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Invasive species pose one of the greatest threats to global biodiversity. Early detection of
invasive species is critical in order to prevent or manage their spread before they exceed
the ability of land management groups to control them. Optical remote sensing has been
established as a useful technology for the early detection and mapping of invasive
vegetation populations. Through the use of airborne hyperspectral imagery (HSI), this
study establishes a target detection methodology used to identify and map the invasive
reed Phragmites australis subsp. australis within the entire extent of Îles-de-Boucherville
National Park (Quebec, ON, Canada). We applied the Spectral Angle Mapper (SAM) target
detection algorithm trained with a high accuracy GNSS ground truth data set to produce a
park-wide map illustrating the extent of detected Phragmites. The total coverage of
detected Phragmites was 26.74 ha (0.267 km2), which represents 3.28% of the total
park area of 814 ha (8.14 km2). The inherent spatial uncertainty of the airborne HSI
(∼2.25 m) was accounted for with uncertainty buffers, which, when included in the
measurement of detected Phragmites, lead to a total area of 59.17 ha (0.591 km2), or
7.26% of the park. The overall accuracy of the Phragmites map was 84.28%, with a
sensitivity of 76.32% and a specificity of 91.57%. Additionally, visual interpretation of the
validation ground truth dataset was performed by 10 individuals, in order to compare their
performance to that of the target detection algorithm. The overall accuracy of the visual
interpretation was lower than the target detection (i.e., 69.18%, with a sensitivity of 59.21%
and a specificity of 78.31%). Overall, this study is one of the first to utilize airborne HSI and
target detection to map the extent of Phragmites over a moderately large extent. The uses
and limitations of such an approach are established, and the methodology described here
in detail could be adapted for future remote sensing studies of Phragmites or other
vegetation species, native or invasive, at study sites around the world.
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INTRODUCTION

Second only to habitat loss, invasive species are one of the most significant threats to global
biodiversity (Early et al., 2016; IUCN, 2017; Mack et al., 2000; U.S. Congress Office of Technology
Assessment, 1993), and can adversely affect the structure and function of the ecosystems to which
they are introduced (Mack et al., 2000). Additionally, invasive species and their management come at
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a high economic cost (e.g., an estimated $120 billion per year in
the United States) (Leung et al., 2002; Pimentel et al., 2005), can
create human health problems in nearby populations (e.g.,
increased source of allergens, biological invasions of disease-
carrying insects such as mosquitos) (Soulé, 1992) and can
negatively impact the recreational enjoyment of natural areas
(Canadian Food Inspection Agency, 2008; Pejchar and Mooney,
2009). Given the detrimental impact of invasive species observed
in various ecosystems (He et al., 2011), concerns surrounding
invasive species have spurred an increase in research that covers a
broad range of topics, including understanding mechanisms of
invasion and determining the proper information needed to
create management plans for specific invasive species
(Hastings et al., 2006; Belzile et al., 2010). However, extensive
field campaigns to identify, map, and track the spread of invasive
species are not always practical or cost effective, making it
difficult to monitor invasive species over vast areas.
Geographic Information Systems (GIS) and airborne and
satellite based remote sensing can produce critical information
to help land managers establish appropriate management plans
(Shaw, 2005), react rapidly to detect and respond to an early
invasive before a species becomes established (Westbrooks,
2004), or forecast the potential spread of invasive species to
susceptible areas (Rocchini et al., 2015). Furthermore, remote
sensing also provides a powerful way to identify and map invasive
species over different spatial and temporal scales while
simultaneously building a strong understanding of key
physical characteristics of invasive species (C.-y. Huang and
Asner, 2009; Underwood et al., 2007).

The utility of multi- and hyperspectral imagery for mapping
invasive species have been clearly shown in the literature.
Morisette et al. (2006) combined MODIS imagery and
thousands of field sampling points through logistic regression
in order to generate a habitat suitability map for invasive tamarisk
(Tamarix spp, salt cedar) for the entire continental United States.
The resulting map had an overall accuracy of 90%, and indicated
varying levels of risk for habitat that could be susceptible to
invasion by tamarisk. Asner et al. (2008a) relied upon airborne
hyperspectral imagery in order to identify 12 highly invasive
species in subtropical forests in Hawai’i, based on subtle
differences found in the invasive tree species’ spectral
signatures. Importantly, no one spectral region consistently
best defined the separability of the different species, leading to
the use of the full spectrum in their study. Moreover, Lass et al.
(2005) also utilized hyperspectral imagery at various spatial and
spectral resolutions in order to identify locations of invasive
Centaurea maculosa (spotted knapweed) and Gypsophila
paniculata (babysbreath) in the United States. Using ground
validation of the classified imagery, they were able to correctly
identify 57% of known spotted knapweed infestations and 97% of
known babysbreath infestations. Skowronek et al. (2017)
combined airborne hyperspectral imagery with field data in
order to generate a distribution map of the invasive bryophyte
Campylopus introflexus (heath star moss) in northern Germany.
Importantly, they created a species distribution map with an
overall accuracy of 75%, despite the small and inconspicuous
nature of the moss. While previous studies, such as those

described above, have successfully used remotely sensed data
to locate and map the extent of invasive species, critical baseline
data is still needed for many problematic invasive species in many
regions of the world (Große-Stoltenberg et al., 2016).

The invasive grass species P. australis subsp. australis
(hereafter Phragmites), also recognized as P. australis (Cav.)
Trin. Ex. Steudel and known as the common reed, has become
one of the most aggressive invasive plant species in eastern
North America. Phragmites can be found throughout all states
in the contiguous United States, and in the southern portions of
six Canadian provinces (Saltonstall et al., 2004). Due to its
ability to survive under a wide range of conditions, this reed can
be found in a variety of habitats, including dry or wet soil
conditions, and freshwater or brackish aquatic habitats
(Chambers et al., 1999; Sturtevant et al., 2019). Recently,
Phragmites has spread prolifically along the Saint Lawrence
River, throughout the Great Lakes region, and along major
highway systems, which serve as major transport corridors in
North America and facilitate substantial inland spreading
(Hudon et al., 2005; Lelong et al., 2007; Tulbure et al., 2007;
Jodoin et al., 2008). Given its prolific and hardy nature, it is
important that land managers be able to locate stands of
Phragmites, both while they are still relatively small as well
as larger established stands, in order to control, eradicate, or
prevent the spread of new or existing stands. Studies related to
the remote sensing of Phragmites have predominantly relied
upon imagery from various spaceborne sensors. For instance,
Pengra et al. (2007) utilized EO-1 Hyperion imagery in order to
map Phragmites in Wisconsin, United States. They were able to
achieve 81.4% overall accuracy, however they noted the
difficulty in identifying Phragmites stands due to the
limitations of the sensor’s spatial resolution of 30 m. A study
by Poulin et al. (2010) used multi-season remotely sensed
imagery of Phragmites collected by SPOT-5 over the Rhone
delta in southern France. Water and vegetation measurements
were collected over 2 years in order to form a multi-temporal
dataset to assist with modelling different aspects of reed
structure such as stand height, density, and coverage. While
these initial studies show promising results in the ability of
remotely sensed data to accurately identify and map Phragmites,
the use of airborne hyperspectral imagery has not been
explored.

The objective of this study was to estimate the extent of
Phragmites coverage within Îles-de-Boucherville National Park
(Quebec, Canada) from airborne hyperspectral imagery
utilizing a target detection methodology. Target detection
algorithms can be advantageous over conventional
classification, as they do not require precise knowledge of
every endmember present in the scene in order to locate a
specific target material. Target detection has been commonly
applied for military applications [e.g., Yuen and Richardson
(2010)], oil spill detection [e.g., Alam and Sidike (2012)] and
geological studies [e.g., Dos Reis Salles et al. (2017); Molan et al.
(2014)], among others. Target detection can also be used for
vegetation studies, such as those concerned with identifying a
specific species of interest. For example, Lass et al. (2005)
exploited the spectral angle to create maps of the extent of
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two invasive species of interest, spotted knapweed and
babysbreath (discussed above). However, many remote
sensing studies of vegetation and invasive species still rely on
conventional classification methods (Joshi et al., 2004), so the
utility of target detection algorithms for invasive vegetation
detection remains to be established. Our resulting Phragmites
extent map provides the park management team with a tool to
assist with their ongoing efforts to manage and eradicate
populations of Phragmites at various locations within the
park. While our focus is on detecting and mapping
Phragmites at Îles-de-Boucherville, the general
methodological approach applied here, can be implemented
in other locations where Phragmites species can be found and to
other invasive terrestrial vegetation species worldwide.

MATERIALS AND METHODS

Study Site
The study was carried out in Îles-de-Boucherville National Park
(Quebec, Canada), which covers an area of approximately
8.14 km2 and consists of five islands in the Saint Lawrence
River between the Island of Montreal and the municipality of
Boucherville (Figure 1) (Laliberté et al., 2006). The area has
experienced a long history of heavy agricultural use, beginning
with the arrival of the first settlers towards the end of the 17th
century (Giroux, 1986) and continuing into modern times with
the presence of privately-owned agricultural areas on Île de la
Commune and Île Grosbois.

Îles-de-Boucherville National Park was officially created in
1984, when the Quebec Ministry of Forests, Wildlife and Parks
designated the islands a protected area, which led to the
subsequent abandonment of multiple agricultural fields.
Herbaceous and shrub vegetation soon became the dominant
land cover type within the park. More than 450 plant species are
present, across both terrestrial and aquatic ecosystems (Société
des établissements de plein air du Québec, 2020). Commonly
found species include Cornus sericea (red osier dogwood),
Asclepias syriaca (common milkweed), Solidago gigantea (giant
goldenrod), and Phalaris arundinacea (reed canary grass). Young
forested areas are scattered throughout the park, mainly
comprised of Populus deltoides (eastern cottonwood) and
Fraxinus pennsylvanica (green ash). Approximately 18 ha of
established mature forest (∼70–90 years old) is located on Île
Grosbois, and is the only mature forest within the park (Ross,
1990; Laliberté et al., 2006).

Commonly found throughout the park, in both terrestrial and
aquatic ecosystems, is the invasive common reed P. australis
subsp. australis (Figure 2). Extensive stands of this invasive reed
can be found in open fields, along hiking trails, in former
agricultural ditches, along riverbanks and in river channels:
one of the largest stands of Phragmites in the province of
Quebec is located along the western edge of the park
boundary in the Courant Channel (Hudon et al., 2005).
Controlling Phragmites as part of the restoration of former
agricultural fields back to natural habitat is a priority issue in
the 2017–2022 Îles-de-Boucherville National Park Conservation
Plan, set forth by the Société des établissements de plein air du
Québec (SEPAQ) (Société des établissements de plein air du
Québec, 2020).

Description of P. australis subsp. Australis
Phragmites demonstrates an affinity for disturbed ecosystems
such as former agricultural fields or wetland environments,
particularly those that have been enriched with nutrients such
as nitrogen due to agricultural or other anthropogenic sources
(Belzile et al., 2010). Methods of spread include seed dispersion or
by the transport of rhizome fragments to new areas, either via
environmental mechanisms (e.g., wind and wave action) or via
anthropogenic means. The plant is characterized by long, flat,
green leaves that grow from a hollow stem. A bushy panicle, or
seed head, will develop in late summer and will persist into winter

FIGURE 1 | The extent of Îles-de-Boucherville National Park, which
consists of five main islands in the Saint Lawrence River. Basemap imagery is
the mosaic of the five CASI-1500 flight lines acquired on July 08, 2019,
displayed using RGB bands 648, 550, and 430 nm. Projection:
WAGS84/UTM Zone 18N (EPSG: 32618). The subset in the bottom right
corner shows the position of the park (red circle) within the province of
Quebec, Canada.
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after the seeds have been released. This seed head is distinct, and
can vary in color depending on its maturity: common colors
include brown/tan or deep purple (Figure 2). Phragmites is
considered an indicator of ecosystem disturbance due to its
aggressive nature and tendency to grow in dense monotypic
stands up to 3 m tall that consist of an extensive network of
stolons and rhizomes. These dense stands can prevent the growth
of other surrounding vegetation, or even outcompete existing
vegetation, effectively reducing plant biodiversity in the area
(Saltonstall, 2002). This loss of species richness and the
associated potential loss of biodiversity or extinction is one of
the primary concerns regarding Phragmites (Chambers et al.,
1999; Cronk and Fuller, 2001). These characteristics and
tendencies of Phragmites make removal of established stands
difficult, especially once it has grown over an extensive area.
Efforts to manage and eradicate established populations of
Phragmites can be difficult and typically require extensive
physical labor and considerable investments of time and
money (Martin and Blossey, 2013). There are several chemical
options for controlling Phragmites, such as broad-spectrum
herbicides that have documented effectiveness (Avers et al.,
2007). However, these chemicals are non-selective and could
damage native species, and are not always permitted in certain
areas such as wetlands. Mechanical methods of control (e.g., hand
cutting or mowing) can be effective in the short term, but are less
likely to be successful in the long term without combining them

with other control methods such as herbicides or controlled
burning (Getsinger et al., 2006; Avers et al., 2007). Mechanical
methods also risk transferring rhizome fragments or seeds, which
could cause new invasions.

Overview of Data and Methods
Here we present an overview of the methodology conducted for
this research, as shown in the flowchart in Figure 3. These steps
are discussed at length in the following sections.

Ground Truth Data Collection and Training/
Validation Datasets
A total of 319 ground truth points were collected across the
extent of Îles-de-Boucherville National Park to provide a high-
accuracy dataset (<1 m spatial error) for training and validation
of the target detection algorithm. A detailed description of the
methodology used to collect the points, as well as the accuracy
assessment and available data products are described in Elmer
and Kalacska (2021). The ground truth points were randomly
separated into 160 points for training the target detection
algorithm and 159 points for validating the accuracy of the
algorithm’s output. The training set consisted of 79 points with
no Phragmites present and 81 points where Phragmites was
present, while the validation set consisted of 83 points with no
Phragmites present and 76 points where Phragmites was

FIGURE 2 | (A) A dense monotypic stand of Phragmites australis subsp. australis found within Îles-de-Boucherville National Park. (B) An example of the brown
Phragmites seed heads. (C)Overhead view of a Phragmites stand and subset showing the contrast with the surrounding vegetation. uCASI hyperspectral image from an
RPAS platform is shown in RBG bands 637, 550, and 430 nm.
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present. The ground truth points were split evenly in this way to
avoid creating a bias in the training/validation sets.
Additionally, each set of ground truth points represented a
fairly equal geographic spread of points across the park extent.
This was an important consideration because the park is not
uniform in ground cover: the upper portion of the park is
dominated by agricultural fields, while the lower portion of the
park is characterized by natural fields and areas of shrubby
vegetation.

The training set of 160 points was used as the basis for
creating the samples of target spectra that served as input for
the target detection algorithm. In order to increase the
number of target spectra for better comparison during the
target detection analysis, the 160 training points were
expanded to include nearby pixels that fell within the
appropriate land cover types. For the target spectra,
samples were taken from measured Phragmites stands.
Non-target spectra were also collected to provide examples
of spectra to reject during target detection: this included
water, agricultural fields characterized by dry soil and

dried out vegetation, asphalt roads, and other vegetation
that was not Phragmites.

Airborne Hyperspectral Imagery (HSI)
Airborne hyperspectral imagery (HSI) was acquired on July 08, 2019
as part of the Canadian Airborne Biodiversity Observatory project
(Arroyo-Mora et al., 2019) and consisted of five flight lines collected
over the extent of Îles-de-Boucherville National Park (Table 1). The
aircraft used as the sensor platform was a DeHaviland Twin Otter
owned and operated by the National Research Council of Canada’s
Flight Research Laboratory (NRC-FRL, Ottawa, ON, Canada). The
hyperspectral sensor used to acquire the imagery was a Compact
Airborne Spectrographic Imager 1500 (CASI-1500, hereafter CASI)
(ITRES Ltd., Calgary, AB, Canada). The CASI collects up to 288
spectral bands between 375 and 1,054 nm, with a field of view of
39.9° and 1,498 across-track pixels.

The five individual CASI flight lines underwent pre-processing
using software modules developed by the sensor’s manufacturer
before they were used for analysis, as described by Soffer et al.
(2019). First, a calibration was made to account for the effects of

FIGURE 3 | A detailed flowchart showing the airborne HSI and target detectionmethodology steps used to generate the final map of Phragmites including the error buffers.
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temperature and pressure shifts in the internal sensor alignment.
Next, a spectroradiometric calibration was performed that removed
the estimated signal offsets inherent in the recorded digital values
from various sources (dark current, electronic offset, internal
scattered light, second order scattered light, and frame shift
smear) and converted the data to units of spectral radiance (uW
cm−2 sr−1 nm−1). The flight lines were then atmospherically
corrected using ATCOR-4 (Richter and Schläpfer, 2011). Finally,
the flight lines were geometrically corrected (2 m resampled pixel
size) and mosaicked such that pixels with a viewing angle closest to
nadir were prioritized and preserved in the areas of overlap between
the flight lines (Figure 1). The reported positional accuracy of the
HSI is an average error of 0.91 in easting and 0.67 m in northing
(Elmer and Kalacska, 2021).

The HSI mosaic was spectrally subset to remove bands with
low signal level and high levels of noise due to residual
atmospheric absorption features: these consisted of
wavelengths below 450 and greater than 800 nm, respectively.
The mosaic then underwent spectral polishing to remove high
frequency noise using the Empirical Flat Field Optimal
Reflectance Transformation (EFFORT) polishing tool
(Boardman, 1998, December). One of the challenges of HSI is
its large dimensionality and high correlation between bands,
which can make target detection more time consuming and
the results less accurate if all bands are used (Ready and
Wintz, 1973; Landgrebe, 2002). In order to reduce the
dimensionality of the data and isolate the signal from noise,
the spectrally subset and polished mosaic underwent a Minimum
Noise Fraction (MNF) transformation (Green et al., 1988). The
output eigenvalues indicated the approximate number of bands
that contained meaningful information, and visual assessment of
these bands for spatial coherence determined that the first 13
MNF bands contained the majority of the relevant signal. The
output MNF image was subset to these first 13 bands, which
became the input image for target detection.

Many remote sensing applications assume that the contribution
to a pixel’s signal is uniform across the given pixel size for the data
product (i.e., a pixel with a 2 m× 2m spatial resolution contains only
the signal(s) from the materials that fall within the pixel’s footprint).
In reality, this assumption is not true and the contribution of
materials to each pixel is spatially non-uniform according to its
net point spread function (PSF) (C. Huang et al., 2002). For example,
the imagery acquired using the CASI for this study has a net PSF that
extends approximately 1.88 m in the along-track direction and
1.85m in the cross-track direction, with a true pixel size of
1.64m in the across track and 1.63m in the along track and

only 76% of the pixel’s signal originates from materials within
the given pixel extent, while the remaining 24% is contributed by
materials in neighbouring pixels (Inamdar et al., 2020).
Consideration of the specific characteristics of a sensor’s
geometry is therefore critical to understanding the actual
contributions to a pixel’s spectrum, which has important
implications for the analysis and interpretation of data products
derived from such sources. This characteristic of the HSI was
accounted for during analysis using the methods described in
Target Detection Analysis below.

Ancillary Data: Quebec LiDAR Dataset
Open access LiDAR-MCH (mean canopy height) data were used to
investigate the height profiles of established Phragmites stands within
the study area, and to mask out materials taller than a specified height
so that they would not be analyzed as part of the target detection. The
LiDAR data was acquired by the Quebec Ministry of Environment,
and Fight Against Climate Change, as part of the province-wide
collection of open-access LiDAR data (available at https://www.
foretouverte.gouv.qc.ca/). The two tiles that covered the area of
interest (31H11SO and 31H11NO) were acquired in 2018 with a
point density of 4 points/m2. The data are provided as rasterized tiles
with a pixel size of 1m. The LiDAR tiles were mosaicked, clipped to
the area of interest, and resampled to a 2m pixel size (Figure 4).

Tall, forested areas of the park could be disregarded from the
target detection analysis, as any Phragmites covered by tree
canopy would not be visible in the HSI and therefore not
reliably detectable. However, Phragmites commonly grows up
to 6 m in height (Goodrich and Neese, 1986) so in order to avoid
inadvertently masking out Phragmites stands on the taller end of
the growth profile, the canopy height of 158 Phragmites ground
truth points were extracted from the LiDAR-MCH data. The
resulting distribution of Phragmites’ heights are shown in
Figure 4. As there were no sampled areas of Phragmites taller
than 6 m, the threshold for the height mask was set to >6 m.

Target Detection Analysis
The 13 band MNF image was the input for target detection based on
the Spectral Angle Mapper (SAM) (Boardman, 1993; Kruse et al.,
1993). The Phragmites ground truth points (training subset) were
separately provided as sample target spectra. Additionally, the sample
spectra of non-target materials (water, fields, roads, and non-
Phragmites vegetation) were specified as targets to reject. SAM
treats both the reference target (r) and the unknown spectra (t) as
vectors in order to calculate the angle in radians between the spectra as
amethod of determining spectral similarity (Boardman, 1993) (Eq. 1).

TABLE 1 | Details of the five CASI-1500 flight lines acquired over Îles-de-Boucherville National Park on July 8, 2019.

Flight line
name

Heading (°M/T) Ground speed
(knots)

Altitude (ft
AGL)

Start time
(UTC)

Solar elevation
angle (°)

Solar azimuth
angle (°)

IGB-21 025 88 2,825 15:18:40 59.07 129.95
IGB-22 024 82 2,835 15:28:00 60.37 133.74
IGB-23 023 84 2,830 15:36:52 61.47 137.37
IGB-24 022 84 2,840 15:45:15 62.39 140.78
IGB-25 022 85 2,850 15:54:04 63.34 144.83
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where (nb) is the number of bands. Themore similar an unknown
spectrum is to the reference spectrum, the smaller its angle: if the
calculated angle falls within the user-defined angle threshold, the
associated spectrum is labeled as the target. The SAM algorithm is
insensitive to differences in illumination and albedo as it only

uses the vector direction and not the vector length to determine
spectral similarity (Kruse et al., 1993). Therefore, it can be
particularly useful for scenes that are not acquired under
uniform illumination conditions, such as the HSI used here:
over the period of acquisition, the solar azimuth angle
changed between 129.95 and 144.83° and the solar elevation
angle changed between 59.07 and 63.34° (Table 1). These
changing illumination conditions can influence the magnitude
of the spectral reflectance for vegetation, as reflectance will

FIGURE 4 | (A) The Quebec LiDAR dataset subset to the area containing Îles-de-Boucherville National Park. (B) The resulting height mask, where the black
represents areas with a height of greater than 6 m (C) frequency distribution for the relative heights of Phragmites (D) frequency distribution for the relative heights of non-
Phragmites vegetation.
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typically increase with increasing solar zenith angle due to the
effects of the bidirectional reflectance distribution function that is
unique to each material (Ranson et al., 1986; Gross et al., 1988).

For the Phragmites class, the SAM threshold was set to 0.65
radians. This value was determined by examining the results and
selecting the threshold value that resulted in the best coverage of
known target areas (i.e., known extensive, homogeneous stands of
Phragmites) while minimizing the extent of erroneously identified
pixels.

Due to the positional error of the HSI following geocorrection,
and the contribution of materials located in neighbouring pixels
determined by the net PSF [as described in Airborne

Hyperspectral Imagery (HSI)], a buffer with a distance of
2.25 m was determined in order to account for areas of
uncertainty. This uncertainty buffer therefore determined the
minimum mapping unit (MMU) for the Phragmites map and
polygons with an area smaller than 16 m2 (four pixels) were
removed. Using the uncertainty buffer, the sections of the target
polygons that were within 2.25 m of trees (determined using the
LiDAR-MCH > 6 m mask) were removed due to the potential
contribution of the spectra of tree components such as leaves,
branches, and tree shadows to the neighbouring pixels. The
2.25 m buffer was also applied to each of the target polygons.
The Phragmites polygons and their buffers represent the final
map of identified Phragmites within Îles-de-Boucherville
National Park, as shown in Figure 5.

Validation of the Phragmites Extent Map
To account for the associated positional error of the validation
ground truth points (Elmer and Kalacska, 2021), a 1.75 m error
buffer was calculated for each of the 159 points. To carry out the
validation, the points were analyzed to determine if their
respective error buffers overlapped with the uncertainty
buffers associated with the Phragmites polygons.

As a way of comparing the accuracy of the algorithm-based
target detection methods to conventional visual interpretation
conducted by visual interpreters, an online tool was used in order
to determine the ability of the visual interpreters to corrected
identify Phragmites from aerial imagery. The “human accuracy”
using the same set of validation points was compared to the
calculated accuracy of the SAM target detection methodology.
Fifteen-meter buffers were drawn around each of the 159
validation ground truth points and displayed on subsets of
Satellite Streetview imagery (DMTI Spatial ULC, Richmond
Hill, ON, Canada). This imagery consists of pansharpened
(60 cm) satellite imagery acquired in 2012. Similar to the
Picture Pile tool (https://geo-wiki.org/games/picturepile/)
implemented by Danylo et al. (2021), the Satellite Streetview
subsets were arranged and displayed online in Survey Legend
(Malmö, Sweden) (Figure 6). A total of 10 visual interpreters
examined the 159 ground truth points and determined if
Phragmites was present within the buffers or not. Each
interpreter was first shown several example images of
Phragmites and non-Phragmites images and then asked to
examine all 159 images, which allowed for direct cross-
comparison of each individual image.

It is important to note that the high-resolution imagery was
collected in 2012, while the validation data was collected in
2019. Therefore, there may be some inconsistencies in the
appearance of land cover types between the high-resolution
Satellite Streetview images and the HSI used for target
detection. For example, one validation point was collected
in a grassy field in 2019, while in the 2012 imagery it
appears as a cultivated agricultural field. Each high-
resolution image was examined to ensure that there was no
misrepresentation of the validation points to the visual
interpreters (i.e., all ground truth points indicating no
Phragmites appeared with no Phragmites in the 2012
imagery, and vice versa for the Phragmites points).

FIGURE 5 | The final map of the extent of detected Phragmites within
Îles-de-Boucherville National Park overlayed on the HSI mosaic.
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RESULTS

Target Detection Results and Accuracy
Investigation of the input spectra used to train the target detection
algorithm revealed that the brown Phragmites seed heads present
within the stands were spectrally distinct from the leafy green
portion of the plant (Figure 7). In order to include this part of the
plant in the target detection results, which could be the dominant
material present in some Phragmites pixels, additional target
spectra were collected from the brown seed heads and used to
train the target detection algorithm on this separate class. It was
also noted that there were considerable spectral similarities and
overlap between the brown seed heads and the agricultural field
spectra, which was comprised of dry soil and vegetation: this
similarity can be seen in Figure 7. Comparison of the Phragmites
spectra to that of non-Phragmites vegetation revealed that the
spectra were distinct from each other and therefore more
separated by the target detection algorithm.

A total of 2,037 separate stands were detected. The final map
showing the extent of detected Phragmites within the park is
shown in Figure 5. The total core area of detected Phragmites in
the park was 26.74 ha (0.267 km2), which represents
approximately 3.28% of the park’s total area of 814 ha
(8.14 km2). The average (±σ) polygon size of detected
Phragmites is 131.29 ± 571.04 m2 and the frequency
distribution of the area of Phragmites polygons is shown in
Figure 8. When accounting for the uncertainty indicated by
the 2.25 m buffer around each Phragmites polygon, the total
area of detected Phragmites was 59.17 ha (0.591 km2), which
represents approximately 7.26% of the entire park area. In
order to evaluate the performance of the target detection
methodology, the calculated confusion matrix is shown in
Figure 9.

The overall accuracy of the final map was calculated as 84.28%,
with 134 of the total 159 validation points properly identified
(true positives). Of the 25 misidentified points, 18 false negatives

FIGURE 6 | An example of one of the visual interpretation questions as it appeared to the interpreters, where each square contained a subset of the high-resolution
Satellite DMTI Streetview imagery centered on one of the 159 validation points and the associated 15-m buffer. Interpreters selected photographs that contained
Phragmiteswithin the buffer. The interpreters could click on themagnifying glass icon to zoom in for more detail. For this question, the second and fourth images from the
left are the correct images that contain Phragmites.

FIGURE 7 | The mean spectra (±σ) of each material type used to train the target detection algorithm (A) Phragmites, the brown seed heads, and other non-
Phragmites vegetation (B) agricultural fields, asphalt roads, and water.
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occurred where the Phragmites stand was not identified correctly.
Investigation of these 18 points revealed that nine points occurred
where Phragmites stands were a sub-pixel target or were smaller
than the MMU (4 m2) and were therefore removed. Similarly,
seven ground truth points were collected at the edge of a

Phragmites stand where the contribution of Phragmites to the
corresponding pixel’s signal was too low to be correctly identified,
resulting in false negatives. . For example, the validation point ID
� 66 was located 6.58 m from the nearest pixel of identified
Phragmites: at this distance, the materials at that point would not

FIGURE 8 | The frequency distributions for the sizes of Phragmites polygons present in the final map. The majority of polygons (1,620 out of 2,037) were between 0
and 100 m2: the subset histogram shows the detailed frequency distribution of polygon sizes within this range.

FIGURE 9 | The actual and predicted points for the two scenarios (non-Phragmites and Phragmites) for the set of 159 validation ground truth points. The
highlighted values on the diagonal represent the number of true positives and true negatives out of the total sample size. Calculated accuracy statistics are shown in the
last row and last column.
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contribute any substantial signal to the closest detected pixel of
Phragmites, based on the net PSF. The remaining two Phragmites
points that were misidentified occurred in Phragmites stands that
were predominantly defined by the brown seed heads and brown
stems of Phragmites along the margins of water bodies (also false
negatives). There were no ground truth points collected for
aquatic Phragmites due to lack of accessibility. This reveals the
limitations of extrapolating the terrestrial conditions where
Phragmites was sampled in situ to vastly different
environmental conditions such as aquatic stands. Examples of
these three scenarios where Phragmites was misidentified are
shown in Figure 10.

For this study, the small sample size of target pixels meant that
the calculation of a receiver operating characteristic (ROC) curve
and associatedmetrics would not be appropriate (Cisz and Schott,
2005, June). Therefore, using the guidelines regarding the most
commonly used accuracy statistics as given by Foody (2002), the
sensitivity, specificity, misclassification rate, errors of commission
and omission, negative predictive value and precision were
calculated and are shown in Figure 9. With a high specificity

of 91.57% and a low error of commission of 8.43%, the target
detection algorithm distinguished areas that did not contain any
Phragmites (Figure 9). The calculated error of omission of
23.68% indicates that there are areas of Phragmites that were
not properly identified. These areas most likely occur at sub-pixel
Phragmites stands or at the edges of Phragmites stands where the
concentration of Phragmites is low (as described above). Overall,
the calculated statistics show that the target detection
methodology applied in this study had a high overall accuracy
and is appropriate for detecting Phragmites within Îles-de-
Boucherville National Park. However, a limitation of this
method is that small, incipient stands of Phragmites are less
likely to be detected. Figure 11 illustrates the differences in the
range of SAM detection values for the Phragmites target pixels
versus the background pixels. The SAM threshold for Phragmites
was set to 0.65 radians, so the associated SAM pixel values fall
within that threshold. For the background pixels, there is some
overlap with the range of values for Phragmites but themajority of
background pixels are associated with pixel values that are higher
than 0.65. This shows that there is a separation of the SAM values

FIGURE 10 | Three validation points (FID � 282, 32, and 66) and their 1.75 m error buffers (green dot with red circle) and associated field photographs that
demonstrate three of the most common scenarios that caused false negatives in the final detected Phragmitesmap (pink polygon with 2.25 m error buffer) (A) the stand
was predominantly characterized by brown seed heads and stems of Phragmites along the margins of water bodies (B) the stand was a sub-pixel target and was too
small to be correctly identified (C) the point was collected at the edge of a larger Phragmites stand, where the Phragmiteswas too sparse to contribute substantially
to the pixels signal. The 2 m tall monopod with the EMLID Reach RS + GNSS receiver is present in subfigures (A,C) to provide a sense of scale.
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associated with Phragmites from the values associated with
background pixels, allowing for detection of the appropriate
target pixels.

Visual Interpretation Results
A total of 10 visual interpreters assessed the 159 validation
ground truth points and surrounding areas within the 15 m

buffers. Eight of the interpreters had previously been to Îles-
de-Boucherville National Park, and six had some prior knowledge
of Phragmites specifically, either from field work or aerial
imagery. All visual interpreters were shown several example
images of Phragmites and non-Phragmites prior to assessing
the validation ground truth points. The overall accuracy of the
visual interpretation was 69.18% for Phragmites. For all calculated

FIGURE 11 | The distribution and range of SAM pixel values for (A) target Phragmites pixels and (B) background pixels.

FIGURE 12 | The actual and predicted points as determined by the 10 visual interpreters. Each interpreter examined the full set of 159 validation points, leading to a
total of 1,590 samples. The highlighted values on the diagonal represent the number of true positives and true negatives out of the total sample size. Calculated accuracy
statistics are shown in the last row and last column.
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accuracy statistics (Figure 12), the visual interpretation method
underperformed when compared to the target detection results.
The human accuracy overall was lower, with higher rates of
misclassification (30.82%), error of commission (21.69%), and
error of omission (40.79%). Similarly, the sensitivity (59.21%) and
specificity (78.31%) were lower than the target detection results
by 17.11 and 13.26%, respectively.

Of the same 18 validation points where Phragmites was
incorrectly identified by the target detection algorithm, only
two of those points were correctly identified by all 10 visual
interpreters. Three of the points were completely misidentified
(i.e., none correctly identifying Phragmites in the image). The

remaining 13 points of Phragmites were not identified with
complete agreement amongst visual interpreters; for seven
points >50% of correctly identified Phragmites, for five points
<50% correctly identified Phragmites, and at one point where
50% of the visual interpreters identified Phragmites correctly the
other 50% did not. The visual interpreters were assessing higher
spatial resolution imagery (60 cm) than the HSI (2 m), which
might have provided an advantage as the Phragmites in the
Satellite Streetview images would potentially be more
distinguishable due to the finer spatial resolution (Figure 13).
However, the visual interpreters still misidentified some of the
same points that the target detection algorithm missed/

FIGURE 13 | An example of the difference in spatial resolution between the Satellite DMTI Streetview imagery used for (A) the visual interpretation (60 cm) and (B)
the airborne HSI (2 m). The patches of darker vegetation are stands of Phragmites, as indicated by the red arrows.
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incorrectly identified, where Phragmites was present in reality but
was identified as no Phragmites present: this highlights the
shortcomings of visual interpretation of Phragmites using
aerial imagery, even amongst experts.

DISCUSSION

Our study represents an important advance of airborne
hyperspectral remote sensing target detection application and
mapping capabilities for Phragmites, and it is the first to
determine the extent of Phragmites within the entire of Îles-
de-Boucherville National Park. Previous remote sensing studies
mapping Phragmites [e.g., Arzandeh and Wang (2003); Pengra
et al. (2007); Poulin et al. (2010); Xie et al. (2015)] were typically
conducted using spaceborne sensors with lower spatial resolution
imagery (e.g., 20 or 30 m), and utilized multispectral imagery
instead of HSI. Additionally, such studies utilized conventional
image classification rather than target detection algorithms. The
overall accuracy of 84.28% for the Phragmites detection
(Figure 9) is an improvement when compared to previous
remote sensing studies of Phragmites using satellite or
airborne HSI. Pengra et al. (2007) achieved an overall accuracy
of 81.4% and user’s accuracy of 61.1% using EO-1 Hyperion HSI
with a spatial resolution of 30 m (Bachmann et al., 2002). used the
HyMap airborne HSI sensor (4.5 m spatial resolution) to identify
Phragmites from other wetland vegetation with an accuracy of
68%. The HSI used here with a resampled resolution of 2 m
enabled the detection of smaller stands of Phragmites than would
be possible from imagery with a lower spatial resolution. For
example, the map generated by Pengra et al. (2007) was limited by
the spatial resolution of Hyperion and they were not able to map
stands of Phragmites smaller than one pixel (90 m2). Their
training data required Phragmites sample points to cover an
area of at least 180 m2 in order to be considered as a ground
truth point. Future Phragmitesmaps prepared using sensors with
specifications similar to the CASI-1500 would provide land
managers with a valuable tool they currently lack, and could
be modified for various different invasive vegetation species
depending on the requirements of the given project. If
applying the methods described here, it is necessary to acquire
site-specific data (e.g., HSI, ground truth points, etc.) instead of
relying on data acquired for a different site or vegetation species.

The identified stands of Phragmites had an average stand size
of 131.3 ± 571.04 m2 (Figure 8). In part, this is due to the
minimum mapping unit of 16 m2 (four pixels). However, it is
also typical for Phragmites to grow extensively and cover a large
area rapidly: individual stems can grow up to 4 cm in a single day
(Shay and Shay, 1986), and the rhizomes can grow up to 20 m
horizontally (Holm et al., 1977), at a rate of up to 40 cm per year
(Curtis, 1959). This means that over the course of one growing
season, the height profile and coverage area of a given stand can
increase to a size detectable by airborne HSI. This prolific growth
of Phragmites is one of the reasons early detection and continuous
management is needed to effectively control or eradicate
populations of Phragmites. The use of other remotely sensed
data such as vegetation height from LiDAR was shown to be

useful as an ancillary dataset to assist with its detection. While
using height as a condition may exclude new stands or stands that
have not yet developed a substantial vertical profile, it would be
applicable for more established stands that are likely to be
vertically developed.

As mentioned in Target Detection Results and Accuracy
section, 18 of the 25 misidentified validation points occurred
where Phragmites was missed. The majority of these points (16
out of 18) occurred where Phragmites was present as a sub-pixel
target (i.e., smaller than the 2 m pixel size of the HSI) or at the
edge of Phragmites stands where their relative contribution to the
pixels’ signal was too low to be correctly identified as Phragmites
due to the extent of the CASI’s net PSF (Inamdar et al., 2020). Due
to the nature of sensor geometries, it is common that a pixel is
comprised of an assortment of materials that contribute to the
overall signal of that pixel: these mixed pixels occur where the
sensor spatial resolution is low enough that the signal from a
given pixel originates from an area containing different materials,
or if the materials are combined as a homogeneous mixture
(Hsieh et al., 2001; Keshava and Mustard, 2002). Future attempts
at mapping Phragmites using target detection methods with HSI
would potentially be able to improve the accuracy of sub-pixel
targets through the use of spectral unmixing techniques [e.g.,
Frazier and Wang (2011) and Asner et al. (2008b)]. The ability to
more accurately detect the less dense edges of Phragmites stands
would be advantageous as it would allow for improved detection
and monitoring of the expansion of established stands, or the
detection of newly established stands that have not yet grown
dense enough to be readily detected, as commonly occurs during
new invasions. This illustrates the importance of the sensor’s
unique PSF and resampled pixel size, as well as the spectral
difference and spatial extent of the vegetation species of interest as
compared to background materials: these characteristics must be
sufficient for the desired application. The other two false
negatives occurred where Phragmites was not detected in
stands along the edges of water bodies, and stands that were
dominated by brown seed heads. These seed heads are spectrally
distinct from the green portion of the Phragmites plant (as seen in
Figure 7), and their prevalence as part of a Phragmites stand is
dependent on the season. Depending on when imagery is
acquired, these seed heads may represent only a minimal
portion of Phragmites stands. The spectral similarity between
the brown seed heads and areas of dry soil/vegetation (such as
agricultural fields) led to the confusion of these two materials by
the target detection algorithm. While training data of these seed
heads were included, additional training data would likely
improve the target detection performance. Similarly, there
were no aquatic ground truth points collected for Phragmites
as these areas were not accessible for sampling. Though the focus
of this research was mapping terrestrial Phragmites, future
improvements could be made by including samples of aquatic
habitats as the park has a substantial population of aquatic
Phragmites. Including these stands would be beneficial for a
more comprehensive indication of Phragmites presence within
the park. However, the SEPAQ park management conservation
plan is currently focused on the management of terrestrial
Phragmites as part of restoring former agricultural fields back
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to their original environments (Société des établissements de
plein air du Québec, 2020), so emphasis on mapping
terrestrial Phragmites is still appropriate for their needs.

Seven validation points were false positives: examination of
these points revealed that all of the points were acquired at
locations where the perennial grass Phalaris arundinacea
(hereafter Phalaris) was present. Also known as reed canary
grass, P. ahalaris is from the same family of Poaceae as
Phragmites and is generally considered native to most areas of
North America, although invasive populations are becoming
more established and spreading rapidly (Lavergne and
Molofsky, 2004). P. a is functionally similar to Phragmites and
spreads via rhizome mats that form dense monotypic stands
which grow between 0.6 and 2 m tall (Figure 14) and can reduce
plant and insect biodiversity (Apfelbaum and Sams, 1987;
Lavergne and Molofsky, 2004). It is found in similar habitats
as Phragmites and occurs throughout Îles-de-Boucherville
National Park. A linear discriminant analysis performed using
leaf-level spectral data of 12 vegetation species present in the park
found that while Phragmites was spectrally distinct from all other
species, it was most similar to Phalaris (Schweiger, 2019). This
spectral similarity between the two species could explain why the
false positives occurred exclusively at areas of Phalaris coverage.
Additional ground truth sampling and refined training data could
help improve target detection accuracy with regards to separating
Phragmites from Phalaris.

When compared to the visual interpretation results, which had
an overall accuracy of 69.18%, the Phragmites target detection
performed better in every calculated accuracy statistic. The visual
interpretation had a lower overall accuracy than the target
detection and therefore a higher rate of misclassification. The
visual interpretation error of commission of 21.69% (Figure 12),

compared to 8.43% for the target detection (Figure 9), indicates
that the human interpreters were more likely to falsely identify
Phragmites as being present when in reality it was not. Similarly,
the higher rate of omission (40.79%, compared to 23.68% for the
target detection results), indicates that the interpreters were less
capable at identifying when Phragmites was actually present.
Altogether, these results indicate that expert human
interpretation of the validation points did not yield as accurate
results as the algorithm-based target detection methodology.
Additionally, traditional methods of visual interpretation that
typically rely upon publicly available datasets, such as the
2012 high-resolution imagery used in this study, are limited to
using the datasets that are available at the time, regardless of when
they were acquired. Airborne imagery can be more flexible in
terms of planning data acquisition and can be more advantageous
for timing field data collection and other necessary data. These
are important considerations when planning and collecting data
for similar studies regarding vegetation species identification
(native or invasive) and management. Traditional methods of
visual interpretation also used aerial stereoscopic photograph
pairs and interpretation by a trained expert: given the
considerable height profile of Phragmites compared to the
other surrounding vegetation species, the stereoscopic pairs
could be used to help verify points based on their height
profile (Fensham et al., 2002). However, these datasets are
becoming increasingly rare and expensive to acquire, which
may make them impractical for studies similar to the one
described here.

The overall accuracy and benefits yielded by the end product
using airborne HSI indicate that the relatively high investment of
this technology might be worthwhile when compared to human
interpretation of readily available high spatial resolution data. In

FIGURE 14 | A photo of a large expanse of Phalaris arundinacea taken within Îles-de-Boucherville National Park. The 2 m tall monopodwith the EMLID Reach RS +
GNSS receiver is present in the photograph to provide context of scale.
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addition, airborne HSI would be key for validating novel
spaceborne hyperspectral sensors, such as the Environmental
Mapping and Analysis Program (EnMAP), Hyperspectral
Imager Suite (HISUI), and the Hyperspectral Precursor and
Application Mission (PRISMA), and Planet Labs hyperspectral
constellation. The spaceborne HSI systems typically include a
large number of bands (e.g., 185–242 bands for the previously
listed sensors) with a spatial resolution of 20 or 30 m. Therefore,
the ability to scale up remote sensing of invasive species will be
determined by the capabilities of such satellite sensors. The newer
hyperspectral sensors mentioned above are still limited in their
spatial resolution, which might impede their ability to detect
invasive species at smaller (sub-pixel) stand sizes. However, given
recent improvements in spectral unmixing techniques and other
analysis methods such as deep learning [e.g., Cabezas et al.
(2020)], such sensors would likely be efficient at large-scale
mapping of invasive species, which could benefit studies
seeking to map invasions across broader scales such as regions
or countries. These sensors will likely have their niche, and future
research utilizing such data would greatly help with
understanding their capabilities regarding mapping invasive
species along with other areas of study. The utilization of
these current sensors for research would also help to reveal
their strengths and limitations, which could highlight
considerations to keep in mind while planning future sensors.

When considering a satellite, airborne, or Remotely Piloted
Aircraft Systems (RPAS) platform, there are other tradeoffs
related to cost, user experience, and temporal availability that
must be carefully considered for each mapping project and its
requirements (Matese et al., 2015; Khaliq et al., 2019). Research
into the use of RPAS to map vegetation is becoming more
common and could provide another alternative to mapping
Phragmites at relatively lower costs, as RPAS can be obtained
at various price points and can be customized for a variety of
sensor payloads including HSI (Arroyo-Mora et al., 2019;
Kalacska et al., 2020). Recent studies [e.g., Brooks et al. (2021);
Abeysinghe et al. (2019); Anderson et al. (2021); Kopeć et al.
(2019)] have successfully utilized RPAS to map Phragmites at
different field sites with reasonably accurate results. Current
RPAS platforms are usually limited by shorter flight times,
lighter payloads, and the requirement to remain within visual
line of sight (VLOS) of the operator, which can make them a less
opportune platform for acquiring data over large areas. However,
with the phasing-in of beyond visual line of sight (BVLOS)
activity, future studies conducted with a RPAS will be able to
fly further from the operator in order to cover a larger area than
previously allowed by VLOS rules.

CONCLUSION

Airborne hyperspectral imagery has been shown to be adequate
for the mapping of invasive Phragmites over a moderate spatial
extent of 8.14 km2. Target detection, coupled with a thorough
ground truth dataset and firm understanding of the site-specific
characteristics, can yield reasonably accurate vegetation species
extent maps. By utilizing airborne HSI with a relatively fine

resampled pixel size (2 m), this study produced an extensive
map of Phragmites within Îles-de-Boucherville National Park
with an overall accuracy of 84.28%. This map represents a
first-of-its-kind effort to map Phragmites for the entire park
through the use of airborne HSI and target detection methods.
The map’s high level of accuracy will allow park management to
better understand the extent of Phragmites in the park, and
therefore better plan their future management and
conservation strategies. The methodology described here could
be readily modified or customized to fit specific research needs
(e.g., different study sites or vegetation species of interest) given
the proper care is taken to plan and implement the data
acquisition and analysis. Such an approach would be useful for
future studies of Phragmites in different environments, as well as
mapping other vegetation species of interest, invasive or
otherwise, depending on the location and the nature of the
surrounding vegetation communities. Given the prolific nature
of Phragmites, frequent and accurate mapping would assist
greatly with attempts to eradicate populations or control its
spread.
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