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Sea surface temperature (SST) is an important factor in the global ocean–atmosphere
system, being vital in a variety of climate analyses and air–sea interaction research studies.
However, estimating daily SST with both high precision and high spatial completeness
remains a challenge. This article attempts to solve this problem by merging two
complementary daily SST products, that is, the 25 km-resolution Advanced Microwave
Scanning Radiometer for EOS (AMSR-E) SST and 4 km-resolution Moderate Resolution
Imaging Spectroradiometer (MODIS) SST, using a genetic algorithm–assisted deep neural
network model (GA-DNNM). The merged SST with a spatial resolution of 4 km and a
temporal resolution of 1 day is achieved. Experiments in the Asia and Indo-Pacific Ocean
(AIPO) region in 2005 were conducted to demonstrate the feasibility and advantages of the
proposed method. Results showed that the spatial coverages of the original MODIS SST
and AMSR-E SST are ranging from 25.0 to 48.1%, and 31.5 to 47.6%, respectively, while
the merged SST achieves a spatial coverage ranging from 56.1 to 73.1%, with
improvements ranging from 50.2 to 131.7% relative to the original MODIS SST.
Comparisons with drifting buoy observations indicate that the merged SST is accurate,
with an average bias of 0.006°C and an average RMSE of 0.502°C, in places where the
MODIS SST data are missing before being merged in the AIPO area, and with an average
bias of −0.082 °C, and an average RMSE of 0.603°C for the merged SST in the whole
study area.
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INTRODUCTION

Sea surface temperature (SST) is an important physical parameter of the oceans, playing a
fundamentally important role in the exchange of energy, momentum, and moisture between the
oceans and atmosphere (Wentz et al., 2000). The SST’s changes may alter marine ecosystems, affect
global climate significantly, influence the development and evolution of tropical storms and
hurricanes, and potentially contribute to droughts and floods in some areas (Wentz et al., 2000;
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USEPA, 2021). SST with high spatiotemporal resolution, spatial
coverage, and accuracy is of vital importance to forecasting
weather and monitoring climate change (Reynolds & Smith,
1995; Reynolds et al., 2002; Guan & Kawamura, 2004; Guo,
2010; Li et al., 2013; Tang et al., 2015; Zhu et al., 2018; Xiao
et al., 2019).

Satellite observations, including infrared (IR) and microwave
(MW), are the major sources based on which the global SST
products are derived. IR SST is the earliest satellite derived one
that emerged in the 1970s (Wentz et al., 2000). The IR SST usually
has high spatial resolutions but is vulnerable to cloud
contaminations (covering about half of the Earth), fog, and
aerosols, leading to sparse spatial coverage and large amounts
of missing data (Tang et al., 2015). In contrast, microwaves can
penetrate clouds with little attenuation, and thus, MW SST can
provide a fairly high spatial coverage of the sea under all weather
conditions, except for rain (Wentz et al., 2000). However, MW
SST has lower resolution than IR SST. Besides, its accuracy near
coastlines is low, and it may not even be retrieved near lands (Li
et al., 2013). It can be concluded that both IR SST and MW SST
have advantages and disadvantages, which means they can only
derive SST under certain circumstances alone. However, they are
complementary to each other. Therefore, we can utilize these two
types of SST complementarily to obtain SST with desirable
qualities based on the idea of synergy (Zhang and Chen, 2016).

There have already been research studies on conflating MW
SST and IR SST (Chao et al., 2009; Donlon et al., 2012; Guan &
Kawamura, 2004; Guo, 2010; Li et al., 2013; Tang et al., 2015;Wang
& Xie, 2007; Zhu et al., 2018). The mostly used methods are
objective analysis (OA), optimum interpolation (OI), data
assimilation, and Bayesian methods. OA, based on the
Gauss–Markov theorem, was first introduced into
oceanographic applications by Bretherton et al. (1976).
However, statistical information about the field to be
interpolated should be known or the field should be smooth
(McIntosh, 1990). The OI method can increase the spatial
completeness. However, it smoothens the fine spatial
characteristics, which limits applications near the coastal area
(Li et al., 2013; Tang et al., 2015). Besides, prior knowledge of
the statistics of errors of input data is also required, which however
is hard to know (Bretherton et al., 1976; Tang et al., 2015). There
are primarily two data assimilation methods applied to merging
SSTs, including the VARiational (VAR) approach and Kalman
filter (KF). Using the same mathematical principle with OI, the
VAR approach has a disadvantage that the variances of the
background error and the covariances of the observational error
are usually subjectively specified due to the difficulties in
ascertaining them (Li et al., 2013; Tang et al., 2015). The KF
needs to transform scales before merging, which may introduce
extra uncertainties (Zhu et al., 2018). The Bayesian hierarchal
model (BHM) and Bayesian maximum entropy (BME) are two
typical Bayesian methods for merging multiple SSTs. The BHM-
based methods assume that the value of pre-fusion data satisfies a
special distribution. They use the prior knowledge as parameters
and conclude the posterior average value to be the fused value
(Guo, 2010). Therefore, prior knowledge is still a necessity, and bad
or insufficient prior knowledge may lead to inaccurate fusion

results. BME has been successfully applied to merging IR SST
and MW SST of different spatial resolutions to produce high-
resolution and high-accuracy SST (Li et al., 2013; Tang et al., 2015).
The BME method can resolve the scale transformation problem of
KF, but prior knowledge is still needed.

Unlike the previous methods, the deep neural network
model represents a nonlinear computational method for
learning knowledge from data and predicting complex
trends, no matter what distributions the errors are subjected
to, or how complex the relationships hidden in the data are
(Yue et al., 2017; Zare Abyaneh et al., 2016). It has been
successfully applied to numerous areas such as speech
recognition (Dahl et al., 2012), human face recognition (Le,
2011), crop yield prediction (Kaul et al., 2005; Panda et al.,
2010), crop type classification (Cai et al., 2018), weather
forecasting (Valverde Ramírez et al., 2005), environmental
monitoring (Li et al., 2017), and image fusion (Wu et al.,
2018). However, neural networks tend to get trapped in local
extreme values during training. Therefore, some researchers
have tried to solve this problem by combing the neural network
approach with optimization methods such as genetic
algorithms (GA), and have achieved better performance and
improved results consequently (Mahmoudabadi et al., 2009;
Tahmasebi & Hezarkhani, 2012).

Therefore, considering the complex patterns and uncertainties
in the satellite data, the fact that current methods usually require
prior knowledge about the error statistics of input data which
however is sometimes hard to ascertain, and the advantages of
genetic algorithm-assisted deep neural network model (GA-
DNNM) in learning patterns of data and dealing with
uncertainties, no matter how complex the patterns are and
how the data are distributed, we adapt the GA-DNNM to
model the relationship between IR SST and MW SST data,
and merge these two data to produce high-quality SST
products which can further benefit climate analyses and
air–sea interaction studies. Therefore, this research aims to 1)
develop a GA-DNNM model to capture complex relationships
between IR SST and MW SST, and evaluate the accuracy of such
relationships over different time frames; 2) exploit the
relationships to produce merged SST using IR SST and MW
SST; and 3) evaluate the quality of the merged SST with drifting
buoy observations (ground truth).

The study area is targeted at the area joined by the Asia and
Indo-Pacific Ocean (AIPO) (Chang-Xiang et al., 2010). The
major contributions of this article include 1) a novel GA-
DNNM method specifically developed and demonstrated to be
feasible and accurate for the task of merging IR SST andMW SST,
and 2) the merged SST whose spatial resolution is 4 km, temporal
resolution is 1 day, and spatial coverage is much improved.

The reminder of the article is structured as follows. In Section 2,
the study area and data are introduced. Section 3 describes the
method, including data preprocessing, deep neural network model
design, and genetic algorithm–based deep neural network model
parameter optimization. In Section 4, the experimental results are
given, and the accuracy of the GA-DNNM and quality of the
merged SST are comprehensively evaluated. Finally, the
conclusions are given in Section 5 with potential future work.
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STUDY AREA AND DATA

Study Area
The study area AIPO lies between 30°S and 45°N, 30°E, and 180°E,
as shown in Figure 1. The ocean–atmosphere interaction over
AIPO has significant impacts on the short-term climate
variations and predictions in China and surrounding areas
(Wu et al., 2006; Li et al., 2013). Therefore, it is of vital
importance to provide SST with high accuracy, high spatial
completeness, and high spatiotemporal resolution in this region.

Data
This research uses two kinds of satellite-derived SSTs, that is,
moderate-resolution imaging spectroradiometer (MODIS) SST,
that is, IR SST, and advanced microwave scanning radiometer for
EOS (AMSR-E) SST, that is, MW SST for merging, and drifting
buoy observations as the ground truth for validation purpose, as
illustrated in Table 1 and detailed in the following subsections.

MODIS SST
MODIS SST that is used in this research is the MODIS Aqua
Global Level 3 Mapped Thermal SST products derived from the
11 and 12 µm thermal infrared bands, produced and distributed
by the Ocean Biology Processing Group (OBPG) at the NASA
GSFC (OBPG, 2015;Werdell et al., 2013). Daily, weekly, monthly,
and annual MODIS products can be obtained at the spatial
resolutions of both 4.63 and 9.26 km, and for both day and
night passes. To avoid diurnal warming caused by solar heating of
the ocean surface, and to provide high spatiotemporal resolution

SST, the daily 4 km-resolution nighttime SST products at 1:30 am
local time are chosen. The version of this dataset is v2014.0
released on August 31, 2015. The time span of this dataset is from
July 4, 2002 to present, and in this study, the daily MODIS SST
data in 2005 are chosen, with 363 images in total (theMODIS SST
on November 17, 2005 and that on November 20, 2005 are
excluded).

The SST data used are in the format of netCDFwith two layers,
including a temperature data layer and a data quality control
layer. The data quality control layer has the same number of
pixels as the temperature data layer, recording a quality label of
the corresponding SST on the temperature data layer. The quality
flags are as following: 0 represents good, 1 represents
questionable, 2 represents clouds, and 255 represents gross
clouds, land, and other errors. In this research, the MODIS
SST pixels with the quality flag equaling 0 are used for the
modeling process. The temperature data represent the
temperature at the depth of a few micrometers, with a valid
retrieval range of −2°C–32°C (Armstrong, 2007).

AMSR-E SST
AMSR-E SST is derived from the remote sensing data of AMSR-E
on NASA’s EOS Aqua spacecraft, produced by Remote Sensing
Systems (RSS), and sponsored by the NASA AMSR-E Science
Team, and the NASA Earth Science MEaSUREs Program (Wentz
et al., 2014). The data version is v7 released in October 2011. The
daily SST products provided by RSS are orbital data that are
mapped to 0.25°C grid, and divided into two maps based on
ascending (1:30 pm) and descending (1:30 am) passes. To be

FIGURE 1 | Study area.

TABLE 1 | Specification of data used in this research.

SST data Spatial range Time range Spatial resolution
(km)

Temporal resolution
(hour)

Depth

MODIS SST 30°S ∼ 45°N, 30°E ∼ 180°E 2005 4 12 ∼ um
AMSR-E SST 25 12 ∼1 mm
Drifting buoy SST — 6 0.2–0.3 m
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consistent with the MODIS SST data in time, the data measured
at 1:30 am are chosen.

The AMSR-E SST data are the temperature of the top layer of
water, which is about 1 mm thick. The original data values are in
the range of 0–255, with 0–250 indicating valid geophysical data,
251 indicating missing SST, 252 indicating sea ice, 253 indicating
bad observations which are not used in composite maps, 254
indicating no observations, and 255 indicating land mass. The
original data values have to be scaled to get meaningful SST,

which is achieved by multiplying the scale factor (0.15) and
adding the offset (−3.0) (RSS, 2021). Therefore, the valid value
for AMSR-E SST is -3°C–34.5°C.

Drifting Buoy SST
Drifters are expendable satellite-tracked systems which drift in
response to ocean currents and winds. Currently, there are more
than 1,000 drifters circulating in the world ocean, measuring SST
and other properties (e.g., atmospheric pressure, sea salinity,

FIGURE 2 | Workflow for merging MW and IR SSTs based on GA-DNNM.
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wind speed, and wind direction) at unprecedented resolution as
ocean currents carry them along. The drifting buoy observations
are usually used to correct the satellite measurement of ocean
environmental parameters.

The drifting buoy SST data that are used in this research are
collected, processed, and quality-controlled by the Atlantic
Oceanographic and Meteorological Laboratory (AOML)
(Lumpkin & Centurioni, 2019). The measurements are
obtained at a depth of 0.2–0.3 m. The raw observations are
interpolated into quarter-day intervals at 00:00, 06:00, 12:00,
and 18:00 UTC using an optimal interpolation procedure. For
the purpose of minimizing the possible diurnal warming of in
situ SST and avoiding cold bias of the AMSR-E SST and
MODIS SST, the minimum value of the observations of a day
is chosen as daily ground truth for validation of the merged
SST (Li et al., 2013; Tang et al., 2015). Before using the drifting
buoy data, we remove the gross errors which are beyond the
range of −1.8 °C–35 °C (Høyer et al., 2012). The chosen
drifting buoy SST at the same day is then mapped to 4 km
× 4 km grids for the MODIS SST and merged SST, and 25 km
× 25 km grids for AMSR-E SST by averaging the drifting buoy
data belonging to the same grid as the corresponding
satellite SST.

METHODS

The workflow of the method is depicted in Figure 2. First,
ocean pixels are extracted in MODIS SST, based on AMSR-E
SST. Then AMSR-E SST and MODIS SST pixels are matched
based on locations, and quad-tuples (SSTAMSR-E, latitude,
longitude, and SSTMODIS) are obtained. After preprocessing,
including outlier removal and normalization, the quad-tuples
are used by the genetic algorithm to obtain optimal initial
parameters for the neural network model. Then the optimized
neural network is trained with the quad-tuples to establish
a mapping function between (SSTAMSR-E, latitude, and
longitude) and SSTMODIS. The mapping function is later
used to reconstruct the MODIS SST where MODIS SST is
missing, but AMSR-E SST exists. The final merged SST is
achieved by combining the reconstructed MODIS SST with
the original MODIS SST and performing necessary post-
processing. The following subsections detail the main steps
of the method.

Extracting Ocean Pixels in MODIS SST
Based on AMSR-E SST
Extracting ocean pixels from the satellite SST data is the prior
step for further evaluating the spatial coverage of satellite
SST before and after merging. It can be easily achieved for
AMSR-E SST because the land pixels are marked separately
in AMSR-E SST with a flag value 255. However, we cannot
directly determine land pixels in MODIS SST because the
MODIS SST quality control layer uses the same flag 255 to
represent land, gross clouds, and other errors. By using the
cross-check method proposed in the studies by Li et al.

(2013) and Zhu et al. (2018), we can extract the land pixels
in MODIS SST and further obtain the ocean pixels with the
assistance of AMSR-E SST. The principle of this method is
formulated as

IsLandPixel(MODIS SST) � {True if flag(MOIDS SST) � 255 and flag(AMSR − E SST) � 255
False otherwise

(1)

Namely, for a pixel in MODIS SST flagged with 255 (potential
land), if the AMSR-E SST pixel that spatially overlaps the most
with the target MODIS pixel is marked as land, then the MODIS
SST pixel is identified as land. Otherwise, it is regarded as an
ocean pixel with gross clouds and other errors. When the land
pixels are identified in MODIS SST, ocean pixels can then be
easily extracted.

Data Location Matching
To achieve high-resolution and high-spatial-coverage merged
SST, the missing high-resolution MODIS SST pixels should be
reconstructed based on the low-resolution cloud-free AMSR-E
SST, where the AMSR-E SST has value. Therefore, an important
step of our method is establishing a mapping relation between the
MODIS SST and AMSR-E SST at the same location. To achieve
this, first we must match MODIS SST and AMSR-E SST where
the values of both SST exist in the study area. The output of the
matching is quad-tuples (SSTAMSR-E, latitude, longitude, and
SSTMODIS), which will feed into the deep neural network
model for model establishment. Algorithm 1 achieves this
goal, where grid resolutionAMSR-E SST � 0.25°, and ceil(x)
function rounds x to the smallest integer that is bigger than or
equal to x.

Outlier Removal and Normalization
Before feeding the quad-tuples (SSTAMSR-E, latitude, longitude,
and SSTMODIS) for model establishment, first we must perform
some preprocessing for data quality control, including outlier
removal and data normalization. The outlier removal can help
avoid the decrease in modeling accuracy caused by outliers in the
training data (Khamis et al., 2005). The normalization of the
quad-tuples can enhance the neural network’s training speed and
performance (Puheim & Madarász, 2014).

Algorithm 1 | Algorithm for creating quad-tuples

1. procedure CREATING QUAD-TUPLES
2. for each MODIS SST pixel PMODIS SST that has value SSTMODIS with quality

flag � 0, denoting its center point coordinate as (latMODIS,, lonMODIS) do
3. Calculate the latitude index Indexlat and longitude index Indexlon of the

center point of the MODIS SST pixel in the corresponding AMSRE SST
pixel, denoted as PAMSR-E SST and calculated using the following formulas:

Indexlat � ceil( latMODIS−latmin
grid resolutionAMSR−E SST

)
Indexlon � ceil( lonMODIS−lonmin

grid resolutionAMSR−E SST
)

4. Obtain the corresponding AMSR-E SST value SSTAMSR-E of PAMSR-E SST by
Indexlat and Indexlon

5. Create a quad-tuple (SSTAMSR-E, latitude, longitude, and SSTMODIS) where
latitude � latMODIS and longitude � lonMODIS

6. end for
7. end procedure
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For outlier removal, we calculate the difference between
AMSR-E SST and MODIS SST of each quad-tuple and
obtain a difference value set. The quad-tuple with its
difference value falling outside of 3 standard deviations of
mean of the difference set are flagged as an outlier and
removed. Then, the remaining quad-tuples go to the next
step for normalization.

To perform normalization, we first split the N rows (N is the
number of quad-tuples obtained after outlier removal) of quad-
tuples (SSTAMSR-E, latitude, longitude, and SSTMODIS) into N rows
of triple-tuples (SSTAMSR-E, latitude, and longitude) andN rows of
scalar value SSTMODIS. Then, we map values of each row of both
the triple-tuples and the scalar values to [-1 1] by using the
following equation.

y � (ymax − ymin)p(x − xmin)
(xmax − xmin) + ymin(if xmax � xmin, then y � x), (2)

where ymax � 1, ymin � −1, xmax, xmin are the maximum and
minimum values of each row, x is the value to be normalized,
and y is the normalization result of x. The normalized triple-
tuple will be used as input and the normalized scalar value will
be used as the desired output of the deep neural network model
during both the genetic algorithm–assisted parameter
optimization process and the deep neural network model
training process.

Genetic Algorithm–Assisted Deep Neural
Network Model
Deep neural network models are good at modeling nonlinear and
complex relationships among variables. Therefore, in this research, we
use a deep neural network model for modeling the relationships
between MODIS SST and AMSR-E SST together with locations,
namely, obtaining the relationship
SSTMODIS � f(SSTAMSR−E, latitude, longitude). However, the
usually adopted gradient-based optimizers for training neural
networks usually lead to a local optimum instead of a global
optimum. Therefore, in this study, a global search method, that is,
the genetic algorithm, is utilized to help prevent the deep neural
network model from being trapped in a local optimum, which has
been demonstrated in previous studies (Sexton et al., 1998; Tahmasebi
& Hezarkhani, 2012). The details of the model establishing process,
including deep neural networkmodel design, genetic algorithm–based
parameter optimization, deep neural network model training, and
performance validations, are explained as follows.

Deep Neural Network Model
The deep neural network model used in this research is a feed-
forward deep neural network model, the structure of which is
shown in Figure 3. It consisted of an input layer, one or more
hidden layers, and an output layer. Each layer is consisted of a
number of neurons. Neurons between the layers are connected
with varying weights (denoted as W in Figure 3). The weighted
sum (denoted using the operator ∑ in Figure 3) of all the inputs

FIGURE 3 | Structure of a feedforward deep neural network model.
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to a neuron plus a bias is activated by an activation function f (·),
producing the output of the neuron.

The deep neural network model is trained by using a
backpropagation (BP) algorithm. The interconnecting weights
and bias are updated iteratively to minimize the output error,
which is usually a mean-square-error (MSE) between the
targeted outputs and actual outputs of the neural network
over all the training samples (Zare Abyaneh et al., 2016), and
is calculated as

E � 1
N

∑
x,w,b

				y(x) − ŷ(x)				2, (3)

where b and w denote all the bias and weights in the network,
respectively. N denotes the number of inputs, x is the input of the
network, and y(x), ŷ(x) are the vectors of the activated output of
the network and targeted output, respectively.

During the backpropagation, the weights and bias are updated
using a gradient descent strategy. In each iteration, the gradient is
first calculated using

zE

zw
� ( zE

zw1
,
zE

zw2
, ...,

zE

zwℓ

)
zE

zb
� (zE

zb1
,
zE

zb2
, ...,

zE

zbk
). (4)

Then, each weight and bias are updated using the increment,

Δwi � −η zE

zwi
for i � 1, 2, and ℓ, (5)

Δbj � −η zE

zbj
for j � 1, 2, and k, (6)

where η is the learning rate, which is a constant.
The following parameters need to be determined in the deep

neural network model: the number of hidden layers, the number
of neurons in each hidden layer, the activation function for each
layer, and the learning rate. The parameters in this study are set
by combining experience and experiments. We choose a 3-layer
architecture with three neurons for the input layer which receives

FIGURE 4 | Workflow of using GA to optimize the initial parameters of the deep neural network model.

TABLE 2 | Configuration of genetic algorithm.

Initial population size Elite count Crossover fraction Mutation rate Generations

200 10 0.8 0.01 100
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the input triple-tuples (SSTAMSR-E, latitude, and longitude), seven
neurons for the hidden layer, and one neuron for the output layer
which outputs the estimated SSTMODIS value. The number of
hidden layers and number of neurons in each hidden layer are
determined by the process that we first chose several
configurations of the number of hidden layers and the number
of neurons in each hidden layer, then we compare the prediction
performance of each configuration, and finally, the one that
achieves the best performance is chosen. The sigmoid function
is used as the activation function for the hidden layer, and the
linear function is used as the activation function for the output
layer. The learning rate is set to 0.05.

Genetic Algorithm–Based Deep Neural Network
Parameter Optimization
By using the gradient descent method, the cost function is
driven to a low value which however is without global
convergence guarantee. Besides, the gradient-based training
method is sensitive to the values of initial parameters
(i.e., weights and bias). Thus, to prevent the deep neural
network model from being trapped in a local minimum, the
GA approach is adopted.

GA is a meta-heuristic method for solving optimization
problems. Some researchers have demonstrated that GA can be
used to help the neural network achieve global optimum

(Mahmoudabadi et al., 2009; Wang et al., 2016; Yu & Xu, 2014).
GA is based on the process of natural selection (Whitley et al., 1990),
during which a population of individual solutions is repeatedly
modified, and the population finally reaches an optimal solution
through successive generations based on the following rules.

• Selection: select individuals as parents in the current
generation to reproduce next generation based on their
fitness.

• Crossover: combine the genes of parents to produce
children as individuals in the next generation.

• Mutation: introduce random changes to a chromosome to
produce children for the next generation.

Specifically, for optimizing the deep neural network model in
this study, parameters of the neural network, including weights
and bias (w, b), are encoded to a chromosome, and a population
of such chromosomes is created and initialized. The fitness of
each chromosome is evaluated using

ffitness(chromosome) � C(x, w, b) + 1
2
‖w‖2, (7)

where C(x,w,b) is the MSE of the deep neural network model
whose parameters are specified by the chromosome. The L2
regularization term 1

2‖w‖2 is also added to the fitness function to

FIGURE 5 | Statistics of GA-DNNM performance on the daily test dataset in 2005.
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balance weights. Chromosome with the least fitness function value is
considered as the fittest individual, namely, the best solution in the
current generation of population. Based on the rules defined above,
the population evolves from generation to generation and finally

stops at a specific generation according to the stopping criteria. The
chromosome in generationGtwith the best fitness is the final optimal
solution we wanted to seek, represented as
optimalInitialParam � (w, b)Gt

. This optimalInitialParam is then

FIGURE 6 | Estimated probability density of residuals of the proposed GA-DNNM for prediction on test data. Subfigures (A)–(L) are the estimated probability
densities of residuals for the first day of January to December in 2005, respectively.
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utilized to initialize the deep neural networkmodel for training.With
a very high probability, the optimalInitialParam can make the neural
network converge to a global optimum instead of a local optimum
quickly. The whole process is illustrated in Figure 4.

There are several parameters in GA that need to be set,
including initial population size, number of elite children
(individuals with top fitness and directly selected to the next
generation of population without any change), crossover fraction,
and mutation rate. In this study, we set these parameters
empirically, as listed in Table 2.

Performance Validation of the Model
Before applying the GA-DNNM to themerging AMSR-E SST and
MODIS SST, the performance of the model should be first
validated. In this study, we randomly select 90% of the

normalized quad-tuples obtained in section Outlier Removal
and Normalization to train the neural network and the
remaining 10% to test the generalization performance of the
trained network. Two indexes are utilized for performance
evaluation: the mean error and root-mean-square-error
(RMSE), which is defined as

mean error � 1
n
∑n

1
di, RMSE �

�����∑n
1d

2
i

n

√
, (8)

where di is the error vector calculated by the difference between the
desiredMODIS SST value and the estimatedMODIS SST value of the
GA-DNNM, and n is the total number of test samples.

Performance validation results obtained during the experimental
period are shown in Figure 5. From the testing results, the mean

FIGURE 7 | Spatial patterns of AMSR-E SST, MODIS SST, and merged SST on selected days in each season in 2005 with white color representing missing ocean
pixels and gray color representing land pixels (A) from top to bottom: the three SSTs on January 1, 2005; (B) from top to bottom: the three SSTs on April 1, 2005; (C)
from top to bottom: the three SSTs on July 1, 2005; and (D) from top to bottom: the three SSTs on October 1, 2005.
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errors are almost equal to 0 °C, and 84.02% of the RMSEs are below
0.6°C. The estimated probability densities of the residuals of
prediction on the test dataset of the first day of each month in
2005 are shown in Figure 6. It can be seen that the residuals are
concentrated around 0. The validation results demonstrate a high
generalized prediction accuracy of the GA-DNNM. Therefore, the
GA-DNNM is capable of establishing the relationship between
AMSR-E SST and MODIS SST through learning from the
training dataset and can be further applied to merging these
two SSTs.

Post-Processing
When the merged SST has been obtained by GA-DNNM, we
post-process it by removing pixels with gross error. The gross
error pixels are those whose SST values are beyond the range of
−3°C–35°C, which is the union of the valid data range of the
MODIS SST and that of the AMSR-E SST.

RESULTS AND DISCUSSION

For evaluating the proposed method, experiments are conducted
on each day of 2005, expect for November 17, 2005 when the
AMSR-E SST’s spatial coverage is 0.0% in the study area, and
November 20, 2005 when the AMSR-E SST’s spatial coverage is
0.0524% in the study area and has no match with the drifting
buoy observations. 4 km daily merged SST products with
improved quality are generated in the AIPO area.

Comparison of the Spatial Coverage of
MODIS SST, AMSR-E SST, and Merged SST
The spatial coverage is a critical index for measuring the quality of
SST. In this section, we evaluate the spatial coverage of MODIS
SST, AMSR-E SST, and merged SST both visually and
quantitatively.

FIGURE 7 | (Continued).
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Intuitively, from Figure 7, we can see that the spatial coverage
and continuity of SST are greatly improved after merging. The
atmospheric contaminations and costal effects have been
eliminated extensively. Further, in a quantitative way, we
examine the spatial coverage of the three SSTs in the year
2005, in the study area using the following formula.

spatialCoverage � Nvalid SST

Nocean
, (9)

where Nvalid SST and Nocean denote the number of valid SST pixels
and total ocean pixels, respectively. The number of ocean pixels is
obtained using the method introduced in section Extracting
Ocean Pixels in MODIS SST Based on AMSR-E SST.

The quantitative results are shown in Figure 8. The spatial
coverage of the original MODIS SST, original AMSR-E SST, and
merged SST are ranging from 25.0 to 48.1%, 31.5 to 47.6%, and 56.1
to 73.1%, respectively. The merged SST has much higher spatial
coverage than MODIS SST and AMSR-E SST, with a minimum
improvement by 50.2% on April 19, 2005 and maximum
improvement by 131.7% on December 9, 2005 compared with
MODIS SST. The improvement of the spatial coverage relative to
AMSR-E SST ranges from 32.3 to 79.2%. The spatial coverage of
AMSR-E SST is quite stable, while there is more fluctuation for
MODIS SST due to the vulnerability of theMODIS sensor to various

atmospheric contaminations such as cloud cover, thick fogs, and
concentrated aerosols. The spatial coverage of merged SST has the
same fluctuation characteristics as MODIS SST because of the
stability of AMSR-E SST and fluctuation of MODIS SST.

Validation of Reconstructed SST and
Merged SST With Drifting Buoy
Observations
To validate the reconstructed SST and merged SST (SST in the whole
study area), a linear regression of the MODIS SST with the drifting
buoy observations, the AMSR-E SST with the drifting buoy
observations, the reconstructed SST with the drifting buoy
observations, and the merged SST with the drifting buoy
observations are performed each for each day in the study period.
R-square (R2), RMSE, mean bias (Bias), and correlation coefficient are
used for quantitatively evaluating the accuracy of SST.

To be concise, we select 1 day in each season to illustrate the
accuracy of merged results, as shown in Figure 9A–D. From
Figure 9, it can be seen that R2 and correlation coefficient of
reconstructed SST are with little difference with those of AMSR-E
SST but are much greater than those of MODIS SST. The RMSE
of reconstructed SST in the time frame mostly lies between that of
the AMSR-E SST and MODIS SST, that is, greater than AMSR-E

FIGURE 8 | Comparison of spatial coverage of the daily MODIS SST, daily AMSR-E SST, and daily merged SST in 2005 in the AIPO area.
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SST and smaller than MODIS SST. The bias of the reconstructed
SST is also much smaller than that of theMODIS SST. As with the
finally merged SST, its R2 and correlation coefficient are greater

than those of MODIS SST, and the RMSE greater than that of
AMSR-E SST and reconstructed SST but smaller than that of
MODIS SST. The reason why merged SST has bigger RMSE than

FIGURE 9 | Validation of reconstructed SST and merged SST with drifting buoy observations on selected date in each season in 2005. From top to bottom: (A)
validation on January 1, 2005, (B) validation on April 1, 2005, (C) validation on July 1, 2005, and (D) validation on October 1, 2005.
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FIGURE 9 | (Continued).
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reconstructed SST is that during the integration of reconstructed
SST and MODIS SST to produce merged SST, the error of
MODIS SST may be introduced. The RMSE and bias of the
merged SST are acceptable, with higher accuracy than MODIS
SST, and meanwhile keeps the same spatial resolution (4 km) and
temporal resolution (1 day) as MODIS SST.

The average RMSE and average bias of the reconstructed SST are
0.502°C and 0.006°C, respectively. The average RMSE and average
bias of the merged SST in the AIPO area are 0.603°C and −0.082°C,
respectively. Errors of the merged SST may come from three
aspects: 1) error of AMSR-E SST and MODIS SST: the merged
SST is based on the AMSR-E SST and MODIS SST. Therefore,
errors existing in two merging source of SST may contribute to
errors in merged SST. 2) Errors of GA-DNNM can also be a source
of errors for the merged SST; 3) difference of measured depth:
AMSR-E SST, MODIS SST, and buoy SST measured at ∼ um (skin
SST), ∼ 1mm and 0.2–0.3 m (bulk SST), respectively. The merged
SST can be seen measuring the same depth as MODIS SST, which
however is coupled with the atmosphere–ocean exchange of heat
and momentum closely, making the bulk-skin difference a quantity
which varies with quite short time and space scales (Emery et al.,
2001; Zhu et al., 2018).

Efficiency Analysis of the Proposed Method
The time taken for the whole processing process each day, including
data preprocessing, data location matching, GA-DNNM
establishment, and SST merging, is shown in Figure 10. The
time fluctuates for different days, with the longest time being
502.964 s on April 17 and the lowest time being 300.072 s on
July 11, and the average time for each day being 384.351 s. It is
little bit time-consuming, due to two reasons: 1) In the genetic
algorithm, each chromosome carries 36 genes (calculated based on
the structure of the neural network designed) that need to be
optimized, and the number of inputs used for evaluating fitness
of individuals in a population in each generation is firmly large
(around 200,000–350,000) which involves lots of computation. 2)
The procedure runs on a desktop with one Intel (R) Core (TM)

i9-9,920X CPU at 3.5GHz and 48.0 GB RAM, whose computing
resources and computing capabilities are limited. The fluctuating
characteristics of the time consumed in each day are primarily
because of the varying number of inputs for the genetic algorithm,
neural network model training, and SST reconstruction. In future
research, the configuration of the genetic algorithm may be further
optimized, and high-performance computing (HPC) infrastructure
and technologies (Wright andWang, 2011) may be used to improve
the efficiency.

CONCLUSIONS

SST is a crucial parameter for oceanic and atmospheric models. It
plays an important role for weather forecasting and climate
change monitoring. Therefore, getting high-resolution SST
both in time and space, as well as high spatial coverage, is of
vital importance. Satellite observations are the major sources
based on which large-area SST is derived. However, due to the
difference in the imaging mechanism, different satellite
observations have different limitations. Infrared satellite
sensors usually have high spatial resolutions but are vulnerable
to various atmospheric contaminations such as cloud cover, thick
fogs, and concentrated aerosols, while microwave sensors can
penetrate clouds and aerosols but usually with low resolution and
cannot obtain data near coasts. Consequently, a single sensor
usually cannot achieve desirable SST.

This study therefore merges SST data from both infrared
sensor (MODIS SST) and microwave sensor (AMSR-E SST)
synergistically to produce daily SST with a spatial resolution of
4 km which has a much higher spatial coverage than the SST of
each sensor, much higher spatial resolution than SST of
microwave sensor, and higher accuracy than SST of infrared
sensor. During this process, a genetic algorithm–assisted deep
neural network model is established and evaluated. The
validation of the reconstructed SST with drifting buoy
observations each day during the year 2005 (363 days of data
are analyzed) shows an average RMSE and average bias of 0.502°C
and 0.006°C, respectively, and an average RMSE and average bias
of 0.603°C and −0.082°C, respectively, for the merged SST in the
whole study area. With the high generalized prediction accuracy,
the model can be used for extended merging of the MODIS SST
and AMSR-E SST in other years.

With the improved SST, extensive climate applications
promise to be better supported, and the marine environment
including spatiotemporal patterns and variability can be
better monitored and understood than using SST from a
single sensor alone. Furthermore, the method is applicable to
merging SST at a global scale, which can provide improved
data for and further benefit global and regional climate
research and applications.

The GA-assisted optimization strategy is both computation-
and data-intensive, which takes significant time for the GA-
DNNM workflow. For future work on larger geographic areas,
cyberGIS and high-performance computing approaches may be
developed to accelerate and enhance the workflow (Liu &Wang,
2015; Wang & Goodchild, 2019). Besides, the proposed model

FIGURE 10 | Time consumed for each day’s data processing.
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currently could only be applied to the locations where AMSR-E
SST is available, making it hard to achieve daily merged SST
with 100% spatial coverage. How to expand the proposed model
to incorporate more kinds of satellite-derived SSTs and drifting
buoy observations to produce spatially seamless SSTmay also be
a future direction.
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