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The COVID-19 lockdown restrictions influenced global atmospheric aerosols. We report
aerosol variations over India using multiple remote sensing datasets [Moderate Resolution
Imaging Spectroradiometer (MODIS), Ozone Monitoring Instrument (OMI), Cloud-Aerosol
Lidar, and Infrared Pathfinder (CALIPSO)], and model reanalysis [Copernicus Atmosphere
Monitoring Service (CAMS)] during the lockdown implemented during the COVID-19
pandemic outbreak period from March 25 to April 14, 2020. Our analysis shows that,
during this period, MODIS and CALIPSO showed a 30–40% reduction in aerosol optical
depth (AOD) over the Indo-Gangetic Plain (IGP) with respect to decadal climatology
(2010–2019). The absorbing aerosol index and dust optical depth measurements also
showed a notable reduction over the Indian region, highlighting less emission of
anthropogenic dust and also a reduced dust transport from West Asia during the
lockdown period. On the contrary, central India showed an ∼12% AOD enhancement.
CALIPSO measurements revealed that this increase was due to transported biomass
burning aerosols. Analysis of MODIS fire data product and CAMS fire fluxes (black carbon,
SO2, organic carbon, and nitrates) showed intense fire activity all over India but densely
clustered over central India. Thus, we show that the lockdown restrictions implemented at
the government level have significantly improved the air quality over northern India but fires
offset its effects over central India. The biomass-burning aerosols formed a layer near
2–4 km (AOD 0.08–0.1) that produced heating at 3–4 K/day and a consequent negative
radiative forcing at the surface of ∼−65W/m2 (±40W/m2) over the central Indian region.

Keywords: COVID-19 lockdown, aerosol pollution over India, radiative forcing and heating, aerosol layer in the lower
troposphere, fires over central India

1 INTRODUCTION

There are growing concerns about aerosol pollution over the Indian region due to the negative effects
they produce on health and the hydrological cycle (Meehl et al., 2013; Vinoj et al., 2014; D’Errico
et al., 2015; Fadnavis et al., 2017a; Fadnavis et al., 2019a). During the past decade, India recorded the
highest levels of air pollution (World Bank and International report 2020). In India, ∼51% of the 1.4
billion people population are persistently exposed to air pollution. Aerosol pollution over India has
increased hazy days at a rate of 2.6 days per year (Thomas et al., 2019). This aerosol pollution has
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caused 8.8% of the total deaths (Report by Indian Council of
Medical Research, 2017; IHME Report, 2019). Other than
anthropogenic sources, smog events have proven fatal during
the last decade (Spears et al., 2019; Pandey and Vinoj, 2021).

Aerosol pollution over the Indian region is attributed to
economic development, traffic emissions, and land-use changes
(Fadnavis et al., 2013; Guttikunda et al., 2014; Hama et al., 2020).
Aerosol Radiative Forcing over India (ARFI) net observations
show the rate of increase at 2.3% per year in aerosol loading over
India (Krishna Moorthy et al., 2013). Pollution levels over urban
and rural regions are equally high (Dey et al., 2012; Hammer et al.,
2020). According to the Intergovernmental Panel on Climate
Change (IPCC, 2014), India contributes ∼38–78% to the
anthropogenic aerosol global mean and 3–9% to biomass-
burning aerosol (David et al., 2019; IPCC, 2014). Agricultural
fires and crop residue activity during winter/spring cause a
substantial increase (43%) in aerosol loading over North India
(Jethva et al., 2019; Fadnavis et al., 2021).

The novel coronavirus (COVID-19) made its first appearance
in December 2019 and quickly spread all over the world
(Fadnavis et al., 2021). Transmission during the COVID-19
pandemic outbreak was facilitated by certain atmospheric
conditions and pollutants (Lolli et al., 2020; Lolli and Vivone,
2020; Jiang et al., 2021). To restrict the spread of COVID-19,
lockdown measures were imposed in January in China, and later
in other countries all over the world (Chauhan and Singh, 2020;
Paital, 2020; Yunus et al., 2020). India confirmed its first case on
January 30, 2020, and later COVID-19 spread started rising
exponentially. To strengthen the health infrastructure and
restrict the spread of COVID-19, the Indian government
imposed a Janata curfew on March 22, 2020 and, after that, a
complete lockdown between March 25–April 14, 2020 (Chauhan
and Singh, 2020).

The lockdown measures implemented at government level,
e.g., restrictions on public transport, freights flights, shutting
down industries, etc. reduced the aerosol optical depth (AOD)
in different parts of the globe (Le Quéré et al., 2020; Kaskaoutis
et al., 2021). The MODIS observations showed an ∼40%
reduction in aerosols over North India (Gautam, 2020; Jain
and Sharma, 2020; Fadnavis et al., 2021). The in-situ
observations over Kanpur, a station in North India, showed a
reduction of 20–30% of AOD compared to 2017–2019 (Shukla
et al., 2020). A drop in AOD by 0.16 over the entire Indian
landmass was reported by Mishra and Rathore (2021). There was
a substantial decrease of ∼35% in the PM2.5 concentrations
across the cities in the Indo-Gangetic belt (Das et al., 2021).
However, there was an increase in AOD over south India (Le
Quéré et al., 2020; Pandey and Vinoj 2021). The aerosol
enhancement over South India is linked to local biomass
burning activity (Singh et al., 2020; Sanap, 2021).

In this paper, we report how the aerosol vertical distribution
impacted the heating rates and radiative forcing over India during
the lockdown period of March 25–April 14, 2020. Our analysis
shows a decrease in AOD over North India and enhancement
over Central India (78°E–85°E, 18°N–25°N). The aerosol
enhancement over central India is due to large amounts of
fires associated with agricultural activities. Further, we show

that the smoke aerosols formed a layer of nearly 3–4 km that
caused atmospheric heating and affected the radiative forcing
over India. The results are derived from satellite observations
(MODIS, OMI, CALIPSO) and CAMS reanalysis during
March–April 2020. The paper is organized as follows: data
and methodology are described in Section 2, results and
discussions are given in Section 3, and conclusion are made in
Section 4.

2 DATA AND METHODOLOGY

2.1 Satellite Retrievals
High-resolution vertical profiles of clouds and aerosols were
obtained from the Cloud-Aerosol Lidar and Infrared
Pathfinder Satellite (CALIPSO) (Winker et al.,2010; Winker
et al., 2007). The CALIPSO payload, polarization-sensitive
backscatter lidar, known as the Cloud-Aerosol Lidar with
Orthogonal Polarization (CALIOP), operates at 532 and
1,064 nm wavelengths. The CALIPSO satellite has been
observing the vertical distribution of aerosols since June 2006.
The primary instrument on CALIPSO is CALIOP, a nadir-
viewing dual-wavelength (532 and 1,064 nm) dual polarization
at 532 nm, elastic back-scatter lidar (Hunt et al., 2009). Level 2
algorithms detect features, assign type classification for aerosols,
and retrieve extinction coefficients from the attenuated
backscattered signals. The extinction algorithm retrieves
vertical profiles of extinction, reported separately for aerosols
and clouds. Aerosol extinction is not reported within clouds
because the lidar signals are dominated by cloud scattering and so
atmospheric features are classified as either aerosols or clouds and
the retrieved extinction is reported for only one or the other. The
aerosol profile product combines the profiles retrieved within
aerosol layers to report vertical profiles of extinction coefficients
at 5 km horizontal resolution. The vertical resolution is 60 m
from 0.5 to 20.2 km and 180 m above 20.2 km. For the 5 km along
CALIPSO track horizontal averaging, 15 consecutive level 1 B
profiles are used (Tackett et al., 2018). The lidar ratios and their
uncertainties for several of the aerosol subtypes have been revised
in version 4 (Kim et al., 2018). It is said that the reductions in the
relative uncertainties associated with the improved lidar ratios
will reduce the relative uncertainties in the retrieved extinction
coefficients and optical depths. These improved lidar ratios in V4
are a better representative of actual conditions than in previous
data releases (Young et al., 2018). Here, in the present study, we
used the level 2 version 4.10/4.20 CALIPSO aerosol profile (APro)
data for the period 2010–2020 (https://asdc.larc.nasa.gov/project/
CALIPSO). The details of the lidar ratio selection algorithm are
well documented by Kim et al. (2018). We used the extinction
profiles of aerosol and the optical depth for dust and elevated
smoke aerosols at 532 nm. These extinction profiles were used to
calculate the aerosol optical depth profiles at pre-defined altitudes
including higher numbers in the altitude-range 1–10 km. We
gridded these profiles at a 1× 1 degree resolution.

The aerosol optical depth data obtained from the Moderate
Resolution Imaging Spectroradiometer (MODIS) were also
analyzed to understand aerosol variations over India. The
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MODIS sensor measures radiances at 36 bands, ranging from
visible to infrared and varying spatial resolutions. Here, we used
daily AOD at 550 nm from the MODIS (MOD08_D3) collection
6.1 level 3, combined dark target and deep blue, from 2010 to
2020 (Hsu et al., 2013; Levy et al., 2013; Wei et al., 2019a; Wei
et al., 2019b) (https://giovanni.gsfc.nasa.gov/giovanni). The past
studies show that CALIPSO AOD is biased towards lower values
as compared to MODIS (Kim et al., 2013). Kittaka et al. (2011)
found that the biases between them vary with season and are
higher over land than ocean. The observed biases may due to
various reasons, e.g., MODIS has a higher frequency than
CALIPSO (Ma et al., 2013).

We also analyzed Absorbing Aerosol Index (AAI) from the
Ozone Monitoring Instrument (OMI) launched in 2004 (Torres
et al., 2007). The level 3 data for the period 2010–2020 were
obtained from http://giovanni.gsfc.nasa.gov/giovanni/. MODIS
fire data (https://firms.modaps.eosdis.nasa.gov/active_fire/)
were used to plot the location of fires during March–April
2020. The fire data with a confidence level above 80 were used
to locate the fires.

2.2 Reanalysis Data Sets
We also used the Copernicus Atmosphere Monitoring Service
(CAMS) near-real-time observations of the location and intensity
of active fires to estimate the emissions of pollutants. The
Copernicus Atmosphere Monitoring Services (CAMS) uses
wildfire as a general term to describe active vegetation fires
detectable by the satellite. This also includes forest, grassland
and peat fires, and open burning of agricultural waste (https://
atmosphere.copernicus.eu/fire-monitoring). We referred to it as
fires since during the lockdown period fires were mostly from
agricultural burning. CAMS estimates are based on the Global
Fire Assimilation System (GFAS). We also used the CAMS-
derived fluxes of black carbon, organic carbon, total carbon,
sulphate, ammonia, and particulate matter that have a
diameter of less than 2.5 μm (PM2.5) for the period
2010–2020 (https://apps.ecmwf.int/datasets/data/cams-gfas/).

It should be noted that the horizontal resolution of all data sets
used in this study (CALIPSO, MODIS, OMI, CAMS) is 1× 1
degree and for the period 2010–2020. We show changes in AOD,
dust optical depth, and elevated smoke optical depth during the
lockdown period in comparison to climatology (2010–2019). To
check whether these changes are significantly different than
climatology, we apply two-sided Student’s t-test (Zimmerman,
1987; Walpole and Raymond, 2006). If the p-value is less than
0.05 (95% significance level), then we reject the null hypothesis
and conclude that the differences are significant.

2.3 Radiative Transfer Model
The direct aerosol radiative forcing and heating rate are assessed
through the one-dimensional parallel plane Fu-Liou-Gu (FLG)
Radiative Transfer (RT) model (Fu and Liou, 1992; Fu and Liou,
1993; Gu et al., 2003; Gu et al., 2011; Lolli et al., 2019). The FLG
RT code is initialized with the lidar vertically resolved CALIPSO
optical depth profiles corresponding to the different aerosol
species, which were matched to the Optical Properties of
Aerosol and Clouds (OPAC) (D’Almeida et al., 1991; Tegen

and Lacis, 1996; Hess et al., 1998). Catalog-based physical and
optical models are embedded in the code (Gu et al., 2011). The
number of levels of the RT model is adjusted to match CALIOP
lidar resolution, i.e., the RTmodel and the vertically resolved lidar
optical depth observation will have the same spatial resolution.
The total aerosol radiative forcing is computed adding all
contributions (in terms of optical depth) from the different
aerosol species identified by the CALIPSO classification
algorithm in the considered region and matched with the
corresponding FLG aerosol species (Tosca et al., 2017).

From CALIOP data, among the 18 aerosol types parameterized
within the FLG RT model from the OPAC catalog, we considered
only the main two types of interest that match the CALIPSO
classification: transported dust (CALIPSO: “dust”) and black
carbon (CALIPSO: “smoke”). To compute the radiative forcing
at the top of the atmosphere and at the surface, the FLG RTmodel,
which also accounts for aerosol hygroscopicity, solves the radiative
fluxes at each level for 18 spectral bands (12 short-wave, 6 long-
wave, Fu and Liou, 1992; Fu and Liou, 1993). Nevertheless, an
important source of error (potential) is represented by Version 4
CALIOP aerosol types parameterization into FLG RT. The
CALIPSO classification algorithm is not able to distinguish
between local urban pollution and an advected smoke aerosol
layer from distant sources that descend below 2.5 km. However, it
is reasonable to suppose that those episodes are infrequent, but
they can still occasionally introduce a bias in the analysis. For each
annually averaged lidar extinction profile used as input in the FLG
code, the aerosol direct radiative forcing (DRF) at the bottom of the
atmosphere (surface) and top of the atmosphere (TOA) and the
vertically resolved heating rate (HR) are computed. These estimates
are obtained by subtracting the net radiative flux when the aerosols
are present in the atmosphere from the net radiative flux obtained
during pristine conditions, as shown in the following equation:

DRF,HR � FLGTotalSky − FLGPristine

The other data that are needed as input to the FLG model
(i.e., the temperature, the atmospheric thermodynamic variable
profiles, the ozone concentration, and the mixing ratio) are
obtained from the tropical standard atmosphere (USS976).
The FLG radiative transfer model also needs the Solar Zenith
Angle (SZA) for the computation. We use SZA for each box at
noon local time of the 15th day of that month. Following the
approach used in Landi et al. (2021), we applied a constant
(wavelength-independent) albedo value of 0.12 for urban
environments, 0.15 for vegetated areas, and 0.37 for desertic
regions (obtained integrating the hemispherical directional
reflectance, Strahler et al., 1999) while the infrared surface
emissivity is set to a constant value of 0.98.

3 RESULTS AND DISCUSSIONS

3.1 Impact on Aerosol Optical Depth
A significant reduction in AOD (∼40%) over Western and
Northern India during the lockdown period is evident from
MODIS observations (Figure 1A). A similar reduction (a drop
of ∼45% in AOD with respect to climatology 2010–2019) is also
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showed by CALIPSO measurements over this region during the
same period (Figure 1B). Recently, other studies also reported
aerosol reduction over the parts of the Indian region during the
lockdown period, e.g., Pathakoti et al. (2021) showed a decrease in
AOD over the Indo-Gangetic plain by ∼24% (climatology
2015–2019) using MODIS data. While a study by Sanap
(2021) showed a reduction of aerosols (∼16–27%) over north
India (climatology 2000–2020). Mishra and Rathore (2021) also
reported an overall decrease in AOD by 60% (in comparison to
2019) over the Indian landmass.

MODIS AOD (Figure 1A) shows enhancement (5–30%) over
central India but it is faintly seen in CALIPSO (Figure 1B). It may
be due to limited CALIPSO data (every 16 days overpass at the
same location) during the lockdown period (Winker et al., 2007).
The AOD enhancement over central India may be associated with
aerosols emitted from fires (see discussions in Section 3.2).
Interestingly, enhancement in AOD is also seen over the Bay
of Bengal (12%) and parts of the North Arabian Sea (∼22°N) (5%)
in MODIS data (Figure 1A). The atmospheric circulation (wind
at 850 hPa) indicates that aerosol loading over the Bay of Bengal is
associated with transport from India and Myanmar regions.
During spring, anthropogenic and dust aerosols are
transported from the Indo-Gangetic Plain and Myanmar
region to the Bay of Bengal (Nair et al., 2016). In agreement
with our results, past studies show evidence of anthropogenic
(Satheesh et al., 2001; Kumar et al., 2014; Nair et al., 2016) and
dust (Lakshmi et al., 2017) aerosol loading over the Bay of Bengal
during the spring season. Trajectory analysis-based studies also
show that anthropogenic aerosols over the Bay of Bengal are

associated with transport from the Indian region (Nair et al.,
2016). The aerosol enhancement over the Arabian Sea is due to
transport from West Asia (Lau and Kim 2006). During spring,
westerly winds transport dust from West Asia to the Arabian Sea
(Vinoj et al., 2014; Fadnavis et al., 2017b). However, in spring
2020 dust transport from West Asia was suppressed (Fadnavis
et al., 2021). A small enhancement (5%) in AOD over the Arabian
Sea may be due to the transport of small amounts of dust and
biomass-burning aerosols from Saudi Arabia (Figure 1A)
(Discussed in Section 3.2). The enhancement in AOD over
the Bay of Bengal (85°E–95°E, 0°N–10°N) is smaller in
CALIPSO measurements than MODIS (Figure 1B) and no
enhancement is seen over the Arabian Sea. It may be due to
limited CALIPSO data as mentioned above.

3.2 Distribution of Dust and Smoke Aerosols
During Lockdown Period
We understand the influence of dust transport fromWest Asia on
the Indian region which occurs in spring (Lau and Kim 2006),
here we show the changes in dust during the lockdown period
using CALIPSOmeasurements of dust optical depth and the OMI
aerosol index (OMI-AAI). The OMI-AAI over the deep inland
area indicates dust aerosols (Brooks et al., 2019). The CALIPSO
dust optical depth and OMI-AAI shows a reduction of ∼30% over
the Indian region (Figures 2A,B). The Arabian Sea and Bay of
Bengal regions show a widespread decrease (∼20%) with pockets
of a small enhancement in dust optical depth (∼14%) and OMI-
AAI (∼20%) (Figures 2A,B). It shows that during the lockdown

FIGURE 1 | (A) Spatial distribution of changes in AOD (2020-climatology) from MODIS at 550 nm (%) and wind vectors at 850 hPa averaged for the lockdown
period (March 25–April 14, 2020) are also shown in (A), (B) same as (A) but changes in AOD (2020-climatology) from CALIPSO at 532 nm. Contours in Panels (A,B)
indicate 90% significance level.
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period, in spring 2020, transport of dust from West Asia was
lower than the climatology. The model simulations for COVID-
19 anthropogenic emission changes also showed a reduction of
dust aerosols over the Arabian Sea in the spring of 2020. These
simulations showed that the anthropogenic emission reductions
had induced changes in atmospheric circulation that inhibited the
transport of dust from West Asia to the Tibetan Plateau during
spring 2020 (Fadnavis et al., 2021).

Further, we show anomalies in the vertical distribution of
elevated smoke aerosols from the CALIPSO measurements
during the lockdown period in Figure 2C. The elevated smoke
is a name of a CALIPSO product for smoke layers with tops
higher than the 2.5 km above the planetary boundary layer
(McGrath-Spangler and Denning 2013; Kim et al., 2018). It
shows positive anomalies over different parts of India that

may be due to the presence of local fires as well as the long-
range transport of biomass-burning aerosols. A striking feature
seen in Figure 2C is a large enhancement (an increase of 0.08–0.1
with respect to climatology) in elevated smoke optical depth over
1) the central peninsular (72°E–81°E, 10°N–25°N), 2) North-East-
India-Myanmar region (93°E–100°E, 15°N–25°N), and a part of
IGP (81°E–88°E, 26°N–31°N. Also, a high amount of smoke AOD
is seen over eastern parts of central India (15°N–24°N; 77°E–82°E).
Other parts of India also show a small enhancement in smoke
optical depth that is substantially less than over the central
peninsula, eastern-central India, and the North-East-India-
Myanmar region (positive anomalies 0.02–0.03) above two
regions. Smoke aerosols may be associated with the fire events
hence we show anomalies of MODIS fire during the lockdown
period (Figure 2D). Figure 2D shows negative anomalies over

FIGURE 2 | (A) Spatial distribution of changes in dust optical depth (%) from CALIPSO at 532 nm, (B) spatial distribution of changes in OMI aerosol index (%), (C)
same as (A) but for CALIPSO elevated smoke optical depth at 532 nm, (D) changes in fire counts distribution (2020-climatology) from MODIS. All the datasets are from
the lockdown period March 25 to April 14. Contours in Panels (A–C) indicate a 95% significance level. Boxes (10°N–25°N; 72°E–81°E) in Panel (D) indicate the location of
large numbers of fire anomalies.
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North India (blue color) and positive anomalies over southern
India, the Northeast-India-Myanmar region, and over central
India (indicated by boxes in Figure 2D). The regions of dense fire
are collocated with higher amounts of smoke optical depth
(Figure 2C). The contribution to elevated smoke aerosol
optical depth over central India is due to these local fires as
well as the transport of smoke aerosols emitted from the
surrounding regions. High amounts of smoke anomalies over
the eastern parts of central India are due to transport (see
circulation in Figure 2B) and not directly emitted by the fires,
since the fire anomalies are negative over eastern parts of central
India. Higher amounts of smoke aerosols (positive anomalies
0.04–0.06) are seen over the Arabian Sea. The wind vectors
indicate this enhancement is due to transport from central
India (Figure 2C).

3.3 Distribution of Fire Fluxes During
Lockdown Period
In this section, we show anomalies in the fire fluxes of black
carbon, organic carbon, ammonia, sulfur dioxide, particulate
matter (PM2.5), and total carbon aerosols during the
lockdown period (Figures 3A–F). Regions of positive
anomalies (>1.5) are referred to as emission hotspots. The
emission hotspots for organic carbon, black carbon, ammonia,
sulphur dioxide fluxes (leads to the formation of sulfate aerosols),
and particulate matter (PM 2.5) are collocated with the regions of

dense fires during the lockdown (central peninsular and the
North-East-India-Myanmar region). The positive anomalies of
fire fluxes over southern India (Figure 3) are collocated with
MODIS fire location (Figure 2D). This confirms that the increase
in anomalous aerosol loading over 1) the central peninsular and
2) North-East-India-Myanmar region is due to fire emissions.
Figures 1–3 show that, although the contribution of
anthropogenic aerosols had reduced, the smoke aerosols over
the central peninsular and North-East-India-Myanmar region
caused an enhancement in AOD over these regions (Figures
1A,B, 2C,D).

3.4 Heating Rate and Radiative Forcing
Carbonaceous aerosols are key components of smoke that absorb
solar radiation producing local atmospheric heating (Galanter
et al., 2000; Zhang et al., 2020), while they produce a cooling effect
on the climate via inhibiting solar radiation from reaching the
surface (Shawki et al., 2018; Fadnavis et al., 2019b). During the
lockdown period, enhanced smoke aerosols may have affected
atmospheric heating. Here, we deliberate on heating rates and
radiative forcing estimated from elevated smoke optical depth/
profiles averaged for the lockdown period.

Figure 4A shows the spatial distribution of elevated smoke
optical depth from CALIPSO at 532 nm during the lockdown
period. It shows a high amount of elevated smoke optical depth
(Figure 2C), over 1) the central-peninsular region and 2)
Northeast-India-Myanmar region, and low smoke optical

FIGURE 3 | (A–F): Fire flux (kg m−2 s−1) data for black carbon, organic carbon, total carbon, ammonia, sulfur dioxide, and particulate matter (PM2.5) for the
lockdown period.
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depth in 3) the IGP (depicted in Figure 4A by boxes). The high
values of elevated smoke optical depth are also seen over eastern
parts of central India due to transport (discussed in Section 3.2).
Further we show vertical distribution of elevated smoke optical
depth at the above three regions. There is a significant
enhancement in elevated smoke aerosol optical depth (0.002 ±
0.001 to 0.0065 ± 0.002) in the lower troposphere (2–5 km)
over the central-peninsular region and (0.008 ± 0.001 to
0.025 ± 0.003) over the Northeast-India-Myanmar region. The
enhancement over the IGP is significantly less than the above-
mentioned two regions due to comparatively fewer fires over the
IGP. Interestingly, all three regions show an elevated layer of
smoke aerosols between altitudes 2–5 km. The elevated layers of
smoke aerosols corroborate well with the regions of high aerosol
optical depths observed over the central-peninsular and
Northeast-India-Myanmar regions (Figure 3). Our analysis
shows that the mean contribution due to elevated smoke
aerosols to altitudes ranging from 2 to 5 km is ∼57% of the
total columnar optical depth over the central peninsular and
∼68% over the Northeast-India-Myanmar region. While elevated
smoke aerosols over the IGP contributed ∼18% to columnar
optical depth the during lockdown period. Sarangi et al. (2016)
reported the mean contribution of the aerosol layer from a
1.5–5.5 km altitude as ∼51–60% to the total columnar aerosol
optical depth for the years 2009–2011 during May–June over
Kanpur.

Figure 4C shows profiles of heating rate estimated from
CALIPSO observations of elevated smoke aerosols over 1) the
central peninsular, 2) Northeast-India-Myanmar region, and 3)
IGP. Heating rate profiles over the Northeast-India-Myanmar
region show a higher amount of heating than over the central-
peninsular region of India. It is quite evident that high amounts of
elevated smoke aerosols during lockdown at altitudes between 2
and 5 km over the central peninsular have produced significant
heating at 1.6 K/day ±0.5 K/day at those altitudes and ∼6.5 K/day
±0.5 K/day heating over the Northeast-India-Myanmar region.
The IGP region shows comparatively less heating at ∼0.5 K/day
±0.3 K/day at those altitudes due to smaller amounts of smoke

aerosols. Strong warming is seen locally in the altitudes
corresponding to higher amounts of elevated smoke optical
depth. Also, a large increase in the heating rates is noticed
below the peak in the smoke aerosol profile. For example, a
peak in heating rates over the central peninsular is seen at 3 km
while smoke aerosols show a peak at 3.8 km. Similarly, over the
Northeast-India-Myanmar region, heating rates are maximum at
2.2 kmwhile the aerosol profile has a peak at 2.8 km. This indicates
that the peak in smoke aerosols and heating rates occurs at different
altitudes. This may be due to aerosol heating occurring within a
layer of atmosphere that retains and changes pressure values
(Tripathi et al., 2007). Past studies showed enhancement in
carbonaceous aerosols and increases in the heating rates by
0.08 K/day in the lower troposphere over India (Fadnavis et al.,
2017a). The annual mean atmospheric heating rate due to the BC
aerosols was 0.86 K/day over the Guwahati region during 2014.
Pani et al. (2018) estimated atmospheric heating of ∼1.4–3.6 K/day
due to biomass-burning aerosols in the dry season over a station in
southeast Asia.

Aerosol radiative forcing is defined as the net radiative change
by aerosols present in the Earth system. Aerosols significantly
impact the regional climate and this phenomenon has been
largely studied (IPCC, 2014; Vinoj et al., 2014; Fadnavis et al.,
2019a). Decoupling the elevated smoke aerosol optical depth
from the atmospheric column, we estimate the biomass burning
radiative forcing at the surface and top of the atmosphere (TOA)
over 1) the central peninsular, 2) Northeast-India-Myanmar
region, and 3) Indo-Gangetic Plain averaged for the lockdown
period (Figure 5). The estimated radiative forcing at the TOA
shows warming of ∼4.8 W/m2 over the central-peninsular region,
∼15W/m2 over the Northeast-India-Myanmar region, and
∼1W/m2 over the IGP. The lower-tropospheric warming
caused by elevated smoke aerosols has an implication on
atmospheric circulation and cloud cover (Fadnavis et al.,
2017b; Fadnavis et al., 2019b).

The estimated surface radiative forcing due to smoke aerosols
over the central-peninsular region is ∼−38W/m2 (±15W/m2),
∼−152W/m2 (±50W/m2) over the North-India-Myanmar

FIGURE 4 | (A) Spatial distribution of elevated smoke optical depth from CALIPSO, (B) profiles of elevated smoke optical depth averaged over the central
peninsular, Northeast-India-Myanmar region, and IGP, (C) same as (B) but for heating rate (K/day). The horizontal lines in Panels (B,C) indicate standard deviation.
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region, and ∼−8W/m2 (±9W/m2) over the IGP. The amount of
radiative forcing at the TOA (positive) and surface (negative) over
the three regions is proportional to the amount of smoke aerosol,
e.g., a large amount of smoke aerosols in the North-India-
Myanmar region has imposed higher radiative impacts there
than in the central peninsula and IGP (higher amount of
surface cooling and warming at the TOA). All the three regions
show warming in the atmosphere (in-atmospheric radiative
forcing, TOA-surface), central India: ∼73W/m2 (±40W/m2),
North-India-Myanmar region: ∼167W/m2 (±50W/m2), and
IGP: ∼9W/m2 (±9W/m2).

A previous study also showed positive radiative forcing due to
black carbon aerosols at the top of the atmosphere (∼5W/m2 over
Bangalore, ∼9.5 W/m2 over Guwahati), negative radiative forcing
at the surface (∼−23W/m2 over Bangalore and ∼−21.1 W/m2

over Guwahati), and in-atmospheric warming (∼27W/m2 ± 9W/
m2 over the Indian region) (Babu et al., 2002; Tiwari et al., 2016;
Nair et al., 2017).

Importantly, these studies show that smoke/carbonaceous
aerosols produce positive radiative forcing at the top of the
atmosphere, negative radiative forcing at the surface, and in-
atmospheric warming is agreement with our results. The
atmospheric heating generated by smoke aerosols has
implications on atmospheric circulation and cloud cover while
the surface cooling might have effects on the precipitation
changes (Lohmann and Feichter, 2005; Ward et al., 2012).

4 CONCLUSION

Diagnostic analysis of multiple data sets from Moderate
Resolution Imaging Spectroradiometer (MODIS), Ozone
Monitoring Instrument (OMI), Cloud-Aerosol Lidar, and

Infrared Pathfinder (CALIPSO), and Copernicus Atmosphere
Monitoring Service (CAMS) during the lockdown period,
March 25–April 14, 2020, showed that aerosols, in general,
had reduced over north India, but there was an aerosol
enhancement over central India and the Northeast-India-
Myanmar region. This aerosol enhancement was due to fires.
The fire-emitted smoke aerosols formed a layer at altitudes
ranging from 2 to 5 km with subsequent enhancement in the
aerosol optical depth of 0.002–0.005 over the central peninsular
and 0.008–0.025 over the Northeast-India-Myanmar region. The
fires and smoke aerosols, both, were comparatively less over
the IGP.

Elevated smoke aerosols have produced heating locally in the
altitudes corresponding to the higher amount of elevated smoke
optical depth. Also, a large increase in the heating rates is
noticed below the peak in the smoke aerosol profile. For
example, a peak in heating rates over central India is seen at
3 km while smoke aerosols show a peak at 3.5 km. Similarly,
over the Northeast-India-Myanmar region, heating rates were
maximum at 2.2 km while aerosol profiles peaked at 2.8 km. In
general, heating of ∼1.6 K/day is seen over the central peninsula,
∼6 K/day over the Northeast-India-Myanmar region, and
∼0.3 K/day over the IGP. The smoke aerosols produced
significant radiative impacts, warming effects at the top of
the atmosphere, radiative forcing of ∼4.8 W/m2 in the central
peninsula and ∼15 W/m2 in the Northeast-India-Myanmar
region. The radiative forcing over the IGP was comparatively
less (1 W/m2) than the other two regions. A layer of smoke
aerosol had produced a cooling effect at the surface over the
Indian region (surface radiative forcing of ∼−38 W/m2 over the
central peninsula, ∼ −152 W/m2 over the Northeast-India-
Myanmar region, and −8 W/m2 over the IGP) and warming
in the atmosphere (central peninsula: ∼42.8 W/m2 (±15W/m2),
North-India-Myanmar region: ∼167W/m2 (±50 W/m2), and
IGP: ∼9 W/m2 (±9 W/m2). Thus, our study shows that
significant atmospheric warming was produced by the smoke
produced from fires, although anthropogenic aerosols were
reduced during the lockdown period. Atmospheric warming
has implications on circulation and precipitation (Fadnavis
et al., 2021) and heats the lower atmosphere which causes in-
cloud heating and changes in cloud albedos.
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