnal cycle in the mean deviation between the
two sensors. While in the morning hours after sunrise the
Netatmo sensor displays lower mean values than the reference
sensor, it shows higher values in the early afternoon.

Figure 9B further shows the benefit of applying the time-
constant correction (τ � 1480.5 s) to the Netatmo data. If the
correction is applied at the original temporal resolution of the
Netatmo sensor, the correction reduces the mean hourly
deviation in the morning hours by 0.5 K, yet increases the
deviation at noon by 0.2 K. The correction further leads to a
more “stable” deviation between the two sensors during
afternoon and night-time hours at approximately −0.3 K, likely
showing a systematic bias. The remaining stronger mean negative
and positive deviations in the morning and at noon, respectively,
are likely partly due to the slower thermal response of the
Stevenson Screen (Bryant 1968; Brandsma and van der
Meulen 2008; Harrison 2010) in which the Netatmo sensor
was placed, compared to the small lamella-type radiation
shield of the reference sensor (actively ventilated during sunlit
times).

When using the Netatmo API, different temporal resolutions
for obtaining the data can be specified, ranging from the original
resolution at approximately 5 min, over 30 and 60 min to 3 h,
1 day, 1 week, or 1 month (https://dev.netatmo.com/
apidocumentation/weather#getmeasure). Thus, Figure 9B also

FIGURE 8 | Deviations of hourly air temperature (ta) between CWS and PRWS in Amsterdam during 2019 per month and for the whole year for raw data, QC levels
m4, and m5. Deviations were calculated between each PRWS and each CWS within a radius of 2000 m around the respective PRWS, located in the same LCZ type as
the PRWS. Deviations were then averaged per month and year across all CWS and PRWS. MD, mean deviation; MAD, mean absolute deviation; RMSD, root-mean-
square deviation; cRMSD, centred RMSD.
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displays the effect of the time-constant correction applied at 30-
and 60-min data. For this, the original Netatmo data was
aggregated to mean values for the respective temporal
resolution prior to correction. With decreasing temporal
resolution, the effect of the time-constant correction also
decreases.

While for hourly resolution the time-constant correction
provides only a marginal difference, it is worthwhile to apply
in temporally higher-resolution data of the Netatmo sensor and
likely also other sensors with similarly large time constants.

Effects in City-Wide Data
Secondly, applying the time-constant correction to the hourly
data set in Amsterdam and Toulouse, minor to no differences
between the corrected and uncorrected data set with respect to the
statistical metrics are found (Supplementary Table S2). For daily
maximum ta the time-constant correction leads to higher
deviations, while for daily minimum ta overall lower
deviations are found. Statistical metrics for daily mean and
hourly ta are not affected.

In its current form, QC level o4 assumes the same value for τ
for all CWS and hence only works meaningfully with one type of
CWS in the data set. A possible future development of
CrowdQC+ and improvement of this QC level could be to
include information on the type of CWS, thus enabling the
correction of different types of CWS with regard to sensor lag
in the same data set.

APPLICATIONS OF THE
QUALITY-CONTROLLED DATA

To highlight the usability of quality-controlled CWS data for
urban climate studies, two applications are put forward.

In the first application, the annual and diurnal cycle in ta
difference (Δta) between two LCZ types is displayed for
Amsterdam, comparable to typical UHI analyses. Figure 10
displays Δta between LCZ 2, as the mean across the quality-

controlled CWS (Figure 10A) and across PRWS data
(Figure 10B), and the Schiphol airport PRWS. We follow the
approach by de Vos et al. (2020) and use the airport station as
the “rural” reference for both networks, acknowledging that this
is not a true rural reference site. Both sub-figures show the
characteristic cycles in Δta between urban and rural
environments that is found for mid-latitude cities, i.e., higher
values during night-time and the warmer months of the year,
and lower values during daytime (Oke et al., 2017). Yet,
distinctive episodes with higher and lower Δta than this
typical pattern are also found (visible in the vertical stripe-
like pattern), being related to the specific weather conditions
during this year. Two of such “stripes” are particularly
prominent in the second half of February 2019 with large
positive Δta during night-time, being episodes of unusually
high ta in Amsterdam with clear skies and no precipitation
(not shown). Such conditions promote distinct local-scale Δta
(e.g., Parry 1956; Oke 1973; Erell and Williamson 2007; van
Hove et al., 2015; Arnds et al., 2017; Fenner et al., 2017; Beck
et al., 2018a) Finally, Figure 10 highlights the strong agreement
between both networks when comparing both sub-figures.
This underlines the suitability of CWS data for quasi-
climatological analyses, if a multitude of quality-controlled
CWS are available.

In the second application (Figure 11), night-time ta distribution
for the month of July 2020 is displayed for Toulouse. July 2020 was
a month with heatwave-like conditions and only marginal rain.
Figure 11 shows a distinct night-time UHI for Toulouse of several
K in the monthly mean, both for CWS and PRWS data. Highest ta
was recorded in central districts of Toulouse with generally
decreasing ta towards the outskirts and rural areas, comparable
to model results from Kwok et al. (2019). Further, the systematic
difference between CWS and PRWSdata is visible (Figure 11). The
application highlights the benefit of using CWS data for mapping
of meteorological conditions due to their high density and spatial
distribution. Yet, the imbalance between number of CWS in built-
up areas and natural settings is also prominent (Chapman et al.,
2017; Fenner et al., 2017; Meier et al., 2017; Feichtinger et al., 2020).

FIGURE 9 | (A) Setup of the comparisonmeasurements between one Netatmo CWS, fixed in awooden Stevenson Screen (purple) and a reference sensor (orange)
in Berlin at site Rothenburg (52.4572°N, 13.3158°E) during 2015. (B) Mean diurnal cycle of air-temperature difference (Δta) between the Netatmo outdoor module and
the reference sensor during 2015. The yellow line (squares) corresponds to the mean data as shown by Meier et al. (2017). Netatmo data at the original temporal
resolution (∼5 min) was corrected using a time-constant value of 1480.5 s and the formula inOptional Quality-Control Levels section. The correction was applied at
different temporal resolutions (original/5, 30, 60 min). Afterwards, all data were aggregated to hourly mean values and the hourly mean values of the PRWS subtracted.
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CONCLUSION

The availability of CWS data in theoretically every region of the
world makes this data source an interesting choice for scientists
and practitioners to gain information on atmospheric conditions.
This holds even more true for cities, where atmospheric conditions
are highly heterogeneous and traditional measurement networks
are sparse. Yet, the data come with a number of uncertainties and
errors, which require targeted QC procedures.

In this study, theQCpackage CrowdQC+was presented, which is
a further development of the existing package CrowdQC.
CrowdQC+ extends that package and adds several additions and
functionalities, i.e., 1) a furtherQC level for additional spatial filtering
to mainly address remaining radiative errors, 2) an option to correct
CWS data for slow sensor response, 3) modifications to the existing
QC levels to enhance applicability, and 4) additional functionalities
for increased user-friendliness. The package is primarily designed to
quality-control air-temperature data from CWS. As its predecessor,
CrowdQC+ works without any meteorological reference data and

can thus be applied in basically every (urban) region with CWS data,
enabling large-scale urban climate studies based on CWS data.

Applying CrowdQC+ to two data sets from Netatmo CWS of
1 year forAmsterdamandToulouse, and comparing theCWSdata to
data from PRWS, it is shown that CrowdQC+ effectively removes
erroneous data and provides an improvement compared to
CrowdQC. Deviations between CWS and PRWS data on the city-
scale level and per station are lower after applying CrowdQC+ than
using CrowdQC in both investigated cities in all seasons, highlighting
the additional value of the newly-introduced functionalities. Yet,
deviations between CWS and PRWS data remain, which are likely
linked to remaining faulty values not identified by the QC, but also to
differences in network designs, sensor qualities, and station setups.
The trade-off of the reduced deviations and thus increased QC
performance of CrowdQC+ compared to CrowdQC is a lower
data availability after applying the QC. It is further shown that
CrowdQC+ can be applied to CWS data sets of different size, that
data sets of different duration can be quality-controlled, and that the
newly added functionalities of the package enable the QC to be
applied in operational mode for near-real time applications.

This study aims to be a step ahead in a continuous development and
enhancement of the package, retaining the core of the QC, which is the
applicability in regions without reference meteorological observations.
CrowdQC+ is an open-source tool under active development (https://
github.com/dafenner/CrowdQCplus), collaboration and participation
in further developments of the package are welcome. Future work
could focus on the evaluation of the QC with regard to other variables
such as air pressure or humidity, which can also be crowdsourced from
CWS. Testing the QC on CWS data sets of, e.g., tropical or desert cities
would also be of high value to understand its performance in different
background climates. Furthermore, future studies could investigate the
performance of the QC when applied to crowdsourced data sets
composed of measurements by different types of CWS.

DATA AVAILABILITY STATEMENT

CrowdQC+ v1.0.0, as described in this paper, is available as an R
package as Supplementary Material. The latest version of CrowdQC+
and the possibility to submit issues is available at https://github.com/

FIGURE 10 | Hourly air-temperature difference (Δta) for Amsterdam between (A) all CWS in LCZ 2 (compact midrise) and (B) all PWRS in LCZ 2, and PRWS at
Schiphol airport, LCZ D (low plants) during 2019 (ΔtaLCZ 2–LCZ D). CWS data are displayed at QC level o3 after application of CrowdQC+ in default settings (cf. Table 2).
CWS and PRWS data for LCZ 2 were first averaged across stations, then data at Schiphol airport subtracted.

FIGURE 11 |Mean air temperature (ta) in Toulouse during July 2020 03:00
UTC asmeasured by CWS (circles) and PRWS (squares). CWSdata are displayed
at QC level o3 after application of CrowdQC+ in default settings (cf. Table 2).
Underlying landcover derived from the LCZmap (natural: LCZ A-F, built: LCZ
1-10, water: LCZ G).
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dafenner/CrowdQCplus. Publicly available datasets were analyzed in
this study. This data can be found here: Netatmo CWS data can freely
be obtained via the company’s API at https://dev.netatmo.com/.
SRTM digital elevation data is freely available at https://srtm.csi.
cgiar.org. PRWS data for Toulouse is freely available at https://data.
toulouse-metropole.fr/explore/dataset/stations-meteo-en-place/
table/. PRWSdata for Amsterdam from theAAMS are available upon
request fromGert-Jan Steeneveld or Bert Heusinkveld atWageningen
University & Research. Data from the KNMI can freely be obtained at
https://dataplatform.knmi.nl/.
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