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Carbon price prediction is important for decreasing greenhouse gas emissions and coping
with climate change. At present, a variety of models are widely used to predict irregular,
nonlinear, and nonstationary carbon price series. However, these models ignore the
importance of feature extraction and the inherent defects of using a single model; thus,
accurate and stable prediction of carbon prices by relevant industry practitioners and the
government is still a huge challenge. This research proposes an ensemble prediction
system (EPS) that includes improved data feature extraction technology, three prediction
submodels (GBiLSTM, CNN, and ELM), and a multiobjective optimization algorithm
weighting strategy. At the same time, based on the best fitting distribution of the
prediction error of the EPS, the carbon price prediction interval is constructed as a
way to explore its uncertainty. More specifically, EPS integrates the advantages of various
submodels and provides more accurate point prediction results; the distribution function
based on point prediction error is used to establish the prediction interval of carbon prices
and to mine and analyze the volatility characteristics of carbon prices. Numerical simulation
of the historical data available for three carbon price markets is also conducted. The
experimental results show that the ensemble prediction system can provide more effective
and stable carbon price forecasting information and that it can provide valuable
suggestions that enterprise managers and governments can use to improve the
carbon price market.
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INTRODUCTION

This section describes the research background, provides a literature review, and states the purpose
and innovation of this study.

Research Background
With the rapid development of the economy, the environment and the climate will inevitably change.
Climate change is clearly a common problem facing all countries. On February 16, 2005, the Kyoto
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Protocol went into effect. According to the situation in each
country, specific emission reduction plans and schedules were
formulated. In January 2005, the EU emissions trading scheme
(EU ETS), which was designed to achieve the emission reduction
targets stipulated in the Kyoto protocol, was introduced (Arouri
et al., 2012). The EU ETS allocates carbon trading quotas to
different emission entities according to its regulations, and
entities that exceed the quota must purchase emission rights
from entities that are lower than the quota through the carbon
trading market. This measure of using a market trading
mechanism provides valuable experience for solving the
problem of global climate change.

As the world’s largest carbon dioxide emitter (in 2018, its total
carbon dioxide emissions reached 10 billion tons, accounting for
approximately 30% of global carbon dioxide emissions), China
has successively established eight carbon emission trading
markets since 2013. However, this system is still in the
construction stage, and the market mechanism is not perfect
and needs further improvement. By studying the regular price
fluctuation pattern of the EU ETS and China’s carbon trading
market, analyzing the influencing factors, and forecasting the
carbon market price accordingly, we can better understand the
fluctuation law of the carbon market and obtain a reference for
formulating carbon market policies and mechanisms to improve
the ability to regulate this market.

Carbon prices have important implications for governments,
companies, and long-term investors. For governments, carbon
pricing is one of the mechanisms used to reduce carbon
emissions, and it can also be a source of revenue. Companies
can use internal carbon pricing to assess the impact of mandatory
carbon pricing on their businesses and to identify potential
climate risks and revenue opportunities. Long-term investors
are using carbon pricing to reevaluate their investment
strategies. Therefore, regardless of the point of view, it is
necessary to establish an accurate and stable carbon price
forecasting system.

Literature Review
Most of the research methods used in carbon price prediction rely
on historical data to build models to predict carbon prices.
Carbon prices display high volatility and nonlinear structure,
and many studies of carbon price prediction based on historical
data have been conducted in recent years. The prediction
methods can be divided into three categories: 1) statistical
measurement methods; 2) artificial intelligence methods; and
3) decomposition integration hybrid forecasting methods.

Statistical Measurement Method
As a classical time series forecasting method, statistical
measurement methods, including linear regression models,
autoregressive integrated moving averages (ARIMAs),
generalized autoregressive conditional heteroscedasticity
(GARCH) models, and gray model GM (1, 1) (Chevallier,
2009; Byun and Cho, 2013; Zhu and Wei, 2013) are widely
used in carbon trading price prediction and volatility analysis.
For example, Benz and Trück (2008) proposed the Markov
transition and AR-GARCH model for stochastic modeling and

analyzed the short-term price of the carbon dioxide emission
quota of the EU ETS. Through the empirical results obtained, it
was demonstrated that the prediction performance of the Markov
state transition model is better than that of the GARCH model.
Zhu and Wei (2013) combined least squares SVM with the
ARIMA model, and the results showed that the developed
model was more robust than the single-prediction model. Zhu
B et al. (2018) used grey correlation analysis to analyze the carbon
price market. The traditional statistical model has high prediction
accuracy and wide adaptability in linear and stable time series.
However, because carbon prices show strong volatility,
nonlinearity, and instability, traditional statistical measurement
methods cannot capture internal structural characteristic data
(Lu et al., 2019). Therefore, accurate forecasting of carbon prices
requires the use of a method with a strong nonlinear feature
extraction ability that enables it to take into account potential
nonlinear characteristics. In addition, the traditional statistical
measurement method is more suitable for the long-term
prediction of time series, and its short-term carbon price
prediction performance is poor (Cheng and Wang, 2020).

Owing to the shortcomings of statistical models, artificial
intelligence methods (AI) have gradually become widely used in
time series prediction; these methods are suitable for nonlinear
prediction without any assumption of data distribution (Wang
et al., 2020). Increasing evidence shows that the performance of
AI in nonlinear time series is better than that of other models
(Zhang et al., 2017). AI, including back-propagation neural
networks (BPs), multilayer perceptual neural networks (MLPs),
least squares support vector regression (LSSVR), and hybrid
prediction methods combined with optimization algorithms,
have also been widely used in carbon price forecasting.
Atsalakis (2016) combined a hybrid fuzzy controller called
PATSOS with an adaptive neuro fuzzy inference system
(ANFIS). The research shows that this method can produce
accurate and timely prediction results. Fan et al. (2015)
studied the chaotic characteristics of the EU ETS, used the
neural network model of MLP to predict carbon prices, and
found that the forecasting accuracy of the model was significantly
improved. Tian and Hao (2020) used phase space reconstruction
technology and the ELM under the multiobjective grasshopper
optimization algorithm (MOGOA-ELM) to predict the trend of
the EU ETS and China’s carbon prices. The empirical results
show that this method can be used effectively to predict carbon
prices.

In recent years, with the development of deep learning theory
(DL) in image detection, audio detection, and other fields, DL has
become the focus of many scholars (Liu et al., 2021). The unique
storage unit structure of deep learning allows it to retain past
historical data and has significant advantages for processing time
series data that feature long processing intervals and delays
(Zhang B et al., 2018). Niu et al. (2020) combined LSTM and
GRU to establish a deep learning recursive forecasting unit for
forecasting multiple financial data. Liu et al. (2020) proposed a
new wind speed prediction model based on an error correction
strategy and the LSTM algorithm to predict short-term wind
speed. The experimental results demonstrated that its
performance is better than that of other comparable models.
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However, application of deep learning frameworks to carbon
price prediction is still very limited.

In addition to the selection and optimization of prediction
methods, data preprocessing technology also plays an
indispensable role in the prediction accuracy of the
prediction model (Wang et al., 2021). Decomposition and
integration methods, including empirical mode
decomposition (EMD), singular spectrum denoising (SSA),
and variational mode decomposition (VMD) are widely used
in time series data preprocessing. These methods aim to
decompose and reconstruct the original time series data and
extract the effective features of the time series. Decomposing the
original time series into a series of simple patterns that exhibit
strong regularity can significantly improve the prediction
accuracy of time series. Wei et al. (2018) used wavelet
transform and kernel ELM to predict carbon prices. Zhu J
et al. (2018) explored an efficient prediction model based on
VMD mode reconstruction and optimal combination and
thereby greatly improved the prediction accuracy of carbon
prices. However, the above decomposition methods still have
some shortcomings. For example, in wavelet decomposition and
VMD, it is necessary to determine the wavelet basis function and
the decomposition level. Although in EMD it is not necessary to
determine the number of decomposition levels, mode aliasing
and insufficient noise separation cannot be solved (Jin et al.,
2020). Therefore, it is very important to extract the nonlinear
peculiarities of carbon prices by using appropriate data
preprocessing methods.

A single prediction model cannot achieve good performance
on every dataset. Therefore, researchers began to focus on
combination forecasting models. In essence, combination
forecasting models combine different hybrid forecasting
methods or single forecasting methods using weighting. In
many experimental studies, it is found that the use of a
combination of prediction methods produces better
predictions than the use of a method that is based on a
single-prediction model. The advantage of using combination
models is that different time series may have different
information sets, information features, and modeling
structures, and the use of a combination of prediction
methods can result in good performance in the case of such
structure mutations. Although the use of a combination
forecasting method to forecast time series is very common,
use of a combination forecasting model to forecast carbon prices
is still in its infancy.

The above analysis indicates that most research on carbon
prices is driven by single or hybrid forecasting models and that it
tends to emphasize prediction strategies that are based on
certainty and to largely ignore the importance of uncertainty
analysis of carbon prices. Regardless of the type of prediction
model used, there are inherent and irreducible uncertainties in
each prediction that will greatly increase the possibility of
miscalculation (Du et al., 2020). Therefore, quantification of
the uncertainty of carbon price prediction plays an
indispensable role in exploring the complexity of the carbon
price market and strengthening the ability to conduct effective
market anti-risk management.

Objectives and Contributions
To supplement the existing research on carbon price prediction,
an ensemble prediction system (EPS) based on the ICEEMDAN
data preprocessing method, the deep learning algorithm (DL), the
extreme learning machine (ELM), and the multiobjective
dragonfly optimization algorithm (MODA) is developed and
used to analyze the certainty and uncertainty of carbon prices.
Specifically, ICEEMDAN is employed to decompose and
reconstruct the original carbon price data and extract the
effective features of the data, and the results are transferred
into the submodels of EPS as training data (the submodels are
ICEEMDAN-GBiLSTM, ICEEMDAN-CNN, and ICEEMDSAN-
ELM). Using the MODA, the final carbon price point forecast
results are then obtained through a weighted combination of the
submodel prediction results. For interval prediction, the upper
and lower bounds of the prediction interval are constructed based
on the prediction value of ESP and the best fit distribution
function of error, namely, the T location-scale (TLS)
distribution. The main innovations presented in this study are
as follows:

1) An effective ensemble prediction system of carbon prices is
developed. Two hybrid prediction models based on a deep
learning algorithm (ICEEMDAN-GBiLSTM and
ICEEMDAN-CNN) and a feedforward neural network
(ICEEMDAN-ELM) are combined to overcome the
inherent defects of a single hybrid prediction model.

2) A deep learning recurrent neural network, GBiLSTM, is first
proposed as a prediction submodel of the EPS. GBiLSTM
combines two recursive deep learning algorithms; it can
effectively deal with time series with long memory and
increase the accuracy of carbon price forecasting.

3) The MODA is employed as an effective method of weighting
the ensemble prediction system. It optimizes the weight
coefficient of the ensemble model from the perspective of
prediction accuracy and prediction stability, thereby
overcoming the obvious defect that single objective
optimization can only select one objective function.

4) To overcome the nonlinearity and strong volatility of the
original carbon price data, an effective time series
preprocessing technique is developed. ICEEMDAN
sequence decomposition technology is employed to
decompose and reconstruct the original carbon price data,
extract the salient features of the data, and improve the
prediction accuracy of the EPS.

5) By fitting the best error distribution, the uncertainty of the
carbon price is mined. In the past, the error distribution of a
prediction was usually assumed to be a Gaussian distribution.
In this study, five types of parameter distribution functions
are used to fit the prediction error, the best error distribution
function is found, and the ranges of carbon price interval
prediction are constructed.

The remainder of the study is organized as follows. In Section
Model Theory and Related Work and Section Ensemble Prediction
System and its Interval Forecasting Framework, we introduce the
theoretical method and the framework used in the proposed EPS.
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Section Experiment and Analysis describes the experimental data
and the prediction performance evaluation index. The point
prediction and interval prediction of the carbon price are then
simulated. Section Discussion is a further discussion of EPS, and a
summary of the study is presented in Section Conclusion.

MODEL THEORY AND RELATED WORK

This section introduces the corresponding theories and describes
the functions of the data preprocessing module, the combination
prediction module, and the uncertainty mining module of the
EPS prediction system.

Data Preprocessing
The data processing module includes the data feature extraction
method, which is based on improved complex ensemble
empirical mode decomposition with adaptive noise
(ICEEMDAN), and the data feature selection method, which is
based on the partial autocorrelation function (PACF).

Data Feature Extraction
To improve the problem of mode aliasing in the traditional noise
reduction method EMD and the slight residual noise in
CEEMDAN, the ICEEMDAN technology is improved. The
CEEMDAN method adds Gaussian white noise during the
decomposition process, while the ICEEMDAN method adds a
special type of white noise, Ek(ω(i)), that is, the k-th IMF
component of the Gaussian white noise (M.E. Torres et al.,
2011; M.A. Colominas et al., 2014). The local mean value of
the added noise is calculated for each modal component, and the
IMF is defined as the difference between the residual signal and
the local mean.

1) The definition operator Ek(·) represents the k-th IMF after
EMD decomposition, and M(·) represents the local mean
value of the signal. There is E1(x) � x −M(x). Operator
means taking the mean value, and x represents the original
data of the study, and then the local average value is calculated
by EMD:

x(i) � x + α0E1(ω(i)) (1)

where ω(i) is the ith white noise added and α0 is the standard
deviation of the noise. The first residual component r1 � 〈M(xi)〉
is obtained by taking the local mean value. The first intrinsic
mode function IMF1 value d̃1 � x − r1 is calculated.

2) The value d̃2 of the second mode component IMF2 is
calculated:

d̃2 � r1 − r2 � r1 − 〈M(r1 + α1E2(ω(i)))〉 (2)

3) The k-th residual is calculated:

rk � 〈M(rk−1 + αk−1Ek(ω(i)))〉, k � 2, 3,/, N (3)

4) The value of the k-thmode component IMFk:d̃k � rk−1 − rk,
is calculated, and Eq. 3 is repeated until the residual satisfies the
iteration termination condition, which is Cauchy convergence.
The standard deviation between two adjacent IMF components
χ � ����d̃k − d̃k−1

����2/����d̃k−1����2 is less than a specified value.
In this study, ICEEMDAN is used to decompose the original

carbon price data into several intrinsic mode functions (IMFs).
The IMF with the highest frequency is removed, and the
remaining IMFs are included. Through this method of
deconstruction and reorganization, the problem of strong
volatility and randomness of the original data is solved. The
data features are effectively extracted, and the prediction veracity
of the model is increased.

Data Feature Selection
The partial autocorrelation function (PACF) is an effective method
for distinguishing the structural features of sequences (Jiang et al.,
2020). It can be used to calculate the partial correlation between the
time series and its lag term. IfΦkj is employed to represent the j-th
regression coefficient in the k-order autoregressive equation, the
model can be expressed as follows:

xt � Φk1xt−1 +Φk2xt−2 + · · · +Φkkxt−k + μt (4)

where xt is the time series and Φkk is the last coefficient. If Φkk is
defined as a function of lag time k, then Φkk, k � 1,2... is named
partial autocorrelation function.

In this study, PACF is used to find the lag terms that have the
strongest correlation with the time series; these are then used as
the input characteristics of the forecast model.

Ensemble Prediction Module
The prediction value calculated by the ensemble prediction
system is obtained using an ensemble of the prediction
results of different single-prediction components through the
weighting strategy. In this section, the three submodes of the
proposed EPS and the MODA weighting optimization strategy
are introduced.

Convolutional Neural Network
A CNN is an incompletely connected DL network structure
that is composed of two special neural networks: a convolution
layer and a down sampling layer (Wang, 2020). The neurons in
each layer of the CNN are locally connected, enabling them to
realize hierarchical feature extraction and transformation of
the input. Neurons with the same connection weight are
connected to different regions of the upper neural network;
in this way, a translation-invariant neural network is obtained
(Wang, 2018).

1) The training of the Convolution Layer. The CNN is
connected to the local region of the feature surface by a
convolution kernel. The output characteristic surface size of
each convolution layer must meet the following requirement:

oMapN � ((iMapn − CWindow)
CInterval

+ 1) (5)
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In Eq. 5, oMapN is the number of output feature surfaces of each
convolution layer, iMapN is the number of input feature surfaces,
CWindow is the size of the convolution kernel, and CInterval is
the sliding step size of the convolution kernel.

In general, to ensure integral division in the above formula, it is
necessary to train the number of parameters for each convolution
layer of the CNN so as to satisfy the following condition:

CParams � (iMap × CWindow + 1) × oMap (6)

where CParams is the number of parameters, iMap is the input
feature surface, and oMap is the output feature surface.

The output value xoutnk can be obtained by the convolution layer;
the formula is as follows:

xoutnk � fcov(xin1h × w1(h)n(k) + xin1(h+1) × w1(h+1)n(k) + xin1(h+2)

× w1(h+2)n(k) +/ + bn) (7)

where xinmk is the input value, bn is the offset value of the output
characteristic surface n, andfcov(·) is the excitation function. The
excitation function is usually the ReLU function, and the formula
for its calculation is as follows:

fcov(x) � MAX(0, x) (8)

2) The output of the Pooling Layer. The pooling layer is also
composed of several feature surfaces, and the number of
feature surfaces does not change. The output value of the
pooling layer is

toutnl � f sub(tinnq, tinn(q+1)) (9)

where tinnq is the output value of the q-th neuron on the n-th input
characteristic surface of the pooling layer and fsub(·) is a function
that takes either the maximum value or the mean value. The size
DoMapN of each output feature surface of the pooling layer is

DoPapN � ( oMapN
DWindow

) (10)

3) Full connection layer output. In the CNN structure, one or
more fully connected layers are connected after the multiple
convolution layers and the pooling layers are obtained. The
ReLU function is also used in the excitation function of the
whole connected layer.

In this study, CNN, as a component of the combined
forecasting system, forecasts the carbon price.

Deep Learning Recursive Network Structure
(GBiLSTM)
In this study, we developed a deep learning recurrent network
structure, which is a hybrid of BiLSTM and GRU. The structure
diagram is shown in Figure 1.

Bidirectional Long Short Term Memory Neural Network
BiLSTM is an improved network of LSTM. LSTM cannot capture
information from back to front; however, BiLSTM can solve this

problem. When bidirectional sequence information is captured,
the time series can be predicted more accurately (Hochreiter and
Schmidhuber, 1997).

1) The LSTM mechanism consists of three memory gates: an
input gate (it), a forgetting gate (ft), and an output gate (Ot).
The specific expression is as follows:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

it � σ(ωiXt + RiHt−1 + Bi)
f t � σ(ωfXt + RfHt−1 + Bf)
ot � σ(ωoXt + RoHt−1 + Bo)
c̃ � f t ⊗ ct−1
Ht � ot⊗tanh(ct)

(11)

where xt, σ, and ct represent the input sample, the sigmoid
activation function, and the storage unit of time t, respectively,
and (Bf, Bi, Bo) and (ωf, ωi, ωo) represent the deviation and the
weight matrix, respectively, of each gate. The symbol ⊗ represents
the corresponding multiplication of elements. First, Ht−1, ct−1,
and Xt transmit input information to the LSTM unit. The LSTM
gate then interacts withXt. After a new cell state ct−1 is established.
In this stage, f t determines which information needs to be stored
or deleted and then updates the cell status.

2) Because BiLSTM transmits time series data to LSTM from
both the forward and backward directions, it has two output
layers: a forward layer Hf

t � oft ⊗ tanh(cft ) and a backward
layer Hb

t � obt ⊗ tanh(cbt ).
3) The final predicted output value ŷt is obtained by integrating

the forward layer and the backward layer; in Eq. 12, αand βare
numerical factors that satisfy the equation α + β � 1 (Shi et al.,
2015).

{H t � αH f
t + βHb

t

ŷt � σ(Ht) (12)

Gated Recurrent Unit
GRU is an effective variant of LSTM; its structure is simpler than
that of LSTM, and it can well capture the nonlinear relationship
between sequence data, thereby effectively alleviating the
problems of traditional RNN gradient disappearance (Chung
et al., 2014).

1) The GRU model has two gating units: an update gate zt and a
reset gate rt. An update gate is employed to equilibrate the
historical information. The smaller the value of the update
gate is, the more concentrated the output of the model on the
information of the previous hidden layer ht is

Zt � σ(Wz.[ht−1,xt]) (13)

rt � σ(Wr.[ht−1, xt]) (14)

In Eqs 13, 14, Wis the model weight, and σ is the activation
function.

2) By resetting the gate rt, the candidate vector
h̃t � tanh(W.[rtpht−1, xt]) can be calculated. Taking the
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value of the update gate as the weight, h̃t to be added and the
state of the hidden layer at the previous time step are recorded
as the output of the GRU network at time step t, as follows:

ht � (1 − Zt)pht−1 + Ztph̃t (15)

4) A set of training samples is input into the GRU; finally, the
final output o is obtained by adding the fully connected layer
after the GRU layer.

{ hend � GRU(xt−1, xx−2, ..., xt−w)
o � V .hend

(17)

In this study, a deep learning recursive network structure
(GBiLSTM) based on BiLSTM and GRU is constructed. To
reduce fitting error, the time series are trained by the BiLSTM
layer and then transferred to the GRU network. Through this
double deep learning layer network structure, we can better fit the
carbon price data and reduce the prediction error.

Extreme Learning Machine
ELM is a type of feedforward neural network. On the premise of
randomly selecting the input layer weight and the hidden layer
neuron threshold, the output weight of the ELM can be obtained
through a one-step calculation. ELM has the advantages of higher
network generalization ability and strong nonlinear fitting ability
(G B Huang et al., 2006; Jiang et al., 2021a; Jiang et al., 2021b).

1) ForN different inputs (xi, ti) andxi ∈ Rp, ti ∈ Rp, i � 1, 2, ...., N,
the ELM with L nodes and the excitation function f (x) can
be expressed as

∑N
i�1

βi f (wi.xj + bi) � yj i � 1, ...., N (19)

where wi � [wi1, wi2, ..., win]T is the weight connecting the i-th
hidden layer node and the input node, βi is the connection weight
vector, and yj is the output value of the j-th node. The training of

the network is equivalent to approximating N training samples
with zero error; that is, ŵi, b̂, β̂make

∑L
i�1

β̂i f (ŵi.xj + b̂i) � tj, j � 1, . . . , N (20)

Hβ � T; (21)

H � ⎡⎢⎢⎢⎢⎢⎣ f (w1x1 + b1) ... f (wLx1 + bL)
« «

f (w1xN + b1) ... f (wLxN + bL)
⎤⎥⎥⎥⎥⎥⎦
N×L

(22)

In Eq. 20 through Eq. 22, β�[βT1 , ...,βTL]L×m;T�[tT1 , ... ,tTN]N×m,
and the i-th column of H represents the output vector of the
i-th hidden layer node corresponding to the i-th hidden layer
neuron of the input x1,x2, ...,xN.

2) The input connection weight W and the hidden layer node
bias b can be randomly selected at the beginning of training,
and the output connection weight β̂ can be solved by solving
the linear Eq. 23.

minβ

����Hβ − T
���� (23)

3) The solution is β̂� H†T;H† is the Moore-Penrose generalized
inverse of the hidden layer output matrix H.

In this study, ELM is used as an excellent traditional neural
network prediction component of the combined forecasting
system to predict carbon prices.

Combination Strategy
It is generally believed that no single prediction model can
achieve the best prediction performance for all datasets.
Combining the values predicted by different prediction models
usually reduces the overall risk of incorrect model selection. It is
hoped that the diversity of models can help improve the final
prediction results. However, the previously developed average
weighting and weighted weighting methods cannot guarantee the

FIGURE 1 | Flowchart of the proposed bidirectional long short-term memory-gated recurrent unit (GBiLSTM) model.
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global optimality of the results (Wang, Y et al., 2018), and it is
necessary to find an adaptive variable weight combination
strategy.

In this study, the MODA algorithm is used to weigh the three
prediction components. For the weighting strategy, we
formulated the MODA algorithm as a linear programming
(LP) problem to minimize the loss function. These theories
are introduced in detail below:

Ensemble Method
Owing to the different weights given to each individual
component of the ensemble prediction system, the formula
used in the ensemble forecasting method is as follows:

f (x̂c,t) � ∑m
j�1
ωj f (x̂j,t), t � 1, 2, ... (24)

where f(x̂c,t) is the final output, f (x̂j,t) is the prediction
component of the EPS, m is the number of submodels, and ωj

is the weight of the component models. The experimental results
demonstrate that the ensemble model can obtain ideal results
when these weights are in the range of [−2, 2].

Multiobjective Dragonfly Optimization algorithm
The dragonfly algorithm is a population-based heuristic
intelligent algorithm that is easy to understand and
implement (Mirjalili, 2016). The dragonfly algorithm is
inspired by the static and dynamic group behaviors of
dragonflies. In the static group behavior, the group preys; in
the dynamic group behavior, the group migrates. These two
behaviors are very similar to the two important stages in
heuristic optimization algorithms: exploration and
development. In this research, the MODA is applied to
increase the accuracy and stability of the prediction system
(Song and Li, 2017).

The mathematical expression methods are as follows:

1) The degree of separation refers to avoiding collisions between
dragonflies and adjacent individuals.

Si � ∑N
j�1

X − Xj (25)

2) Alignment means that the trends in movement speed are the
same in adjacent individuals.

Ai �
∑N

j�1Vi

N
(26)

3) Cohesion refers to the tendency of dragonflies to gather near
the center of adjacent individuals.

Ci �
∑N

j�1Xj

N
− X (27)

4) Food attraction is the degree of attraction of dragonflies
to food.

Fi � X+ − X (28)

5) The repulsive force of natural enemies refers to the repellence
of the group to natural enemies when dragonflies encounter
natural enemies.

Ei � X− + X (29)

In Eq. 25 through Eq. 29, X is the position of the current
dragonfly individual, Xj represents the position of the j-th
adjacent dragonfly, Vj represents the speed of the j-th adjacent
dragonfly, N represents the number of individuals adjacent to the
i-th dragonfly individual, X+ indicates the location of the food
source, and X− indicates the position of the natural enemy.

Based on the above five behaviors, the step length and the
position of the next generation of dragonflies are calculated as
follows:

ΔXt+1 � (sSi + aAi + cCi + fFi + eEi) + ωΔXt (30)

Xt+1 � Xt + ΔXt+1 (31)

Whether dragonflies are adjacent to each other can be judged
by the Euclidean distance, which is similar to a circle with a radius
of r around each dragonfly, and all individuals in the circle are
adjacent. To speed up the convergence, the radius r should
gradually increase during the iterative process and should
finally include the entire search space (Sun et al., 2018). At the
beginning of the iteration, the radius r is very small, and some
individuals may have no adjacent individuals. To enhance the
search power of the algorithm, the random walk is adopted to
replace the step update formula, as shown below.

Levy(x) � 0.01 × r1 × σ

|r2|1β
(32)

In Eq. 32, r1 and r2 represent random numbers between [0,1], β is
a constant (here, 3/2), and σis calculated as follows:

σ � ⎡⎢⎢⎢⎣Γ(1 + β) sin(πβ2 )
Γ(1+β2 )β2[β−1

2 ] ⎤⎥⎥⎥⎦
1
β

(33)

The corresponding position update formula can be derived as
shown in the following formula:

Xt+1 � Xt + Levy(d) × Xt (34)

In Eq. 34, d represents the dimension of the position vector. In
MODA, the nondominated Pareto optimal solution that is obtained
in the optimization process is stored and retrieved through the
storage unit of the external archive. More importantly, to improve
the distribution of solutions in the document and maintain the
diversity of Pareto solution sets, the algorithmuses a roulettemethod
with probability Pi � c/Ni to keep the nondominated solution sets
well distributed. Ni represents the number of solutions near the i-th
solution, and c is a constant.

Objective Function of MODA
Generally, the multiobjective optimization problem can be
regarded as the solution of the constraint problem. The
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constraint problem with J inequalities and K equations can be
written as follows:

MinF(x) � (obf1(x), obf2(x), · · ·, obfs(x))T (35)

s.t. g j(x)≥ 0, j � 1, 2, ..., J,

hk(x) � 0, k � 1, 2, ..., K,
x ∈ Ω (36)

where (obf1(x), obf2(x), · · ·, obfs(x))T is the decision vector.
In this study, the objective of the optimization algorithm is to

determine the weight of each single-prediction componentωj to
minimize the error between the final combined forecast value
f(x̂c,t) and the real value of the carbon price Y. The optimization
algorithm can be expressed as follows:

Min

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
obf 1 � std(f(x̂c,t), Y) � std⎛⎝∑m

j�1
ωjf(x̂j,t) − Yj

⎞⎠
obf 2 � MAPE(f(x̂c,t), Y) � MAPE⎛⎝∑m

j�1
ωjf(x̂j,t) − Yj

⎞⎠
(37)

s.t. − 2≤ ∑J
j�1

ωj ≤ 2

Therefore, we can solve the component weight ωj:

ωj � argMin{ Std(f(x̂c,t), Y)
MAPE(f(x̂c,t), Y) (38)

s.t. − 2≤ ∑J
j�1

ωj ≤ 2

Through continuous iteration of the MODA optimization
algorithm, the weight vector ω � (ω1,ω2, ...,ωj) that minimizes
the error between the combination forecast value f(x̂c,t) and the
real value of carbon price Y is obtained. In this study, m � 3.

Uncertainty Mining Module
The uncertainty information of point prediction results can be
used to more deeply analyze the characteristics of carbon prices.
In this article, an innovative interval prediction scheme based on
prediction error distribution modeling in the training stage is
proposed. Unlike previous research in which it is assumed that
the prediction error follows a Gaussian distribution, this article
uses maximum likelihood estimation (MLE) to conduct statistical
research on carbon price error data and to explore its distribution.
Among the five distribution functions developed, the function
that best fits the distribution of carbon price prediction error is
found. Based on its probability distribution function (PDF), the
upper and lower bounds of the carbon price prediction interval
are constructed. The details of the five distribution functions and
interval prediction methods are given below.

Distribution Function
The probability distribution function plays a very important role
in resource evaluation and interval prediction. This study
attempts to use different DFSs to fit the distribution function

of prediction error, hoping to analyze the time series in a new way
and to mine its uncertainty characteristics. In this section, five
types of model prediction error distribution functions (stable,
extreme value, normal, logistic, and t location-scale (TLS)
functions) are introduced. The relevant probability density
functions are shown in Table 1.

Interval Prediction Theory
Under the significance level α, for the limit of the model prediction
error interval (Imin and Imax), the probability formula of the
prediction model error value ŷerr and the prediction error true
value Yerr can be expressed as follows (Song et al., 2015):

P(Imin ≤Y err ≤ Imax) � 1 − 2α (39)

Since the error value of the prediction model is a random
variable, Eq. 50 can also be written as follows:

P{Imin ≤Y err ≤ Imax

∣∣∣∣E(Yerr) � ŷerr} � 1 − 2α (40)

In addition, we assume that the prediction error of the future
prediction model has the same distribution function as that of the
historical prediction model. Therefore, the probability
distribution function (PDF) based on the historical error data
of the prediction system can be regarded as a distribution
function of future prediction error (Chen and Liu, 2021).
Thus, the upper and lower bounds of the function at a certain
confidence level can be calculated.

⎧⎪⎨⎪⎩(Imin, Imax)
∣∣∣∣Imin ≤Y err ≤ Imax,∫Imax

Imin

f(x∣∣∣∣Θ̂)dx � 1 − 2α
⎫⎪⎬⎪⎭
(41)

The above equation can also be written as

[Îmin, Îmax] � [Îmin, ŷerr] [ŷerr, Îmax] (42)

∫ŷerr

Imin

f(x∣∣∣∣Θ̂)dx � F(ŷerr) − α (43)

∫Îmax

ŷerr

f(x∣∣∣∣Θ̂)dx � 1 − F(ŷerr) − α (44)

After the optimal statistical distribution of the prediction error
is determined, the upper Ûand lower L̂ bounds of the carbon price
prediction interval can be constructed.

[L̂, Û] � [ŷforecast + Îmin, ŷforecast + Îmax] (45)

In Eq. 45, ŷforecast is the carbon price predicted by the carbon
price prediction model.

ENSEMBLE PREDICTION SYSTEM AND ITS
INTERVAL FORECASTING FRAMEWORK

This section introduces in detail the specific process used in this
study. A brief overview of EPS and its uncertainty exploration is
shown in Figure 2.
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TABLE 1 | Probability distribution function (PDF) of the five distribution functions used in the study.

Distribution functions PDF Parameters

Extreme value f(x;μ; σ) � σ−1 exp − (x−μ
σ )exp(−exp(x−μ

σ )),x > 0
μ>0location parameter
σ >0scale parameter

Logistic f(x;μ; σ) � exp{x−μσ }
σ(1+exp[−(x−μ)σ ])2 μ>0location parameter

σ >0scale parameter
Normal

f(x;μ;σ) � 1
σ

))
2π

√ exp[−(x−μ)
2

2σ2 ] μ>0location parameter
σ >0scale parameter

Stable

f(x; c; α; β; δ) � exp( − cα|x|
α +δx)[ 0< α<2;−1≤ β≤1 shape parameter

0< c<∞;−∞< δ <∞ scale parameter

T Location-Scale f(x;μ,σ,υ) � Γ (υ+1
2 )

σ
)))))
υπΓ(υ

2)
√ (1+1

υ(x−μ
σ )2)−υ+12

υ>0 shape parameter
μ>0location parameter
σ >0scale parameter

FIGURE 2 | EPS system and its interval prediction model framework.
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Step 1: Data Preprocessing and Feature
Selection Module
In this article, ICEEMDAN technology is employed to
decompose and reconstruct the original carbon price data.
ICEEMDAN decomposes the original carbon price into several
IMFs and residual terms. The IMF with the highest frequency is
then eliminated, and the remaining IMFs are reorganized to
extract the effective features of the data. For multivariate time
series, effective feature selection is also very important. In this
study, partial autocorrelation analysis (PACF) is employed to
determine the input feature length of carbon price prediction to
achieve feature selection.

Step 2: EPS of Model Components
Owing to the high randomness, volatility, and instability of
carbon price data, it is not easy to find its rules of motion,
and the single hybrid prediction model has inherent defects.
Therefore, the use of a combination of hybrid forecasting models
is an effective means of obtaining satisfactory prediction
performance and improving prediction accuracy. In this study,
two deep learning hybrid models (ICEEMDAN-GBiLSTM and
ICEEMDAN-CNN) and a feedforward neural network
(ICEEMDAN-ELM) are used as the prediction components of
the EPS. They have high prediction accuracy and good learning
ability for time series.

Step 3: Component Ensemble Strategy
Given the advantages and disadvantages of different hybrid
models, it is very important to select a weight combination
strategy with strong adaptability and good fusion effect to
compensate for the defects of the individual hybrid models
and improve the performance and accuracy of carbon price
prediction. Therefore, the MODA is selected to determine the
fusion weight among the three prediction model components.

Step 4: Exploring Uncertainty
Quantifying the uncertainty associated with carbon price
prediction is a considerable challenge. In this study, a new
interval prediction scheme based on forecasting error
distribution modeling in the model training stage is
proposed. Unlike previous research based on the
assumption that the prediction error follows a Gaussian
distribution, this article uses MLE to conduct statistical
research on carbon price error data and to explore its
distribution. Among the five DFs developed, the function
that best fits the distribution of carbon price prediction
error is found. After confirming that the optimal fit to the
distribution of forecast error is provided by the t location-
scale, the upper and lower bounds of the carbon price
prediction interval are constructed based on its PDF.

EXPERIMENT AND ANALYSIS

This section will introduce the experimental setup and analysis in
detail, including the simulation experiment dataset and three

different groups of empirical experiments that are used to verify
the prediction performance of EPS.

Data Selection and Analysis
In this article, three datasets based on the carbon price market
(the EU Emission Trading System (EU ETS), the Shenzhen (SZ),
and the Beijing (BJ) datasets) are used as experimental data. The
dataset can be downloaded from the wind database (http://www.
wind.com.cn/). The first 80% of each dataset is used as the
training set, and the last 20% is used as the test set.
Specifically, for the EU emission trading system dataset, a total
of 1,000 daily quota settlement prices from July 10, 2013 toMay 3,
2017 are selected. For the Shenzhen and Beijing datasets, this
study used daily spot carbon price data collected from January 14,
2014 to February 7, 2017, including 800 data points. Detailed
statistical descriptions of the three datasets are given in Table 2.
In addition, in constructing the model input vector, we adopted a
rolling acquisition mechanism.

Model Parameter Setting
The model parameters determine the performance of the
prediction system to a large extent. The different parameters
of the EPS proposed in this study are obtained by referring to the
literature and to the results of the experiments conducted in this
study. The parameter settings for each component of the
ensemble system are listed in Table 3; this information is
valuable and useful because it provides a reference for future
research.

Evaluation Index System
To quantify the performance of the developed system, this study
constructs an evaluation system using a variety of error
evaluation criteria. The system is evaluated and analyzed based
on the deterministic point estimation evaluation index and the
probabilistic interval estimation evaluation index (Wang R. et al.,
2018; Jiang et al., 2021). In the deterministic prediction part, four
evaluation indicators, MAE, RMSE, MAPE, and IA, are used.
MAE can better express the prediction error under actual
conditions. RMSE reflects the deviation between the prediction
value and the true value. MAPE expresses the accuracy of
prediction using the ratio of error to true value. IA is applied
to measure the concordance between the predicted value and the
actual value. During interval prediction and evaluation, the three
general indicators FICP, FINAW, and AWD are employed to
evaluate the quality of the prediction interval. FICP reflects the
possibility that the original value falls within the forecast period.
FINAW measures the width of the prediction interval. AWD
represents the degree of deviation between the observed value and
the prediction interval. For FICP, unlike other indicators, a larger
value indicates better performance of the model. Table 4 lists the
details of the above evaluation indicators.

Experiment 1:Comparison of Different Data
Processing Methods
In this experiment, the original carbon price series and the data
based on ICEEMDAN, EEMD, and singular spectrum
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decomposition (SSA) are used as the training input for different
prediction models. The purpose of this experiment is to explore
the effect of using different signal decomposition techniques on
the prediction accuracy of prediction models. Table 6 compares
the results obtained using the corresponding models.

Feature Selection Analysis
The prediction performance of both machine learning and deep
learning methods is closely related to the input variables. The
PACF method is used to select appropriate features as the best
input of the prediction model. The best input characteristics

obtained from the PACF results of each subsequence are shown in
Table 5. (In the follow-up experiments, the input units of each
prediction model were obtained according to the PACF results.)

Prediction Results Obtained Using the Different Data
Preprocessing Methods
To verify the effectiveness of the ICEEMDAN data preprocessing
method in data feature extraction, in this experiment the
performance of ICEEMDAN is compared with that of the
classical feature extraction methods EEMD and SSA. The
detailed results are described below.

TABLE 2 | : Statistical description of the carbon prices reported at three sites.

Statistical Indicators Number Max Min Mean Std

Equation — — — Mean=∑N
i= 1xi/N S=

))))))
1
N ∑N

i= 1

√
(xi − x)2

EU ETS Total 1,000 8.67 3.93 6.01 1.24
Training 800 8.67 4.02 6.24 1.26
Testing 200 6.54 3.93 5.08 0.57

BJ Total 800 77 30.63 49.56 7.08
Training 640 77 30.63 48.96 7.65
Testing 160 69 39.45 51.98 3.02

SZ Total 800 88.45 17.83 43.13 16.05
Training 640 88.45 18.98 46.92 15.58
Testing 160 42.81 17.83 28.01 5.39

TABLE 3 | Model parameters.

Model Parameters Default value

MODA Maximum number of iterations 50
Maximum number of archives 500
Dragonfly number 30
Upper and lower limits of the weight coefficient [−2,2]
Objective functions

Min{obf1 � Std(f (x̂c,t ),Y )
obf2 � MAPE(f (x̂c,t ),Y )

ICEEMDAN Noise standard deviation 0.05
Number of realizations 50
Maximum number of sifting iterations 500

ELM Input nodes number Based on PAC
Output nodes number 1
Hidden nodes number 5
Learning rate 0.001
Iterations number 200

GBiLSTM Number of inputs Based on PAC
Number of hidden units 200
Number of outputs 1
Maximum iteration 250
Initial learning rate 0.01
Training algorithm Adam

CNN Number of inputs Based on PAC
Number of outputs 1
The kernel sizes 2 × 2
The activation function Relu
The max pooling layer size 2
Training algorithm Adam
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From the results in Table 6, it can be seen that the use of data
preprocessing technology can effectively ameliorate the
prediction ability of the prediction model. MAPE, MAE,
RMSE, and IA were adopted to evaluate the prediction ability
of the model based on the prediction accuracy and the fitting
situation. For the data on the three carbon trading markets, the
MAPE, the MAE, and the RMSE of the prediction model are
significantly lower than those of the model that was directly
trained on the original dataset, regardless of which data
preprocessing technology is adopted. When the original
dataset is used directly, the MAPEactual of the prediction
model under the EU ETS, SZ, and BJ datasets is between 3
and 14%, while theMAPEICEEof the prediction model is reduced
to 1–5% when ICEEMDAN noise reduction technology is used.
This is sufficient to indicate the necessity for data preprocessing.

In addition, for the three components of EPS, different data
preprocessing methods are used as model inputs. The
experimental results show that ICCEEMDAN is more effective
than the other methods. For the EU ETS dataset, the prediction
system using ICEEMDAN noise reduction technology has the
highest prediction accuracy, and the average RMSE value of the
three component models, RMSE

EUETS
ICEE � 0.1081, is the best; the

prediction performance of the model based on EEMD is the
worst: RMSE

EUETS
EEMD � 0.1313 in the SZ dataset,MAE

SZ
ICEE � 1.2518,

RMSE
SZ
ICEE � 1.9671, andMAPE

SZ
ICEE � 4.8261%. In the BJ dataset,

the average values of these three indicators are 0.5573, 1.2169, and
1.0573%, obviously better than those obtained using other data
processing technologies.

IA is an effective index that can be used to measure the
correlation and consistency between the predicted values and

the original data. The higher the index value is, the better the
fitting effect of the model is. The ICEEMDAN feature extraction
technology proposed in this article achieves the highest IA of all
the models tested under the three carbon price datasets. In the SZ
dataset, the IA values are IASZ

ICEE−ELM � 0.9644,
IASZ

ICEE−CNN � 0.9529, and IASZ
ICEE−BiLSTM � 0.9696. These

values are 0.0138, 0.0025, and 0.0173 units higher than
IASZ

SSA−ELM, IASZ
SSA−CNN, and IASZ

SSA−GBiLSTM, respectively, and
0.0628, 0.0504 and 0.0657 units higher than IASZ

EEMD−ELM,
IASZ

EEMD−CNN和IASZ
EEMD−GBiLSTM, respectively. In summary,

compared with other data preprocessing technologies,
ICEEMDAN data preprocessing is more effective for data
feature extraction and has incomparable advantages in
improving the performance of the prediction model.

Key Finding: Compared with the original carbon price series
and other classical data preprocessing techniques, ICEEMDAN
preprocessing technology can extract the data characteristics of
carbon prices more effectively, significantly enhances the
prediction accuracy of the prediction model, and is a more
reliable data preprocessing tool.

Experiment 2: Point Forecasting:
Comparison of the EPS With Reference
Models
To verify the effectiveness of EPS in carbon price prediction,
the traditional single forecast model and the classical hybrid
prediction model are compared with EPS. These models
include the traditional statistical models ARIMA and
ICEEMDAN-ARIMA, the traditional single neural network
models BP, ELM, GRNN, the deep learning models LSTM,
CNN, and the classical hybrid prediction models GWO-BP
and ICEEMDAN-GWO-BP. In addition, to explore the
expansibility of the model, the experimental content of
multistep point prediction is included in the experiment. In
the multistep prediction, rolling prediction is adopted. The
specific method used to perform multistep prediction is
shown in Figure 3. The experimental results are shown in

TABLE 4 | Basic evaluation metrics.

Metric Definition Equation

MAE The mean absolute error MAE � 1
N∑N

i�1
∣∣∣∣yPRE(i) − yACT(i)

∣∣∣∣
RMSE Root mean squared error RMSE �

))))))))))))))))))))
1
N∑N

i�1(yPRE(i) − yACT(i))2
√

MAPE The mean absolute percentage error
MAPE � 1

N∑N
i�1

∣∣∣∣∣∣∣∣∣yPRE(i)−yACT(i)yACT(i)

∣∣∣∣∣∣∣∣∣ × 100%

IA Concordance index
IA � 1 − ∑N

i�1(yPRE(i)−yACT(i) )2∑N

l�1(|yPRE(i)−yACT |+|yACT(i)−yACT |)2
FICP Forecast interval coverage probability FICP � ∑N

i�1ci × 100%/N
FINAW Forecast interval normalized average width FINAW � ∑N

i�1(Ui − Li ) × 100%

AWD � ∑N
i�1AWDi/N

AWD Accumulated width deviation of testing dataset
AWDi �

⎧⎪⎨⎪⎩
Li − yACT(i)/Ui − Li , yACT(i) < Li
0, Li ≤ yACT(i) ≤Ui

yACT(i) − Ui/Ui − Li , yACT(i) >Ui

Note: This table lists the full names and calculation methods of the evaluation indices included in the evaluation system. N is the size of the test sample, y is the average value ofy, yACT(i) is
the i-th actual value, and yPRE(i) is the i-th forecast value. Ui and Li represent the upper and lower limits, respectively, of the prediction interval. Ci represents the number of true values
contained in the construction interval [Ui , Li] and is the i-th prediction interval.

TABLE 5 | Optimal input characteristics based on the PACF.

Site Input combination

EU ETS xt−1 , xt−2 , xt−3 , xt−4 , xt−5 , xt−6 , xt−7 , xt−8 , xt−9
SZ xt−1 , xt−2 , xt−3 , xt−4 , xt−5 , xt−6 , xt−7 , xt−8 , xt−9 , xt−10
BJ xt−1 , xt−2 , xt−3 , xt−4 , xt−5 , xt−6 , xt−7 , xt−8 , xt−9 , xt−10
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Table 7. The detailed experimental analysis is described
below.

1) In comparison with the traditional single prediction model,
we find that EPS displays incomparable advantages in the four
indicators in both one-step and multiple-step prediction.
This shows that the EPS developed by us is effective in
predicting carbon prices. In addition, the MAPE values of
GBiLSTM in the three datasets are MAPEEUETS

GBiLSTM � 3.3159,

MAPESZ
GBiLSTM � 13.1740, andMAPEBJ

GBiLSTM � 3.7406; these
values are better than those obtained using a single LSTM,
proving the effectiveness of the GBiLSTM. The other two
prediction components, ELM and CNN, have outstanding
prediction performance in all single prediction models, so it is
reasonable to choose them as the submodes of the EPS. In
addition, we can see that for the traditional statistical model
ARIMA, the average value of MAPE of the three stations is
MAPEARIMA � 11.0072in one-step prediction; this is not as
high as the prediction accuracy achieved using other
prediction models, indicating that the traditional linear
statistical model is not suitable for the prediction of carbon
price series with high volatility and complexity.

2) We can observe that under different datasets, different
prediction models have different prediction performances.
Under the EU ETS dataset, the neural network ELM
performs best, yielding RMSEEUETS

ELM � 0.2148; this is better
than the RMSE values of the deep learning algorithms CNN
and GBiLSTM, which are RMSEEUETS

CNN � 0.2218 and
RMSEEUETS

BiLSTM � 0.2241, respectively. However, under the
SZ and BJ datasets, the deep learning algorithms CNN
and GBiLSTM achieve better prediction results than ELM.
The same phenomenon occurs inmultistep forecasting, and there
the forecast advantage of the deep learning framework is more
obvious. However, the prediction accuracy of EPS remains the
highest under any of the tested datasets. The RMSE values in the
one-step forecast are RMSEEUETS

EPS � 0.0904, RMSESZ
EPS � 1.6096,

and RMSEBJ
EPS � 1.2046. The RMSE values in the two-step

forecast are RMSEEUETS
EPS � 0.1829, RMSESZ

EPS � 3.3244, and
RMSEBJ

EPS � 1.7567. This shows that the combination strategy

retains the forecasting advantages obtained by using different
forecasting components and that it compensates for each model’s
defects; as a result, EPS has strong robustness and wide
adaptability.

In comparison with the classic hybrid forecasting models
ICEE-GWO-BP, SSA-GRNN, and GWO-BP, several sets of
hybrid forecasting methods have achieved good forecasting
performance; however, because the index values used in these
models are very similar, it is not easy to intuitively present the
predictive ability of the model. In this case, we measure the
percentage of improvement in the evaluation index to make
the analysis more intuitive. The percentage of improvement in
the evaluation index is a measure of the degree of
improvement achieved by EPS compared with the index
value of the comparison model; it can be expressed as follows:

Pmodel
Index �

∣∣∣∣∣∣∣Indexmodel − IndexEPS
Indexmodel

∣∣∣∣∣∣∣ × 100% (46)

wherePmodel
Index is the percentage of improvement indicators,

Indexmodel stands for the index value of the comparison
model, and IndexEPSis the index value of the EPS.

In the EU ETS dataset, the improved MAPE values for one-
step prediction of the three hybrid models are
PICEE−GWO−BP
MAPE � 1.9673%, PSSA−GRNN

MAPE � 60.4950%, and
PGWO−BP
MAPE � 59.5377%. The improved MAPE values of the two-

step prediction are PICEE−GWO−BP
MAPE � 9.2410%, PSSA−GRNN

MAPE �
30.7285% and PGWO−BP

MAPE � 51.8867%. Under the BJ dataset,
the improved IA values predicted for the three hybrid models
using the one-step method are PICEE−GWO−BP

IA � 0.9064%,
PSSA−GRNN
IA � 48.1563%, and PGWO−BP

IA � 33.3896%. The
improved IA values obtained by two-step prediction are
PICEE−GWO−BP
MAPE � 1.4313%, PSSA−GRNN

MAPE � 97.2385%, and
PGWO−BP
MAPE � 104.3018%. The index improvement percentage

more intuitively shows the improvement in prediction
performance obtained using EPS. Compared with the classical
hybrid prediction model, the EPS shows significant improvement
in both prediction accuracy and fitting consistency.

TABLE 6 | Comparison of the performances of prediction models based on different data feature extraction techniques.

Model EU ETS SZ BJ

— MAPE RMSE MAE IA MAPE RMSE MAE IA MAPE RMSE MAE IA

ELM 3.1190 0.2148 0.1583 0.9574 13.3955 4.4118 3.5126 0.7965 3.9351 4.0281 2.5107 0.7225
CNN 3.1581 0.1659 0.1659 0.9544 12.5333 4.4030 3.3666 0.8007 3.7483 3.8029 2.4362 0.7236
GBiLSTM 3.3159 0.2241 0.1744 0.9523 13.1742 4.3402 3.4707 0.7955 3.7406 3.7846 2.4355 0.7239
EEMD-ELM 1.8531 0.1235 0.0942 0.9857 7.8973 2.8796 2.2638 0.9016 2.9211 2.2281 1.5135 0.8443
EEMD-CNN 1.8892 0.1249 0.0962 0.9880 7.8426 2.9683 2.2237 0.9025 2.9058 2.2111 1.5042 0.8483
EEMD-GBiLSTM 2.2015 0.1456 0.1117 0.9829 7.6835 2.5719 2.0024 0.9029 2.8966 2.2051 1.4991 0.8495
SSA-ELM 1.4597 0.1021 0.0734 0.9922 5.8985 2.2233 1.6648 0.9506 1.5922 1.4362 0.8198 0.9318
SSA-CNN 1.5684 0.1100 0.0795 0.9905 5.9112 2.2256 1.6727 0.9504 1.5435 1.4568 0.8079 0.9139
SSA-GBiLSTM 2.0231 0.1293 0.1009 0.9861 5.8622 2.2085 1.6519 0.9513 1.5479 1.4577 0.8085 0.9137
ICEE-ELM 1.2806 0.0915 0.0647 0.9934 4.5032 1.7141 1.2424 0.9644 1.0571 1.2013 0.5561 0.9397
ICEE-CNN 1.5162 0.1075 0.0771 0.9910 5.6835 2.5719 1.3624 0.9529 1.0624 1.2485 0.5596 0.9359
ICEE-GBiLSTM 1.8746 0.1253 0.0941 0.9878 4.2916 1.6153 1.1508 0.9686 1.0525 1.2008 0.5561 0.9399
EPS 1.2657 0.0904 0.0640 0.9936 4.0156 1.6096 1.1372 0.9687 1.0064 1.2049 0.5312 0.9402

Note: The best indicator values are shown in bold type.
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Figure 3 shows a comparison of the prediction results
obtained using EPS and the comparison model when different
numbers of prediction steps are used.

Key finding: The difference in the prediction results between
the EPS system and other prediction models is significant.
Specifically, under each dataset and for each prediction step,

FIGURE 3 | Prediction results obtained using EPS and comparison models under different prediction steps.
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the EPS has better prediction performance. Therefore, it is
concluded that the advanced ensemble prediction system has
better carbon price forecasting ability and potential than the
traditional single models and classical hybrid models.

Experiment 3: Interval Forecasting:
Uncertainty Analysis of Carbon Price
In Experiment 2, the accuracy and stability of the prediction
systemwere discussed through the predictionmethod of certainty
point estimation. However, the point prediction results do not
reflect the uncertainty in the dataset. To further prove that the
ESP system has a wider range of adaptability than other predictive
models, this section uses the interval prediction method to mine
the uncertainty of carbon prices. Unlike point prediction, interval
prediction can provide the upper and lower bounds of the
observed value, making it possible to construct the prediction
interval under a given significance level. It can provide additional

information for carbon price market policymakers and can help
them analyze the carbon price market.

Distribution Function of Prediction Error
In previous studies, most of the prediction errors of the prediction
model defaulted to obey the normal distribution. However, the
normal distribution function does not effectively reflect the
distribution of forecast model errors. Therefore, this research
develops five fitting distribution functions and uses the MLE
method to conduct an in-depth investigation of the prediction
error to obtain a distribution function (DF) with better fitting
performance. The most suitable probability distribution for
further interval prediction is selected.

In this section, five DFs, namely, extreme value, normal,
logistic, stable, and t location-scale, are used to represent the
distribution of carbon price prediction errors. Table 1 shows the
relative PDF of these DFs. Table 8 lists the five DF parameters
estimated by the MLE method. These parameters can be used to

TABLE 7 | Comparison of the prediction ability of the proposed system with those of some traditional benchmark models and classic hybrid models.

Dataset Model ONE-STEP TWO-STEP

MAPE RMSE MAE IA MAPE RMSE MAE IA

EU ETS ELM 3.119 0.2148 0.1583 0.9574 4.2962 0.2842 0.2169 0.9386
CNN 3.1581 0.2218 0.1659 0.9544 4.1304 0.2805 0.2112 0.9392
GBiLSTM 3.3159 0.2241 0.1744 0.9523 4.1862 0.2794 0.2133 0.9390
LSTM 3.5642 0.2470 0.1815 0.9407 4.2575 0.2827 0.2164 0.9388
GRNN 3.5405 0.2432 0.1799 0.9418 4.7743 0.3232 0.2432 0.9341
BP 3.2941 0.2235 0.1704 0.9516 4.3052 0.2903 0.2193 0.9380
ARIMA 5.8692 0.3789 0.2947 0.9327 7.6365 0.4814 0.3011 0.9036
ICEE-ARIMA 1.9758 0.1323 0.1000 0.9862 3.6109 0.2401 0.1839 0.9403
GWO-BP 3.1281 0.2149 0.1584 0.9571 5.5972 0.3500 0.2828 0.9322
SSA-GRNN 3.2039 0.2170 0.1621 0.9548 3.8876 0.2632 0.1986 0.9385
ICEE-GWO-BP 1.2911 0.0891 0.0644 0.9862 2.9672 0.1988 0.1506 0.9617
EPS 1.2657 0.0904 0.0640 0.9936 2.6930 0.1829 0.1378 0.9674

SZ ELM 13.3955 4.4118 3.5126 0.7965 22.4148 6.6057 6.6813 0.4538
CNN 12.5333 4.4030 3.3666 0.8007 21.8746 6.2643 5.3190 0.4686
GBiLSTM 13.1740 4.3402 3.4707 0.7955 22.034 6.5272 5.5683 0.4617
LSTM 15.1983 6.8455 4.5637 0.7514 25.9514 7.3299 6.4834 0.4352
GRNN 13.7152 5.1715 3.8576 0.7654 33.0502 9.8132 8.2422 0.2973
BP 14.1428 5.8032 4.2144 0.7608 22.8251 6.5453 5.7117 0.5004
ARIMA 21.8403 7.8476 5.9355 0.6595 35.1742 10.0714 8.7415 0.4211
ICEE-ARIMA 8.9814 3.2795 2.5983 0.8943 12.8818 4.2559 3.3362 0.7351
GWO-BP 12.3461 4.1508 3.2907 0.8017 18.0382 5.3858 4.5591 0.5993
SSA-GRNN 5.9875 2.2372 1.6791 0.9494 14.3684 4.5285 3.6886 0.6773
ICEE-GWO-BP 4.6025 1.8286 1.3027 0.9631 11.1825 3.7085 2.9526 0.8039
EPS 4.0156 1.6096 1.1372 0.9687 9.7600 3.3244 2.5621 0.8701

BJ ELM 3.9351 4.0281 2.5107 0.7225 4.8978 4.4902 3.5380 0.4689
CNN 3.7483 3.8029 2.4362 0.7236 4.8724 4.4065 3.5240 0.4410
GBiLSTM 3.7406 3.7846 2.4355 0.7239 4.6629 4.3132 3.2137 0.4852
LSTM 3.8462 3.9033 2.4871 0.7231 4.8787 4.4753 3.5231 0.4749
GRNN 4.1345 4.3247 2.9737 0.6273 5.0379 4.5516 3.6191 0.4416
BP 4.0350 4.2179 2.8450 0.6355 5.9108 4.9031 3.8741 0.4379
ARIMA 5.3120 4.6312 3.7397 0.5627 8.1714 6.4412 4.7140 0.4058
ICEE-ARIMA 2.4705 2.0481 1.2635 0.9045 2.9320 2.5669 1.5213 0.6763
GWO-BP 2.9202 3.0563 1.5062 0.7113 4.0738 3.6183 2.1437 0.4440
SSA-GRNN 3.0901 2.6153 1.5929 0.6346 3.9989 3.4553 2.0979 0.4599
ICEE-GWO-BP 1.1544 1.2383 0.5966 0.9488 2.4931 2.1482 1.3095 0.8943
EPS 1.0064 1.2049 0.5312 0.9402 2.1558 1.7567 1.1272 0.9071

Note: ICEE is an abbreviation for ICEEMDAN. The best indicator values are shown in bold type.
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describe the scale and location of these DFs. In addition, the
coefficient of determination (0 ≤ R2 ≤ 1) and RMSE are used to
determine the degree of fit of these DFs. The larger the R2 value is,
the lower the RMSE value is, and the better is the fitting ability of
the DFs. The index values reflecting the fitting abilities of the five
DFs are shown in Table 9 and Figure 4.

Table 9 shows that the t location-scale function fits the EPS
prediction error best. Its R2 value is higher than 0.96, and its
RMSE value is the lowest, indicating that it can provide better
estimates in all cases, followed by stable distribution, normal
distribution, logistic distribution, and extreme value distribution.
In addition, although the stable distribution has a slightly worse
fitting effect than the t location-scale distribution, it is still better
than the normal distribution that the previous prediction error
hypothesis obeys; this further proves the necessity of fitting the
distribution of the prediction error. In addition, the motivation
for estimating the distribution function of the carbon price
dataset in this section is to prepare for further research on the
establishment of carbon price interval predictions, as discussed in
Section Interval Prediction of Carbon Price.

Interval Prediction of Carbon Price
Unlike the deterministic information given by the point forecast,
the interval forecast can provide the forecast range, a confidence
level, and other uncertain information on future values; this
information is helpful to decision-makers who are attempting
to analyze and supervise the reasonable operation of the carbon
price market. Owing to the generalization ability of the
forecasting model, the complex patterns of carbon price series
fluctuations and other factors inevitably produce forecast errors,
and the ability to effectively transform the uncertainty caused by
forecast errors into measurable features is of great significance.
Therefore, in this study, a new interval prediction scheme based
on modeling of the prediction error distribution in the model
training phase is proposed.

According to the point prediction results of the proposed
EPS system, the t location-scale distribution function, which

determines the prediction error in Section Distribution
Function of Prediction Error, and the interval prediction
method introduced in Section Interval Prediction Theory, the
prediction interval is constructed under the given significance
level α. To verify that the prediction interval constructed by the t
location-scale model has the best fit, it is compared with the
other four error distribution functions.

In addition, three evaluation indicators, FINAW, PICP, and
AWD, listed in Table 4, are introduced in this section to present
the effect of interval prediction. It is worth mentioning that the
optimal interval prediction should satisfy the following
conditions: under a given significance level α, the larger the
PICP value is (0 ≤ PICP ≤ 1), the smaller the FINAW value is,
and the better is the prediction performance of interval
prediction. However, it is obvious that there is a
contradiction between FINAW and PICP. When the PICP
value increases, the FINAW of the response average
bandwidth will certainly increase. Therefore, the AWD index
is introduced as a supplement to the evaluation index system.
Table 10 shows the prediction intervals of the EPS system as
evaluated based on the three carbon price markets using five
different error distributions.

In theory, when the PICP is greater than the significance
level, the constructed prediction interval is effective. As seen
from Table 10, the models satisfying this condition are
EPS-TLS and EPS-Extreme value; these models are effective
at the 95, 90, and 80% significance levels. However, if the value
of the PICP is the only goal, the result will become
meaningless, as increased PICP inevitably leads to a larger
FINAW. Based on different αconditions, the value of
FINAWEPS−Extreme valueis significantly higher than the
FINAW value obtained through modeling of other
distributions. At the same time, considering that in Section
Distribution Function of Prediction Error, the fitting of extreme
value distribution to EPS prediction error is very bad, it can be
considered that the prediction interval constructed by EPS-
Extreme value is not reasonable.

The PICP of EPS-TLS in the data from the three
carbon trading markets is higher than the significance levelα.
In addition, under differentα, the FINAW values of the three
markets are FINAWEUETS

EPS−TLS � 0.0542, FINAWSZ
EPS−TLS � 0.1225,

and FINAWBJ
EPS−TLS � 0.1397. The FINAW value is not

optimal in any of the five interval prediction models, but with
only a small increase in the FINAW value, the other index
values achieve better results. All things considered, this can be
accepted.

For the prediction interval constructed using a normal
distribution, in the BJ dataset, the PICP values of EPS-Normal

TABLE 8 | Parameter values of the different distribution functions determined by MLE.

Datasets Extreme value Logistic Normal Stable T Location-scale

— μ σ μ σ μ σ α1 α2 β δ μ σ υ

EU ETS 0.0197 0.0342 0.0028 0.0189 0.0030 0.0334 1.9347 −0.0264 0.0227 0.0031 0.0030 0.0314 19.0078
SZ 0.2878 0.7713 −0.0660 0.3496 −0.0542 0.6631 1.7226 0.2460 0.3768 −0.092 −0.0691 0.5031 4.7444
BJ 0.1150 0.4266 −0.0642 0.1978 −0.0839 0.4106 1.2249 −0.1238 0.1469 -0.047 −0.0531 0.1665 1.5469

TABLE 9 | R2 and RMSE values of the five distribution functions by MLE.

Datasets EU ETS SZ BJ

— R2 RMSE R2 RMSE R2 RMSE

Extreme value 0.9086 1.1897 0.8115 0.0941 0.6103 0.2913
Logistic 0.9546 0.8382 0.9685 0.0384 0.8780 0.1630
Normal 0.9760 0.6095 0.9512 0.0479 0.7207 0.2466
Stable 0.9771 0.5956 0.9507 0.0481 0.9668 0.0851
T location-scale 0.9877 0.4355 0.9791 0.0313 0.9671 0.0846
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are PICPBJ
EPS−Normal � 92.0530 and PICPBJ

EPS−Normal � 88.0795
under significance levels of 0.95 and 0.90, respectively; they
fail to meet the condition of a level of α that is greater than
significance. This also reflects the necessity of detailed research on
error distribution. For AWD indicators, although AWDEPS−TLS is
not all better than the benchmark model, there is little difference.
Considering the comprehensive performance of the three
indicators of the proposed scenario, EPS-TLS still has obvious
advantages over the four benchmark models in constructing the
prediction interval.

In addition, the carbon price prediction intervals generated by
the three proposed schemes of the three carbon trading markets
are shown in Figure 5. It can be observed that EPS-TLS has a
smaller bandwidth and is surrounded by these constructed
prediction intervals in most target values. The constructed
confidence interval is very effective.

DISCUSSION

In this section, we will discuss the robustness, application, and
further development of EPS in the carbon price market.

Robustness Discussion
Because the results of both deep learning and metaheuristic
optimization algorithms are always accompanied by randomness
and probability mechanisms, the results of each experiment will still
have deviations even when the parameters are set exactly the same. At
the same time, in the actual forecast, the actual values of the future

carbonprice cannot be predicted in advance; thus, it is impossible to use
the evaluation index to verify the future value in advance. Therefore, the
stability of the EPS is also an important factor that affects the prediction.

The standard deviation is an effective measure of system

stability. It can be indicated as SD(M) �
)))))))))))))∑n

k(Mk −M)2/n
√

,
where n is the number of training iterations, MK is the
predicted value of the K-th training result, and M is the
average of the N-th results (Xiao et al., 2017). The smaller the
value of SD, the higher the stability of the model.

To evaluate the stability of the different models, the SD(M)

values of four evaluation indices were calculated in 30 prediction
experiments using three carbon price datasets.

Table 11 shows a comparison of the stability test results of
different prediction systems based on ICEEMDAN processing. In
the EU ETS dataset, ICEE-ELM has good stability
(SDICEE−ELM

(MAPE) � 0.0105), but the stability is still slightly lower
than that of the EPS prediction system (SDEPS

(MAPE) � 0.0101).
In the BJ and SZ datasets, CNN has good prediction accuracy in
previous experiments, but its robustness is not good, and the
prediction results fluctuate greatly. In contrast, EPS obtains a
smaller SD value regardless of which dataset is used. This further
shows that different single prediction systems have different
robustness when used with different datasets and indicates that
EPS with a combination weighting strategy can be considered the
prediction method that obtains the best prediction results.

It is worth mentioning that the average prediction stability of
GBiLSTM in the three prediction datasets is better than that of
the traditional LSTM model; that is, �SDGBiLSTM

(RMSE) � 0.0496, but
�SDLSTM

(RMSE) � 0.0566. The results show that the proposed

FIGURE 4 | Five distribution functions fit the distribution of EPS error.

Frontiers in Environmental Science | www.frontiersin.org September 2021 | Volume 9 | Article 74009317

Yang et al. Carbon Price Forecasting

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


GBiLSTM not only has better prediction accuracy than LSTM but
also that its robustness is significantly improved.

Application of the Proposed Ensemble
Prediction System
1) A stable carbon price prediction system plays a prominent role

in the initial allocation of the carbon quota, in transaction
pricing and in effective monitoring of market risk. The

proposed EPS system not only shows accurate point
prediction performance but also reasonably analyzes and
mines the potential uncertainty of carbon prices by
constructing the carbon price prediction interval based on
error distribution fitting.

2) The proposed EPS system combines a deep learning
framework with a traditional neural network and thereby
provides a new idea for carbon price prediction and an
effective reference tool that policymakers can use to
research the volatility of the carbon market.

3) Comparing the EU ETS market data with the carbon price
markets in Shenzhen and Beijing, it is helpful for China to
analyze the evolution of the mature carbon trading market
price in the EU; this will help the regulatory authorities adjust
the policy and ensure the steady development of China’s
carbon market.

4) EPS has high practical value and strong expansibility and can
easily fit highly volatile nonlinear time series. It thus provides
a new intelligent supervision scheme for building a sound
global carbon trading market in the future. At the same time,
the use of a deep learning integrated forecasting system with
high accuracy and strong stability is expected to become a new
direction of energy and financial markets in the future.

Suggestions on Further Improvement of
Carbon Price Market
More accurate prediction of carbon prices can provide some
effective suggestions through which governments and enterprises
can build and improve the carbon price market in the future.
These are outlined below.

Improvement of the Initial Allocation Mechanism of
Carbon Emission Rights
In the initial allocation of carbon quotas, we should pay attention to
the fairness of allocation. First, the government should formulate
incentive policies to encourage regional governments and local
enterprises to reduce emissions and should give appropriate
incentives or policy support to the regions and enterprises that
use emission reduction technologies. Second, the initial allocation of
carbon emission rights requires effective operation and an effective
regulatory system; both of these components directly affect the
efficiency and fairness of carbon quota allocation. Strengthening the
construction of a carbon emission rights regulatory system will help
achieve efficiency and fairness of resource allocation as China’s total
emission reduction target is being met.

Rationalization of the Carbon Trading Pricing System
Owing to the imperfect development of the carbon trading
market and the carbon trading pricing system, the carbon
trading price is easily affected by monopoly enterprises. At
present, there is a certain monopoly phenomenon in the
carbon trading market in some regions of China. Some small
buyer enterprises can only passively accept the carbon price, and
this allows monopoly enterprises to disproportionately influence
the supply and demand of the market and reduces total social
welfare. The establishment of a reasonable pricing system that

TABLE 10 | Carbon price range prediction results based on EU ETS, SZ, and BJ
under different significance levels.

Site PINC Distribution PICP FINAW AWD

EU ETS 95% EPS-Extreme value 97.3822 0.0701 0.0027
EPS-Logistic 83.2461 0.0387 0.0354
EPS-Normal 95.2880 0.0516 0.0083
EPS-Stable 95.8115 0.05361 0.0073
EPS-TLS 95.8115 0.0542 0.0070

90% EPS-Extreme value 96.8586 0.0573 0.0062
EPS-Logistic 74.8691 0.0316 0.0584
EPS-Normal 90.0109 0.0412 0.0194
EPS-Stable 90.5759 0.0443 0.0162
EPS-T LS 90.0524 0.0426 0.0188

80% EPS-Extreme value 90.5759 0.0434 0.0155
EPS-Logistic 62.3037 0.0240 0.1170
EPS-Normal 80.5340 0.0331 0.0460
EPS-Stable 79.5812 0.0342 0.0419
EPS-T LS 81.675 0.0352 0.0378

Site PINC Distribution PICP FINAW AWD

SZ 95% EPS-Extreme value 98.0132 0.1811 0.0029
EPS-Logistic 94.7020 0.1191 0.0115
EPS-Normal 95.3642 0.1240 0.0105
EPS-Stable 95.3642 0.1207 0.0112
EPS-TLS 95.3642 0.1225 0.0100

90% EPS-Extreme value 95.3642 0.1477 0.0051
EPS-Logistic 92.0530 0.0970 0.0224
EPS-Normal 90.0514 0.1028 0.0183
EPS-Stable 92.0530 0.0927 0.0242
EPS-TLS 92.0530 0.0967 0.0222

80% EPS-Extreme value 90.7285 0.1121 0.0158
EPS-Logistic 81.4570 0.0724 0.0507
EPS-Normal 81.4570 0.0706 0.0547
EPS-Stable 81.4570 0.0682 0.0585
EPS-TLS 86.7550 0.0801 0.0375

Site PINC Distribution PICP FINAW AWD

BJ 95% EPS-Extreme value 92.0530 0.1546 0.0110
EPS-Logistic 89.4040 0.1054 0.0199
EPS-Normal 92.0530 0.1177 0.0137
EPS-Stable 96.6887 0.1550 0.0054
EPS-TLS 96.0265 0.1397 0.0065

90% EPS-Extreme value 92.0530 0.1263 0.0175
EPS-Logistic 85.4305 0.0848 0.0401
EPS-Normal 88.0795 0.0987 0.0258
EPS-Stable 86.0927 0.0900 0.0354
EPS-TLS 91.7951 0.1017 0.0224

80% EPS-Extreme value 88.7417 0.0958 0.0332
EPS-Logistic 84.1060 0.0632 0.0793
EPS-Normal 85.4305 0.0769 0.0524
EPS-Stable 75.4967 0.0520 0.1179
EPS-TLS 80.7947 0.0522 0.1134

Note: In the table above, FICP, FINAW, and AWD are selected to verify the prediction
performance of different models, where
FICP � ∑N

i�1ci × 100%/N,FINAW � ∑N
i�1(Ui − Li ) × 100%, andAWD � ∑N

i�1AWDi/N.
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avoids monopoly price manipulation is conducive to the return of
carbon prices to real value levels and to the optimal allocation of
resources.

Improvement of the Carbon Market Risk Management
and Control System
In the process of price fluctuation risk control, an accurate and
effective price forecasting model can be used to monitor price

fluctuations. Using the relevant data, such a model can be used to
predict long-term and short-term carbon trading prices, predict future
fluctuation trends, and establish an effective carbon trading price risk
early warning index system to effectively monitor the volatility risk
caused bymarket price fluctuations. Through prediction of the carbon
trading market price, we can grasp the fluctuations in carbon prices
and take measures in advance to exercise macro control and reduce
the level of risk when large market price fluctuations occur.

FIGURE 5 | Carbon price prediction intervals generated by the three proposed schemes.

TABLE 11 | Certainty of different forecasting methods.

Model ICEE-ELM ICEE-GBiLSTM ICEE-CNN EPS ICEE-LSTM ICEE-GWO-BP

EU ETS
SD(MAPE) 0.0105 0.0243 0.0902 0.0101 0.3277 0.0583
SD(RMSE) 0.0004 0.0007 0.0041 0.0003 0.0042 0.0007
SD(MAE) 0.0005 0.0008 0.0044 0.0005 0.0033 0.0005
SD(IA) 0.0001 0.0001 0.0007 0.0001 0.0007 0.0001

BJ
SD(MAPE) 0.0255 0.0204 0.0757 0.0147 0.0438 0.0171
SD(RMSE) 0.0091 0.0117 0.0224 0.0106 0.0212 0.0107
SD(MAE) 0.0129 0.0123 0.0379 0.0114 0.0321 0.0819
SD(IA) 0.0011 0.0011 0.0019 0.0012 0.0033 0.0038

SZ
SD(MAPE) 0.1845 0.1130 0.7846 0.1124 0.3831 0.1695
SD(RMSE) 0.0344 0.1363 0.1745 0.1352 0.1443 0.2029
SD(MAE) 0.0448 0.0062 0.1934 0.0054 0.0179 0.0348
SD(IA) 0.0021 0.0061 0.0076 0.0018 0.0067 0.0015

Note: ICEE is an abbreviation for ICEEMDAN. The best indicator values are shown in bold type.
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CONCLUSION

The availability of a reliable carbon price forecasting system is
significant in the emission trading market because it can help
decision-makers evaluate climate policies and adjust the emission
ceiling to effectively maintain the reliable operation of the market. In
this study, the EPS system, which adopts advanced data feature
extraction and selection methods, combines the three optimal
submodels through a multiobjective dragonfly optimization
algorithm and explores the deterministic and uncertainty
prediction of carbon price series. This study has several important
implications: 1) ICEEMDAN is better than traditional signal
decomposition at extracting data features. This can improve the
accuracy of the prediction system. 2) The deep learning algorithm
has a better ability than other algorithms to forecast carbon price
series. The developed GBiLSTM model has better predicted
performance and stability than the traditional LSTM. 3) Unlike
previous studies in which it was assumed that the prediction error
obeys a Gaussian distribution, this study explores five fitting
distribution functions of prediction error, finds a more accurate
error distribution function, and constructs a more reasonable
carbon price prediction interval. The experimental results indicate
that the EPS prediction system achieves the best prediction
performance, with MAPE values of 1.2657, 4.0156, and 1.0064%
for the three datasets. In addition, according to the optimal
distribution fitting function of EPS prediction error, the carbon
price prediction interval is constructed to mine the uncertainty of
carbon price fluctuation. At various significance levels, the constructed
prediction interval containsmost of the observations, showing that the
interval prediction has good performance. Therefore, the system is an

effective supplement to the existing carbon price prediction research
framework and contributes to the ability of the government to reduce
market risk and stabilize the market.

Although the combined prediction system proposed in this article
achieves good prediction performance, there are still some limitations
due to practical factors. Future research will analyze the carbon price
trend from two perspectives, historical carbon price series and external
factors, to obtain more accurate and stable prediction results.
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APPENDIX

APPENDIX A1 | The list of abbreviations in this study.

List of terminologies (method and indices)

EMD Empirical model decomposition EEMD Ensemble empirical mode decomposition
ICEEMDAN Improved complementary ensemble empirical mode

decomposition with adaptive noise
GRU Gated recurrent unit CNN Convolutional neural networks
ELM Extreme learning machine BP Back propagation neural network
CDF Cumulative density function ARIMA Autoregressive interval moving average model
GWO Grey wolf optimization algorithm MODA Multiobjective dragonfly optimization algorithm
GWO-BP BP after GWO algorithm GBiLSTM Bidirectional long short-term memory-gated recurrent unit
BiLSTM Bidirectional long short-term memory SSA Singular spectrum analysis
FINAW Forecast interval normalized average width FICP Forecast interval coverage probability
AWD Accumulated width deviation of testing dataset IMFs Intrinsic mode functions
DF Distribution function CDF Cumulative distribution function
MAPE Mean absolute percentage error MAE Mean absolute error
RMSE Root mean square error IA Concordance index
TLS T location-scale function GRNN Generalized regression neural network
R2 Coefficient of determination DL Deep learning probability density function

PDF
ANNs Artificial neural networks LSTM Long short-term memory
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