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Near-term, ecological forecasting with iterative model refitting and uncertainty partitioning
has great promise for improving our understanding of ecological processes and the
predictive skill of ecological models, but to date has been infrequently applied to predict
biogeochemical fluxes. Bubble fluxes of methane (CH4) from aquatic sediments to the
atmosphere (ebullition) dominate freshwater greenhouse gas emissions, but it remains
unknown how best to make robust near-term CH4 ebullition predictions using models.
Near-term forecasting workflows have the potential to address several current challenges
in predicting CH4 ebullition rates, including: development of models that can be applied
across time horizons and ecosystems, identification of the timescales for which predictions
can provide useful information, and quantification of uncertainty in predictions. To assess
the capacity of near-term, iterative forecasting workflows to improve ebullition rate
predictions, we developed and tested a near-term, iterative forecasting workflow of
CH4 ebullition rates in a small eutrophic reservoir throughout one open-water period.
The workflow included the repeated updating of a CH4 ebullition forecast model over time
with newly-collected data via iterative model refitting. We compared the CH4 forecasts
from our workflow to both alternative forecasts generated without iterative model refitting
and a persistence null model. Our forecasts with iterative model refitting estimated CH4

ebullition rates up to 2 weeks into the future [RMSE at 1-week ahead � 0.53 and 0.48
loge(mg CH4 m

−2 d−1) at 2-week ahead horizons]. Forecasts with iterative model refitting
outperformed forecasts without refitting and the persistence null model at both 1- and 2-
week forecast horizons. Driver uncertainty and model process uncertainty contributed the
most to total forecast uncertainty, suggesting that future workflow improvements should
focus on improved mechanistic understanding of CH4 models and drivers. Altogether, our
study suggests that iterative forecasting improves week-to-week CH4 ebullition
predictions, provides insight into predictability of ebullition rates into the future, and
identifies which sources of uncertainty are the most important contributors to the total
uncertainty in CH4 ebullition predictions.
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INTRODUCTION

Near-term (day to year) ecological forecasting can improve our
understanding and quantification of ecosystem processes (Dietze
et al., 2018). The repeated updating of models used to generate
forecasts (often called data assimilation or data-model fusion; Luo
et al., 2011) is crucial for forecasting because it can iteratively
improve forecast skill by updating model initial conditions or
recalibrating model parameters (Luo et al., 2011; Dietze, 2017a).
The iterative process of making a forecast with a model, collecting
observations to compare with the forecast, and then updating the
forecast models before making a new forecast embodies the
scientific method and can substantially improve our
representation of ecosystem processes in models (Dietze,
2017b). If the observations match the forecast, the hypothesis
(as represented by the forecast model) is supported, otherwise, it
provides an opportunity for revising the hypothesis by, e.g.,
updating model parameters, modifying the model’s driver
variables, or changing the model’s equations. Thus, near-term,
iterative forecasting creates a model-data feedback loop that
evaluates how effectively a model predicts future ecosystem
states, with the forecasts evolving as the ecosystem experiences
different environmental conditions.

While near-term, iterative forecasting has been successfully
applied to predict other ecological variables, to date the approach
has not been broadly used in aquatic biogeochemistry. One
biogeochemical process that near-term, iterative forecasts may
improve predictions for is methane (CH4) ebullition, or bubble
fluxes of CH4 from organic-rich sediments to the waterbody
surface. Freshwater ecosystems emit large quantities of CH4 to the
atmosphere (currently estimated between 117 and 212 Tg CH4

yr−1; Saunois et al., 2020). Within human-made reservoirs alone,
ebullition rates can vary substantially in emissions, ranging from
1 to 1,000 mg CH4 m

−2 d−1 (Deemer et al., 2016) and up to 8.9 Tg
CH4 yr−1 (Johnson et al., 2021). Among the different types of
freshwater CH4 emissions, ebullition canmake up anywhere from
0 to 99.6% of total emissions to the atmosphere (Deemer and
Holgerson, 2021) and it is considered one of the most uncertain
fluxes in both inland water and global CH4 budgets (Wik et al.,
2016; Saunois et al., 2020).

Ebullition’s high spatial and temporal variation makes it
difficult to quantify experimentally and create appropriate
models, resulting in three challenges that stand in the way of
developing robust predictions of CH4 ebullition fluxes from
inland waters. These include 1) model transferability across
time and space (i.e., the ability to apply ebullition models
across years and ecosystems); 2) identification of the forecast
horizons for which future estimates provide useful information
(Petchey et al., 2015); and 3) quantification of uncertainty in
model predictions. First, while there are multiple different CH4

ebullition models for inland waters, e.g., process-based models
that couple physical, biogeochemical, and bubble plume modules
(Schmid et al., 2017), empirical models that use physical,
chemical and biological drivers as predictors of CH4 ebullition
fluxes (DelSontro et al., 2016; Aben et al., 2017; Grasset et al.,
2021), and auto-regressive (AR) time series models (McClure
et al., 2020a), it remains unknown how well they can predict CH4

ebullition dynamics over time within the same ecosystem.
Moreover, given the clear interannual variability in ebullition
rates across inland water systems (Burke et al., 2019; Männistö
et al., 2019; Linkhorst et al., 2020), quantifying the transferability
of CH4 ebullition model predictions from 1 year to another is
critical for CH4 ebullition modeling. Knowing, for example, if the
same model was robust for predicting CH4 ebullition across
multiple years vs. if new models were needed to predict CH4

ebullition each year would greatly assist CH4 scaling efforts.
Second, the ability of current CH4 ebullition models to predict

future out-of-sample observations across varying forecast
horizons remains untested. An important step for improving
the robustness of CH4 ebullition predictions is to use models to
generate out-of-sample predictions for CH4 ebullition rates at
different future horizons (e.g., days, months, or years into the
future) and then compare these predictions with observations
when they are available. It is possible that CH4 ebullition models
may successfully simulate observed data at a given forecast
horizon, but not effectively provide insight as to how far into
the future the predictions provide useful information (Petchey
et al., 2015). Here, we propose that exploring the transferability
and effective forecast horizon of CH4 ebullition rates using near-
term forecasting can serve as a robust tool for improving our
understanding of future CH4 ebullition rate predictions.

Third, near-term iterative forecast workflows need to account
for uncertainty in predictions, which provides a critical metric of
confidence in forecasts. Moreover, partitioning the different
sources of uncertainty can provide insight into model
performance and measurements, which has the potential to
improve aspects of the model and predictions (Dietze, 2017a;
Carey et al., 2021a). In particular, forecast workflows that apply
state-space Bayesian methods with iterative model refitting
enables the partitioning of sources of uncertainty (e.g.,
parameters, initial conditions, driver data, and model
processes; Dietze, 2017a; Luo et al., 2011), which is crucial for
identifying strategies for improving the design for future
measurements and models. For example, Thomas et al. (2018)
used a state-space hierarchical Bayesian model to forecast
biomass change in loblolly pine (Pinus taeda) forests in the
southeastern United States and then evaluated the relative
contribution of different forms of uncertainty to the total
forecast uncertainty to guide improvements on future biomass
predictions. However, accounting for and partitioning
uncertainty still remains uncommon in ecological modeling
(Harrison et al., 2017; Lewis et al., 2021), especially in
forecasts of future biogeochemical processes like CH4

ebullition (Lewis et al., 2021). Thus, developing a forecast
workflow that implements uncertainty partitioning at every
time step will provide key insight to future model
development for CH4 ebullition rates.

The goal of this work was to assess the potential of forecasting
CH4 ebullition as a case study to evaluate its potential more
broadly. Given the complexity of ebullition as a biogeochemical
process with many different mechanisms that control its fluxes,
our goal was to see if we could successfully forecast CH4, which
would support its application to other aquatic biogeochemical
processes. We developed an iterative forecasting workflow of

Frontiers in Environmental Science | www.frontiersin.org December 2021 | Volume 9 | Article 7566032

McClure et al. Methane Ebullition Rate Forecasting

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


weekly CH4 ebullition rates in a freshwater reservoir up to
2 weeks into the future using forecasted water temperatures,
ebullition rate observations, and a state-space model fit in a
Bayesian framework with iterative model refitting. We refit
our model with new observations to update our ebullition
model’s states, parameters, initial conditions, and driver data
on each model time step and tested our ebullition rate forecast
workflow against a similar forecast workflow that did not use
iterative model refitting and a persistence null model. We also
quantified the contributions of different sources of uncertainty to
CH4 ebullition forecasts at each time step. Our objectives were: 1)
develop an iterative, near-term forecasting workflow of CH4

ebullition rates and apply it to assess a CH4 ebullition model’s
interannual transferability; 2) determine the effective forecast
horizon of CH4 ebullition; and 3) quantify and partition the
sources of uncertainty in our forecasts to inform future workflow
development. Altogether, our goal was to examine the potential of

near-term iterative forecasting for improving the representation
of CH4 ebullition in models and providing insight into this
important biogeochemical flux.

MATERIALS AND METHODS

Site Description
We developed near-term, real-time, iterative CH4 ebullition rate
forecasts in Falling Creek Reservoir (FCR, Figure 1) in summer
2019 and tested the efficacy of different forecasting workflows
against observations of CH4 ebullition rates at different forecast
horizons. FCR is a small (0.119 km2), shallow (Zmax � 9.3 m),
eutrophic, drinking water reservoir located in southwestern
Virginia, United States (37.30°N, 79.84°W). FCR is owned and
operated by the Western Virginia Water Authority as a drinking
water supply and is in a completely forested watershed (Gerling
et al., 2016). FCR’s water level was managed to stay at a constant
level and did not experience substantial fluctuations during this
study (Carey et al., 2021a).

The forecasting workflow used a model developed from a
previous summer sampling season (2017) of CH4 ebullition
monitoring data collected at FCR to build and calibrate our
forecast models (McClure et al., 2020b). In 2017, four
ebullition traps were deployed and monitored weekly from
8 May to 24 October along a shallow upstream transect
(McClure et al., 2020a; Figure 1). In 2019, the year of this
forecasting study, we redeployed all four traps as close as
possible to their original locations in 2017 and forecasted
measurements collected weekly throughout the summer.
Ebullition rates were natural log-transformed (loge) + 0.1 to
meet the assumptions of normality and avoid forecasts of
negative ebullition rates in log-space.

Forecast Model and Model-Fitting
Our forecast model was an auto-regressive (AR) time series
model with sediment-water interface (SWI) temperatures as a
driver:

Et � β0 + β1Et−1 + β2Tt (1)

where Et loge (mg CH4 m
−2 d−1) is the loge-transformed mean

CH4 ebullition rate from the four sites at the upstream transect,
Et−1 loge (mg CH4 m−2 d−1) is the loge-transformed CH4

ebullition rate at the previous measurement (the AR term),
and Tt (°C) is the water temperature averaged from
measurements at the SWI below the upstream transect
between each time step of the model (weekly). There were
three parameters in this model: the intercept term (β0), the
parameter governing the effect of the AR term (β1), and the
parameter governing the effect of SWI temperature (β2). This
model was chosen based on prior modeling work at the site,
which demonstrated that ≥60% of the total reservoir-wide CH4

ebullition was emitted from the shallow upstream transect in FCR
during the ice-free period, and that there was a strong positive
relationship between ebullition and sediment-water interface
(SWI) temperatures (McClure et al., 2020a).

FIGURE 1 | The bathymetry of Falling Creek Reservoir superimposed by
a depiction of how our forecast workflowmapped spatially from the dam to the
upstream transect where CH4 ebullition rates were forecasted. Our forecast
workflow used water temperature forecasts from the dam site in the
reservoir (following Thomas et al., 2020). The water temperature forecasts
were scaled to an upstream transect (denoted by red dots on map) to
generate near-term iterative CH4 ebullition rate forecasts. Simultaneously,
direct observations from ebullition traps were used to iteratively update the
forecast model via data assimilation.
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We estimated the posterior distributions of the parameters in
the model using a state-space Bayesian framework. This
framework includes latent states that represent the “true”
ebullition rate before observation uncertainty is added. The
latent state has a distribution that represents uncertainty in
our capacity to model the true ebullition rate. Following Eq. 1,
the state-spaced framework uses the previous time step’s latent
state in the AR term:

Et � β0 + β1E
latent
t−1 + β2Tt (2)

The latent state is normally distributed with a mean equal to the
prediction from Eq. 2 and standard deviation of Δtσproc:

Elatent
t ∼ N(Et, Δtσproc) (3)

σproc is an unknown parameter that represents process
uncertainty that accumulates over a day. Process
uncertainty is uncertainty that arises due to the inability of
a particular model structure to represent the real world and
reproduce observed conditions (Table 1, Dietze, 2017a). σproc
is multiplied by the number of days between time steps (Δt) to
allow for the standard deviation to scale with the time step
length. This was necessary because data were collected
approximately weekly but the exact number of days
between measurements varied. The observations (YE

t ) are
modeled as a normal distribution with a mean equal to the
latent state and standard deviation (σobst ) that was set to be the
standard error of the mean ebullition rate across the four
upstream sites:

YE
t ∼ N (Elatent

t , σobst ) (4)

σobst was time-dependent because standard error of the
observations varied by measurement period. Although we
include YE

t as a source of error, we acknowledge that the
actual YE

t uncertainty is likely higher due to our inability to
include other inherent sources of error (e.g., sample
measurement, sample transport, instrument uncertainty, etc.).
However, these other inherent sources of uncertainty are likely
substantially smaller than the sampling uncertainty currently
represented for YE

t (Eq. 4).

We set the priors for the β0, β1, and β2 parameters as
uninformative with normal distributions with a mean of zero
and a large standard deviation (1,000). The prior on σproc was
also uninformative with a uniform distribution between 0
and 10,000. State-space models require a prior distribution
for the states at the first time step (initial conditions), which
we assumed to be normally-distributed with a mean equal to
the observed mean YE

0 ebullition rate and standard deviation
equal to the standard error of the mean ebullition rate across
the four upstream sites at the first observation period:

Elatent
t�0 ∼ N(YE

t�0, σ
obs
t�0) (5)

Our model-fitting process involved four steps. First, we
estimated posterior distributions of the parameters using
data from summer 2017 that included weekly measurements
of CH4 ebullition rate and SWI temperature using Markov
chain Monte Carlo (MCMC) analyses. MCMC analyses are
particularly well-suited for forecasting because they
numerically estimate probability distributions for model
parameter, the latent states, and process uncertainty.
These distributions can subsequently be used to
quantitatively assess the uncertainty associated with each
aspect of the model (parameters, initial conditions, and
process error; see Table 1). The MCMC analyses were
carried out using the “rjags” and “R2jags” packages
(Plummer, 2018) within the R statistical environment (R
Core Team, 2021). We ran three MCMC chains for 70,000
iterations, including 20,000 initial iterations that were
discarded as a burn-in. We assessed convergence using
the potential scale reduction factor (PSRF) of the
Gelman-Rubin statistic, and parameters were determined
to have converged if the PSRF was between 1 and 1.05
(Gelman and Rubin, 1992).

Second, we generated prior distributions for a refitting of
the state-spaced model using 2019 data that were derived from
posteriors from the 2017 model-fitting. The posterior
distributions from the β0, β1, and β2 parameters from the
2017 model-fitting followed a multivariate normal distribution
that was used as the prior in the 2019 calibration. The posterior

TABLE 1 | Definitions of uncertainty sources that can contribute to total forecast uncertainty and what parameter and variables from the Eqs 2, 3, 4, 6, 7 correspond to the
total uncertainty (derived from Dietze, 2017a).

Source of
uncertainty

Definition Forecast model
parameters

associated with
uncertainty

source

Model process Uncertainty that arises due to the inability of a particular model structure (equations) to represent the real world and
reproduce observed conditions. This uncertainty is not associated with a particular mechanism and is represented
by adding random noise to forecasts between time-steps

Δt, σproc
Eq. 3

Model Parameter Uncertainty in the model parameter values; represented by randomly sampling from the parameter distributions at
the beginning of a forecast

β0, β1, β2
Eq. 2

Initial Condition Uncertainty in the observed conditions when a forecast is created; represented using a distribution of model states
at the first model time step

YE
t

Eq. 4
Driver Data Uncertainty in the forecasted estimates of the model covariates (i.e., sediment-water interface temperatures);

represented using an ensemble for model drivers
Yswi
t , σswi , dt, ϕ0, ϕ1

Eqs 6, 7
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of σproc was approximately log-normally distributed in the
2017 model-fitting and we used moment-matching (i.e., a
method of matching parameters of the distribution to
produce a particular mean and variance) to estimate the
parameters for the log-normal prior distribution in the 2019
recalibration.

Third, during the summer of 2019, we refitted the model
weekly as new data were collected. The refitting involved starting
with the priors from the 2017 model-fitting, appending the new
data to the previously collected 2019 data, and re-running the
MCMC estimation of posteriors using the 2019 data. The first
measurement of 2019 was used as the initial conditions for Eq. 2.
As a result of this analysis design, we expected the posterior
parameter distributions to reflect the prior distributions (i.e., the
2017 posteriors) early in the summer, when data from 2019 were
limited, but the posterior parameter distribution would
increasingly be influenced by data in 2019 as more data were
collected.

Finally, the posterior estimates for the parameters (β0, β1, β2,
and σproc) from each recalibration in 2019 were used to generate
1-week ahead and 2-week ahead forecasts (Overview of
Forecasting Workflow).

Overview of Forecasting Workflow
Here, we outline the implementation of the forecasting workflow
based on the model development and fitting described in Forecast
Model and Model-Fitting, and then describe how the forecasted
driver data were generated in Forecasting SWI Temperature.
Approximately each week between 17 June and November 7,
2019, we generated forecasts of CH4 ebullition rates that extended
approximately 2 weeks into the future (Figure 2). The forecast
horizon varied between 13 and 16 days ahead depending on the
exact days that the observations were ultimately collected. The
forecasts presented here are technically hindcasts because they
were generated after the observations were collected; however, a
preliminary version of the forecasts were generated using a
similar approach in real-time during the summer of 2019 (and
thus those are considered true forecasts).

The forecasts were generated using an MCMC approach to
numerically represent forecast uncertainty. Because MCMC
permits estimation of model parameters, latent states, and
process uncertainty parameter as distributions rather than
fixed values, an MCMC approach enables estimation of the
uncertainty associated with each of these model components
by making multiple draws from estimated distributions to

FIGURE 2 | Conceptual illustration of the forecast workflow using iterative model refitting that generates near-term, iterative CH4 ebullition forecasts. The model
refitting stage occurred at the time when new ebullition rates were manually collected from the reservoir. In the shaded part of the figure, the blue boxes represent
processes, and the yellow and purple boxes represent the data products that resulted from each process. The yellow boxes are manually-collected data products that
were used to update the forecast model and the purple boxes represent forecasted data products.
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build an ensemble of possible forecast outcomes. Our
approach used an ensemble with 210 members. First, to
represent initial condition uncertainty, the forecast was
initialized using 210 random draws from a normal
distribution with a mean equal to the observation at the
start of the forecast (Yt�m,where m is the week number in
the 2019 time series at the time the forecast was initialized) and
a standard deviation equal to σobst�m. Second, to represent
parameter uncertainty, we randomly drew a set of 210
parameter values from the posterior distributions for each
ensemble member from the most recent recalibration. As a
result, parameter values varied among ensemble members but
were constant over time for a given ensemble member. Third,
to represent driver uncertainty, each Bayesian state-space
ensemble member was assigned an ensemble member from
the sediment-water interface (SWI) temperature forecast
(Forecasting SWI Temperature). Fourth, using the initial
conditions and parameter values described above in steps
one and two, respectively, one time step (∼1 week) was
simulated for each ensemble member. Normal random
noise from a distribution with a mean equal to 0 and a
standard deviation equal to Δtσproc was then added to each
ensemble member to account for process uncertainty and
generate the 1-week forecast. Finally, the 1-week forecast
was used as initial conditions for the second week forecast
and step 4 was repeated to generate the 2-week forecast
(Figure 2). Overall, this numerical forecasting approach
quantifies the contribution of initial condition uncertainty,
parameter uncertainty, process uncertainty, and driver
uncertainty (Table 1).

Forecasting SWI Temperature
Because we generated forecasts of future CH4 ebullition rates,
forecasts of the model covariates (i.e., SWI temperatures) were
needed as part of our workflow (Figure 1, 2). To produce
forecasts of SWI temperature, we used the existing Forecasting
Lake And Reservoir Ecosystems (FLARE; Thomas et al., 2020)
water temperature forecasting framework and infrastructure
deployed in FCR to generate predictions of future water
temperatures as driver data for our CH4 ebullition rate
forecasts at all four traps on the transect. FLARE uses near-
real time temperature observations, weather forecasts, and a
hydrodynamic model (General Lake Model) to forecast water
temperatures up to 16 days into the future at the “dam site” at
FCR, which was located ∼700 m downstream from the ebullition
traps (Figure 1). To generate SWI forecasts at the upstream
ebullition transect, which had a depth of 1–3 m, we developed a
temperature scaling model that converted the FLARE forecasts
between 1 and 3 m at the dam site to forecasts at the transect. We
estimated the posterior distributions of the parameters in the
temperature scaling model using a simple (non-state space)
Bayesian framework where:

Tt � ϕ0 + ϕ1dt (6)

and

Yswi
t ∼ N(Tt, σ

swi) (7)

Tt is the predicted upstream transect SWI temperature at time t
ϕ0 and ϕ1 are the slope and intercept parameters, dt is the
observed mean water temperature between 1 and 3 m at the
dam site, and Yswi

t is the observed mean upstream transect SWI.
We estimated the posterior distribution for the parameters using
a Bayesian framework applied to data from 2017. The
temperature scaling model ran three MCMC chains with a
burn-in period of 1,000 iterations and a sample size of 10,000
iterations. Prior distributions for the parameters (ϕt) were
uninformative by using a normal distribution with a mean of
zero and a large standard deviation (1,000). The prior distribution
for σswi was also uninformative by using uniform with a large
range (0–1,000). Similar to recalibration of the parameters in the
ebullition model, the SWI temperature model was iteratively
recalibrated in 2019 using the priors derived from the
posteriors of the 2017 model-fitting.

To generate the forecast of SWI temperature, first we
forecasted water temperature at the dam site using FLARE
(Thomas et al., 2020) up to 16-days into the future. This
produced a 210-member ensemble with uncertainty primarily
derived from uncertainty in weather predictions from the NOAA
Global Ensemble Forecasting System and process uncertainty
associated with the hydrodynamic lake model underlying FLARE
(Thomas et al., 2020). Second, we collected the mean temperature
forecasts at 1- and 2-week horizons of the 1 and 3 m depth
forecasts for each FLARE member ensemble and applied these
values as dt in Eq. 6. Third, we sampled 210 members from the
joint posterior distribution of ϕ0, ϕ1, and σ

swi. Fourth, using
sampled ϕ0 and ϕ1 and FLARE water temperature forecasts,
we predicted the SWI temperature at the upstream site using
Eq. 6. Finally, for each of the 210 ensemble members we added
the normal distributed error from Eq. 7. The 210 ensembles of
forecasted water temperatures from the scaling model for the
upstream transect were then used as driver data for our CH4

ebullition rate forecast model (Tt) in Eq. 2.

Field Data Collection
Approximately every week during the forecast period, we
measured CH4 ebullition rates and SWI temperature manually
to update the daily forecasts (Figure 2). We collected 10-min SWI
temperature data with HOBO temperature loggers (HOBO
Pendant Temperature/Light Data Logger, Bourne, MA,
United States) deployed below each of the four ebullition traps
during the 2017 training period and 2019 forecast period. Each
logger was sunk using a stainless-steel weight and a nylon string
to sit ∼0.1 cm above the SWI. We affixed the bottom logger ∼1 m
horizontally away from each ebullition trap to prevent potential
disturbance of sediments under the traps. We simultaneously
downloaded the temperature logger data as ebullition bubbles
which had accumulated in the traps since the last sampling date
were being collected. The temperature loggers were downloaded
using HOBOware version 3.7.13.

The dam site water temperature data (Figure 1) were collected
using a CTD (Conductivity, Temperature, and Depth) profiler in
2017 and water temperature thermistors in 2019. In 2017, the
dam site water temperature depth profiles were collected with the
CTD on the same days ebullition rates were collected from the
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traps in the upstream transect. The CTD measured temperature
every 0.25 s during the profile, resulting in temperature depth
profiles at approximately 10-cm resolution through the water
column. Further information and all thermistor and CTD data
are available in the Environmental Data Initiative (EDI)
repository following Carey et al. (2021a) and Carey et al. (2021b).

We sampled the CH4 ebullition rates at the four upstream
traps following McClure et al. (2020b). The ebullition samples
from each trap on the transect were extracted across a septum
stopper using a needle attached to a 10-ml syringe. We
injected 10 ml of ebullition gas into a 20-ml crimped top
glass vial that was pre-filled with saturated salt brine
solution. A secondary exit syringe extracted the salt brine
solution as the sample was injected to generate 10 ml of gas
headspace in the vial. Two replicates were collected from each
trap on a sampling day if enough gas sample was available,
resulting in up to eight possible ebullition rate samples among
the four traps. The vials were stored upside down until
analysis, so the remaining 10 ml of salt brine solution acted
as a barrier to prevent any gas from escaping. We extracted
any remaining gas from each ebullition trap using a 30-ml
syringe and summed the total volume of ebullition gas
collected each week.

We analyzed the manually-collected ebullition gas from the
traps for its CH4 concentration using a Shimadzu Nexus-2030
Gas Chromatography—Flame Ionization Detector (GC-FID;
Shimadzu Corporation; Kyoto, Japan) within 24 h of
collection (following McClure et al., 2018; McClure et al.,
2020b). We determined the observed CH4 ebullition rate
(YE

t ) as follows:

YE
t � Vgas[CH4]

ΔtAF
(8)

where Vgas was the volume of ebullition gas collected in the trap
(L), [CH4] is the CH4 concentration of the gas (mg CH4 L

−1), Δt
is the duration of time the trap was deployed (in days), and AF is
the cross-sectional area of the funnel (0.26 m2). Following
McClure et al. (2020b), we calculated the daily ebullition rates
separately for each trap and then averaged the rates from the four
traps within the transect to determine a mean daily transect
ebullition rate.

Forecast Analysis
To evaluate the interannual transferability of the ebullition
model (Objective 1), we compared the skill of the forecast
workflow without iterative model refitting with the forecast
workflow with iterative model refitting. If the forecast workflow
with iterative model refitting performed substantially better
than the workflow without iterative refitting, then model
transferability from year to year is low. The alternate
forecasting workflow without iterative model refitting used
the same AR model (Eq. 2) and the 2019 CH4 ebullition
rates as initial conditions for each 2-week forecast but
sampled parameters from the posteriors that were only based
on the 2017 model-fitting. As a result, the parameters did not
iteratively update as new data were collected in 2019.

Next, to evaluate the effect of the forecast horizon of CH4

ebullition rates in our system (Objective 2), we compared the
performance of the forecast workflow with iterative model
refitting with the persistence null model. If the null model
performed better than the forecast workflow with iterative
model refitting, then our forecast model of CH4 ebullition
rates was no better than a simple model that assumed next
week’s rates would be the same as the previous week’s rates.
The persistence null model was developed using a similar
structure as the forecast models and assumed that CH4

ebullition rates would remain similar into the future with
propagated uncertainty. The persistence null model replaced
Eq. 2 with:

Et � Elatent
t−1 (9)

The persistence null model used the same MCMC methods for
estimating posterior distributions as the forecasting model.
Similar to the forecasting model, the null model was fit to
2017 data and the posteriors were used as priors in the weekly
recalibration of the model using 2019 data.

For both of the analyses described above, we quantified the
Nash-Sutcliffe efficiency (NSE) and root-mean-square-error
(RMSE) of the CH4 ebullition rate forecasts from the forecast
workflow with refitting, the forecast workflow without refitting,
and the persistence null forecast model. The NSE is a normalized
metric that evaluates a model’s performance relative to the mean
of the observed time series (Nash and Sutcliffe, 1970). We
calculated the NSE coefficient (Nash and Sutcliffe, 1970) as
follows:

NSE � 1 − ∑N
t�1 (Ft − YE

t )2

∑N
t�1 (YE

t − YE )
2 10

where Ft was the mean of the CH4 ebullition rate forecast
ensembles, YE

t was the observed mean CH4 ebullition rate, and
YE was the average of all the observed CH4 ebullition rates. NSE
values range between -∞ to 1, where one indicates a perfect score
(i.e., the model perfectly recreates observations; Nash and
Sutcliffe, 1970; Moriasi et al., 2007), 0 indicates the model
performs the same as the mean of the observations, and <0
indicates the model performs worse than the mean of the
observations.

Forecast Uncertainty Partitioning
We quantified the total forecast uncertainty in CH4 ebullition rate
forecasts among all forecast cycles as standard deviation (SD)
throughout the forecasting period using the variance of the 210-
member ensemble at the 1- and 2-week forecast horizons
(Objective 3). Additionally, we partitioned the relative
contributions of four different sources of uncertainty, model
parameters (β0, β1, and β2), model process error, initial
conditions, and driver data (dt) (Dietze, 2017a) among all
forecasts (Eq. 5).

We used a One-At-a-Time Sensitivity (OATS) analysis to
determine the relative contribution of the uncertainty sources
to total uncertainty (as total forecast variance) in each forecast

Frontiers in Environmental Science | www.frontiersin.org December 2021 | Volume 9 | Article 7566037

McClure et al. Methane Ebullition Rate Forecasting

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


cycle. An OATS analysis holds all sources of uncertainty at
their mean except for one, and then numerically evaluates the
sensitivity of the forecast to that specific source of uncertainty
(Dietze, 2017b). For example, to partition parameter
uncertainty, we held all other sources of uncertainty (model
process, driver data, and initial condition) at their mean and
only allowed the parameter values to vary among ensemble
members. The relative proportion of each source of
uncertainty was determined by dividing the total variance of
each isolated source of uncertainty by the sum of the variance
of all uncertainty sources at both the 1- and 2-week forecast
horizons across the forecasting period.

Forecast Archiving and Reproducibility
All forecasting driver data (Carey et al., 2021b; Carey et al., 2021c;
McClure et al., 2020b), code needed to forecast weekly CH4

ebullition rates, and the hindcasts generated during the 2019
forecast period are archived either in the Environmental Data
Initiative (EDI) repository or Zenodo (McClure et al., 2021). All

analyses were run in the R statistical environment version 4.1.0 (R
Core Team, 2021).

RESULTS

Observed CH4 Ebullition Rates
Throughout the forecasting period, we observed high temporal
variation in mean CH4 ebullition rates at FCR’s upstream transect
(Figure 3). Mean ebullition rates at the upstream transect increased
from −0.48 to 1.76 loge (mg CH4 m

−2 d−1) from 27 May though 24
June (Figure 3). Between 24 June and 15 July, mean CH4 ebullition
rates at the transect continued to increase until the maximum CH4

ebullition rate for the forecast period was observed on 15 July [3.88
loge (mg CH4 m−2 d−1)]. Between 15 July and 16 October, the
observed CH4 ebullition rates ranged between 1.56 and 3.74 loge
(mg CH4 m

−2 d−1). After 16 October, CH4 ebullition rates dropped
to ≤1.32 loge (mg CH4m

−2 d−1) for the remainder of the forecasting
period, which ended on 7 November.

FIGURE 3 | A comparison of weekly forecasted CH4 ebullition rates in loge(mg CH4m
−2 d−1) using a workflow in which forecast models were iteratively refitted with

new data (A), a workflow in which forecasts were not refitted with new data (B), and a persistence null model (C) from 17 June to November 7, 2019. The large red circles
plus black error bars represent the observed daily mean transect CH4 ebullition rate ±1 standard error of the mean from four ebullition traps depicted in Figure 1. The
small red circles represent the measured CH4 ebullition rate from each ebullition trap on the transect. The dark purple lines represent the forecasted mean daily
ebullition rate from the posterior predictions. The purple shades represent the 95% predictive intervals of the forecasts.
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Forecast Evaluation and Model
Transferability
All three forecast workflows - the forecast model with iterative
refitting, the forecast model without refitting, and the null
persistence model - generated 95% predictive intervals that
encompassed out-of-sample CH4 ebullition rate observations at
both 1- and 2-week forecast horizons (Figure 3). However, we

found that there were differences in performance among the
workflows based on our evaluation metrics (Table 2). At both 1-
and 2-week forecast horizons, the forecast workflow with iterative
model refitting exhibited both higher NSE and lower RMSE values
than the forecast workflow without refitting (Table 2). Moreover,
the forecast workflow with refitting performed better than the null
model at both 1- and 2-week forecast horizons (Table 2).

TABLE 2 | Forecast evaluation determined by Nash-Sutcliffe Efficiency (NSE) and root mean square error (RMSE) at 1- and 2-week forecast horizons.The best-performing
workflow evaluation statistics (as indicated by the highest NSE and lowest RMSE for each forecast horizon) are highlighted in bold for each horizon.

Workflow 1-week NSE 1-week RMSE 2-week NSE 2-week RMSE

Workflow with iterative model refitting 0.76 0.53 loge(mg CH4 m
−2 d−1) 0.80 0.48 loge(mg CH4 m

−2 d−1)
Workflow without model refitting (using a previous year’s parameterization) −0.23 1.21 loge (mg CH4 m−2 d−1) 0.60 0.69 loge (mg CH4 m−2 d−1)
Persistence null model 0.74 0.55 loge (mg CH4 m−2 d−1) 0.67 0.63 loge (mg CH4 m−2 d−1)

FIGURE 4 | Parameter estimates of β1, the autoregressive parameter (A), β2, the sediment-water interface temperature parameter (B), and β0, the intercept
parameter (C) of the forecast workflow recalibrated with new data. The black line represents the mean of the parameter ensembles, and the grey area represents the
standard deviation of the ensembles (±1 S.D. mean).
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Our result that the iterative model with refitting performed
better than the iterative model without refitting indicates that
model parameters estimated from 2017 ebullition rates did a
relatively poor job of predicting 2019 ebullition rates, and as such,
the model’s interannual transferability among years is low. Our
finding of low year-to-year transferability informs methods for
scaling ebullition models predicting fluxes in one waterbody at
one time point to multiple waterbodies over multiple years.
Specifically, this result suggests that a single prediction model
of ebullition likely will not apply to other years, motivating future
work to test this hypothesis in other waterbodies.

Although the forecast workflow without refitting exhibited
low transferability across years, the forecast workflow with
refitting successfully predicted future CH4 ebullition rates

well because of the evolution of the model parameters
throughout the 2019 forecasting period. We observed a
substantial evolution of the intercept, AR, and SWI
temperature parameters (β0, β1, and β2, respectively) during
the 2019 forecast period (Figure 4), highlighting how iteratively
refitting the model to update the parameters can lead to
improved forecast performance. The SWI temperature (β2)
parameter was at its highest value in the early stages of the
forecasting period at 0.41 ± 0.15 loge (mg CH4 m

−2 d−1) × C−1

(mean ±1 S.D.) on 17 June, and then steadily decreased
throughout the forecasting period to 0.07 ± 0.06 loge (mg
CH4 m

−2 d−1) × C−1 by 7 November. This decrease over time
coincided with an increase in SWI temperatures, and indicates
that the relative importance of the temperature scaling

FIGURE 5 | The total forecast uncertainty (as measured by standard deviation of the forecast ensembles) for each week aggregated across forecast cycles for 1
and 2 weeks into the future Panel (A). In panel (B), each different colored line represents the number of weeks into the forecast horizon. The small grey lines are included
as a guide to represent each forecast and how the uncertainty of each forecast mapped across the forecasting period.
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parameter was highest when temperatures at the SWI were low.
Conversely, the unitless AR parameter (β1) was 0.48 ± 0.17 and
0.63 ± 0.09 between 17 June and 2 September, and then steadily
increased to a maximum of 0.78 ± 0.09 on 7 November. Finally,
the intercept (β0) parameter changed throughout the forecasting
period and was −6.67 ± 2.59 and −2.11 ± 1.26 loge (mg CH4

m−2 d−1) between 17 June and 2 September, and then steadily
increased to a maximum of −1.11 ± 1.27 loge (mg CH4 m

−2 d−1)
on 7 November. These changes indicate that the relative
importance of these three model parameters evolved
throughout the forecasting period.

Effective Forecast Horizons
The comparison of the workflows and the persistence null model
indicated that our model’s effective forecast horizon of CH4

ebullition with iterative model refitting extended up to 2 weeks
into the future (Table 2). However, at both 1- and 2-week forecast
horizons the null persistence model outperformed the workflow
without refitting (Table 2). To understand why the forecast
workflow with iterative model refitting consistently performed
better than the workflowwithout refitting and the persistence null

model, we explored the sources of forecast uncertainty in the
workflow with iterative model refitting.

Forecast Uncertainty and Uncertainty
Partitioning
Over the forecasting period, the forecast uncertainty (as measured
by standard deviation, SD) consistently increased from 1 to
2 weeks into the future, on average by 32% (Figure 5A).
Simultaneously, total uncertainty in both forecast horizons
decreased throughout the forecasting period from June to
November (Figure 5B). The first forecast (starting 17 June)
exhibited the largest uncertainty in both 1- and 2-week
forecast horizons, with a SD of 1.67 loge (mg CH4 m

−2 d−1) at
1-week and 2.46 loge (mg CH4 m

−2 d−1) at the 2-week horizon
(Figure 5B). By 15 July, the total forecast SD across the 1- and 2-
week horizons decreased to 1.42 and 1.73 loge (mg CH4 m

−2 d−1)
respectively, a 15 and 30% decrease in forecast SD. The total
forecast uncertainty continued to decrease though the forecasting
season, and by 7 November, the final forecast of the season, the
forecast uncertainty was 0.84 loge (mg CH4 m−2 d−1) at the 1-

FIGURE 6 | Panel (A, B) depicts how the relative contribution of different sources of forecast uncertainty (initial condition, driver, parameter, and process) from the
workflowwith iterative model refitting evolved over each forecasting cycle starting with the initial day of the forecast cycle 1-week (A; t+1 in Figure 2), and 2-week (B; t+2
in Figure 2) ahead forecasts. Panel (C) depicts the same sources of uncertainty aggregated across all of the forecast cycles from t+1 and t+2 that were evaluated during
the 2019 forecast period.
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week horizon and 1.50 loge (mg CH4 m−2 d−1) at the 2-week
horizon.

When partitioned, driver data and model process uncertainty
were consistently the largest sources of uncertainty in our
forecasts at both 1- and 2-week forecast horizons among all
forecasts (Figure 6). At the 1-week forecast horizon, driver data
uncertainty was the largest source of uncertainty between 17 June
and 11 September and then model process uncertainty was the
largest source from 11 September to the last forecast on 7
November (Figure 6A). At the 2-week forecast horizon, driver
data uncertainty was also the largest source of uncertainty
between 17 June and 2 September and then model process
and parameter uncertainty became the largest sources of
uncertainty from 2 September to the last forecast on 7
November (Figure 6B). When aggregated across the 2019
period for both horizons, driver data uncertainty contributed a
mean of 60% of total forecast uncertainty (Figure 6C), indicating
that uncertainty in the forecasted water temperatures from
FLARE and the uncertainty in the SWI temperature scaling
model contributed most to uncertainty in our forecasts. Model
process uncertainty was the next highest contributed source of
uncertainty at 25% over the entire forecasting period. Both model
parameter and initial conditions uncertainty contributed smaller
proportions of total variance, with seasonal means of 11 and 4%,
respectively (Figure 6C).

DISCUSSION

Our CH4 ebullition forecasting workflow demonstrated that
iterative model refitting improved summer CH4 ebullition rate
predictions at both 1- and 2-week forecast horizons (Table 2;
Figure 3). The utility of iterative model refitting was
demonstrated by the evolution of the model parameter
distributions over time (Figure 4) and the improvement of the
forecast workflow with refitting over the null model during the
forecasting period (Table 2). In addition, the forecasts developed
by iterative model refitting exhibited lower overall forecast
uncertainty as the forecasting period progressed, as indicated
by the reduction in the total SD (Figure 5B). The primary drivers
of uncertainty in the forecasts were driver data and model
process. Altogether, our CH4 ebullition rate forecasts provide
insight to: the low transferability of CH4 ebullition rate prediction
models among years (Objective 1), the effective forecast horizon
of CH4 ebullition can extend up to 2 weeks in the future
(Objective 2), and that improvements to the driver data and
the CH4 ebullition models themselves would be most useful for
improving CH4 ebullition rate predictions (Objective 3), as
discussed below.

Model Interannual Transferability
Our comparison of the forecasting workflows with and without
iterative model refitting provided useful insight on the
transferability of our CH4 ebullition prediction models among
years. The forecast workflow that relied on the fitted 2017
posterior distributions (without iterative refitting) performed
worse than the forecasts with iterative model refitting at both

1- and 2-week horizons (Table 2). This difference is likely due to
lower overall ebullition rates in 2019 than 2017, which caused the
calibrated 2017 posterior distributions to consistently
overestimate CH4 ebullition rates in 2019 (Figure 3). These
results support previous work observing high interannual
variability in CH4 ebullition rates (Burke et al., 2019;
Männistö et al., 2019; Linkhorst et al., 2020), and suggest that
adopting a modeling workflow that is iteratively refitted with new
incoming data throughout the season will improve CH4 ebullition
predictions. Given our empirical forecast model (Eq. 2), its low
transferability is not surprising and points to the importance of
additional covariates that may be important for driving variability
in CH4 ebullition rates (e.g., Deemer and Holgerson, 2021). The
addition of meaningful covariates would likely increase temporal
transferability by increasing the mechanistic ability of the model
to recreate observed CH4 ebullition dynamics, as well as decrease
total forecast uncertainty, as discussed below.

The evolution of model parameters throughout the forecasting
period (Figure 4) highlights the ability of iterative refitting to
respond to the changing environmental conditions that occurred
between June and November. For example, an increase in the
observed ebullition rates (Figure 3) in early July was concomitant
with a decrease in the SWI temperature parameter as the reservoir
warmed. Between 15 July and 11 October, both the SWI
temperature and AR term parameters remained largely
stationary as the ebullition rates exhibited a seasonal increase
and then decrease (Figure 3). After 11 October, the SWI
temperature parameter decreased while the AR term
parameter increased to its maximum value. The dynamic
parameter values highlight how SWI temperature is likely
most important for predicting CH4 ebullition in early summer,
prior to the onset of stable thermal stratification. Conversely, SWI
temperatures were much less important during the autumn, when
there are large changes occurring week-to-week as water at the
SWI undergoes dynamic fall mixing conditions.

Effective Forecast Horizons
The better performance of our forecast workflow with iterative
model refitting over the persistence null model at both the 1- and
2-week forecast horizons (Table 2) provides insight on how to
evaluate the predictive horizon of CH4 ebullition rates. Although
CH4 ebullition is often considered a stochastic process (Bastviken
et al., 2004; though see; West et al., 2016; Bezerra et al., 2020), our
study suggests that CH4 ebullition may be successfully predicted
up to 2 weeks ahead at the weekly time step. However, our
forecasts do not provide evidence on whether CH4 ebullition rates
can be accurately predicted beyond 2 weeks. Additionally, the
32% increase in the forecast ensemble uncertainty (Figure 5)
between the 1 and 2-week forecast horizons in our iterative model
refitting workflow (Figure 5A), indicates that the 2-week
forecasts provide less meaningful predictions than the 1-week
forecasts. Thus, even if the mean of the forecast ensemble closely
matches the out-of-sample predictions at the 2-week horizon, our
2-week forecasts should be interpreted carefully given the
substantial increase in the ensemble SD between the 1- and 2-
week horizons. Altogether, we advocate for the inclusion of
persistence null models and the quantification of forecast
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ensemble uncertainty as means for identifying the effective
forecast horizon in future forecasting workflows for CH4

ebullition to inform the performance and meaningful horizon
of the models being tested.

Uncertainty Partitioning
Partitioning different sources of uncertainty (initial conditions,
parameter, process, and driver uncertainty; Dietze, 2017a) in our
CH4 ebullition rate forecasts allowed us to examine areas where
our forecasting workflow with iterative model refitting could be
improved (Figure 6). The large relative contribution of driver
uncertainty in the 1- and 2-week forecasts (Figures 6A,B) during
the 2019 forecasting period was likely due to uncertainty in the
forecasted water temperatures from FLARE and the propagated
uncertainty that arose in the SWI temperature scalingmodel from
the downstream dam site to upstream transect site (Eqs 6, 7;
Forecasting SWI Temperature). Thomas et al. (2020) found that
meteorological driver data contributed the largest proportion of
uncertainty in FLARE’s water temperature forecasts in FCR’s
surface waters at horizons greater than 2 days into the future.
Similarly, Dietze (2017a) found that meteorological driver data
uncertainty contributed substantial uncertainty to net ecosystem
exchange forecasts at forecast horizons greater than 1 week.
Consequently, driver data uncertainty remains an important
source of uncertainty that should be quantified in future
forecasts of CH4 ebullition.

We also observed a larger contribution of model process
uncertainty at the 1- and 2-week forecast horizons toward the
end of the 2019 forecasting period, indicating that improvements
to the model itself would improve CH4 ebullition rate predictions
(Figure 6A). Model process uncertainty refers to the unexplained
variability in the model itself, and encompasses multiple sources
of variability in the model, including model structure, parameter
heterogeneity, and stochastic variation (Dietze, 2017a). In the
case of our forecast workflow for CH4 ebullition rates, the large
contributions from model process uncertainty could have
resulted from the model structure, interannual variability that
occurred between 2017 and 2019, or other factors that were not
accounted for in our state-space model. New forecasts of CH4

ebullition rates could be improved by specifically partitioning
these potential sources of model process uncertainty using a
hierarchical framework (Dietze, 2017a; Harris et al., 2018).

Forecasting System Limitations and Areas
for Improvement
There are several limitations of our near-term, iterative CH4

ebullition rate forecasts that should be considered. First, there are
many other potential drivers of CH4 ebullition, such as
chlorophyll a, nutrients, and water pressure, among others
(e.g., DelSontro et al., 2016; West et al., 2016; Harrison et al.,
2017; Davidson et al., 2018). Alternative model structures (e.g.,
DelSontro et al., 2016; Schmid et al., 2017; Peltola et al., 2018;
Grasset et al., 2021) could also improve our CH4 ebullition
forecasts and improve their transferability to other freshwater
ecosystems and different temporal scales. Because our forecasts
relied on an AR model developed from earlier work in FCR

(McClure et al., 2020a), we were unable to quantify model
selection uncertainty by using an ensemble of models in our
forecasting workflow (e.g., process-based ebullition models;
Peltola et al., 2018; Schmid et al., 2017), which is an important
step for future work. Testing different forecasting workflows with
different CH4 ebullition model covariates and model types in
inland water ecosystems at varying temporal and spatial scales
will further improve our understanding of this important
biogeochemical flux.

In addition to testing other CH4 ebullition ratemodels, additional
improvements to our forecasting system would also include the
addition of automated sensors to improve temporal coverage,
incorporation of other statistical methods into the forecasting
workflow (e.g., sequential data assimilation methods like particle
filters and Kalman filters; Evensen, 2009; Carpenter et al., 1999; Del
Moral et al., 2006; Doucet and Johansen, 2009), and other forecast
model covariates which might provide more insight to mechanisms
of CH4 ebullition. While our forecasting case study showed that
near-term, iterative forecasts with iterative model refitting are
possible with manually-collected CH4 ebullition rates, recent
technological improvements in automated sensors hold great
potential for advancing the future of CH4 ebullition forecasting at
daily or sub-daily scales by increasing the timescale at which new
data can be assimilated and at which forecasts can be made (e.g.,
Varadharajan et al., 2010; Delwiche andHemond, 2017;Maher at al.,
2019). Together, integrating automated CH4 ebullition rate sensors,
an ensemble of predictive models, and alternate data assimilation
methods have the potential to substantially advance forecasting of
CH4 ebullition fluxes at sub-weekly timescales.

Scaling our CH4 Ebullition Forecasting
Workflow to Other Sites
Our near-real time forecasts showed that out-of-sample CH4

ebullition rates at our littoral transect in FCR were adequately
predicted at 1- and 2-week horizons using a state-space Bayesian
workflow with iterative model refitting and forecasted SWI
temperatures as a model covariate (Figure 3). While we
acknowledge that we have only applied this forecasting workflow
to one reservoir site, we envision that it has the potential to be
adapted for predicting CH4 ebullition in other freshwater
ecosystems. Here, we identify three critical components we think
would enable others to beginmaking near-real time forecasts of CH4

ebullition rates from inland waters and inform ecological
understanding of the processes governing ebullition rates:

1) A routine ebullition field monitoring program. The
foundation of near-term, iterative forecasting is a coupled
model-data feedback loop (Luo et al., 2011; Dietze, 2017b).
Developing a field monitoring program that routinely samples
ebullition from a waterbody of interest is necessary to develop
and iteratively update ebullition forecast models. For example,
this could include one automated ebullition trap with high
temporal resolution or multiple passive traps that are limited
in temporal resolution but are less expensive and allow for more
spatial coverage. It is ideal if the monitoring data collection occurs
within the maximum time horizon of the forecasted driver data to
enable iterative forecast evaluation and model refitting.
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2) Amodel to generate future predictions of ebullition that can
be updated as observations become available. While we used a
relatively simple state-space model fit in a Bayesian framework to
account for the computational requirements to run forecasts with
iterative refitting, there are many possible model types and data
assimilation methods than can be applied like process-based
models (Schmid et al., 2017; Peltola et al., 2018), and machine
learning approaches such as neural networks (Abbasi et al., 2020)
to develop CH4 ebullition forecasts. We suggest starting with
something simple like a persistence null model (Eq. 9) and then
adding in additional complexity when resources are available to
do so.

3) Forecasted driver data. Depending on model structure,
near-real time ebullition forecasts will likely rely on forecasted
driver data to predict ebullition at a future time step. In lieu of
having access to a water temperature forecasting system as we did
for this study, meteorological forecasts (e.g., NOAA’s Global
Ensemble Forecast System) can be integrated into an ebullition
forecasting workflow if the CH4 ebullition model is driven by
meteorological variables such as air temperature, barometric
pressure, shortwave radiation, or wind speed (Joyce and Jewell
2003; Tokida et al., 2007; Wik et al., 2014; Peltola et al., 2018;
McClure R. et al., 2020). For example, Tokida et al. (2007) showed
how decreasing atmospheric pressure triggered substantial
increases in CH4 ebullition from wetlands. Similarly, Wik
et al. (2014) associated seasonal CH4 ebullitive fluxes from
thermokarst lakes with shortwave radiation and Joyce and
Jewell (2003) suggested that wind speed could influence
bottom currents, thereby changing the shear stress at the
sediments releasing ebullition bubbles.

There are several additional drivers of ebullition that have the
capacity to be applied in a forecasting workflow in addition to
those included in this study. However, in order to include a new
driver variable in a forecasting workflow, one must produce a
forecast of the driver variable, which can add additional
uncertainty [e.g., our forecasting application here that
translated weather forecasts into future SWI temperatures
using FLARE and an empirical scaling model (Eq. 6)]. For
example, changes in reservoir water level (Beaulieu et al., 2018),
chemical and biological drivers such as chlorophyll a (West
et al., 2016), sedimentation quantity (Wik et al., 2018), sediment
quality (Wik et al., 2018), macrophyte abundance, and diel
Chaoborus spp. migration (Bezerra et al., 2020), are known
drivers of ebullition but rarely forecasted. This provides an
opportunity for future model studies to begin generating
forecasts of these drivers and testing how they perform with
near-term forecasts of ebullition. Among the different
predictors, chlorophyll a may be a useful one to start with as
a forecast driver for CH4 ebullition as there are multiple existing
workflows that have generated chlorophyll a forecasts for
management (Page et al., 2018; Rousso et al., 2020).
Integrating chlorophyll a forecasts into CH4 ebullition
forecast workflows, similar to our example of integrating
water temperature forecasts to our CH4 ebullition workflow,
would likely improve forecasts of CH4 ebullition, and enable
testing of how well these drivers perform at varying spatial and
temporal scales.

Utility of Adopting Near-Term Iterative
Forecasting Workflows
In conclusion, we successfully generated near-real time forecasts
of CH4 ebullition rates, a highly variable biogeochemical flux in
inland water ecosystems, using forecasted SWI temperatures and
near-real time observations of ebullition rates. Further, our
forecasts that iteratively updated parameters through model
refitting performed better than forecasts that did not update
parameters and a persistence null model at both 1- and 2-
week forecast horizons, indicating that forecasting workflows
with iterative model refitting have the potential to improve
our estimates of this highly variable biogeochemical flux up to
2 weeks into the future. Additionally, quantifying and
partitioning uncertainty provided an additional line of
evidence that iterative forecasting can improve the skill of
predictions with time. Uncertainty partitioning showed that
our forecast model is highly sensitive to process uncertainty,
highlighting the need for more resolved partitioning of variation
within our predictive AR model and testing of different CH4

ebullition predictive models to improve predictions and
transferability across multiple spatial and temporal scales.
Altogether, we show that near-term iterative forecasting with
model refitting and uncertainty partitioning has the potential to
improve future CH4 ebullition rate predictions, an important step
to informing our upscaling estimates of CH4 ebullition fluxes
from inland waters to the global carbon cycle.
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