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Optical remote sensing has been suggested as a preferred method for monitoring
submerged aquatic vegetation (SAV), a critical component of freshwater ecosystems
that is facing increasing pressures due to climate change and human disturbance.
However, due to the limited prior application of remote sensing to mapping freshwater
vegetation, major foundational knowledge gaps remain, specifically in terms of the
specificity of the targets and the scales at which they can be monitored. The spectral
separability of SAV from the St. Lawrence River, Ontario, Canada, was therefore examined
at the leaf level (i.e., spectroradiometer) as well as at coarser spectral resolutions simulating
airborne and satellite sensors commonly used in the SAV mapping literature. On a Leave-
one-out Nearest Neighbor criterion (LNN) scale of values from 0 (inseparable) to 1 (entirely
separable), an LNN criterion value between 0.82 (separating amongst all species) and 1
(separating between vegetation and non-vegetation) was achieved for samples collected
in the peak-growing season from the leaf level spectroradiometer data. In contrast,
samples from the late-growing season and those resampled to coarser spectral
resolutions were less separable (e.g., inter-specific LNN reduction of 0.25 in late-
growing season samples as compared to the peak-growing season, and of 0.28 after
resampling to the spectral response of Landsat TM5). The same SAV species were also
mapped from actual airborne hyperspectral imagery using target detection analyses to
illustrate how theoretical fine-scale separability translates to an in situ, moderate-spatial
scale application. Novel radiometric correction, georeferencing, and water column
compensation methods were applied to optimize the imagery analyzed. The SAV was
generally well detected (overall recall of 88% and 94% detecting individual vegetation
classes and vegetation/non-vegetation, respectively). In comparison, underwater
photographs manually interpreted by a group of experts (i.e., a conventional SAV
survey method) tended to be more effective than target detection at identifying
individual classes, though responses varied substantially. These findings demonstrated
that hyperspectral remote sensing is a viable alternative to conventional methods for
identifying SAV at the leaf level and for monitoring at larger spatial scales of interest to
ecosystem managers and aquatic researchers.
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INTRODUCTION

Submerged aquatic vegetation (SAV) is vital to the health of
aquatic ecosystems. It provides habitat and food for fauna,
stabilizes sediments, modifies flow regimes, and improves
water quality (Hestir et al., 2016; Shinkareva et al., 2019;
United Nations Environment Programme, 2020). SAV is also
facing severe threats in the forms of warming waters, increased
water levels, invasive species, and human modification to
waterways (Massicotte et al., 2015; Zhang et al., 2017; United
Nations Environment Programme, 2020). Monitoring is
therefore critical to assessing the health of SAV communities,
their population dynamics, and changes in their distributions due
to these pressures as well as to evaluating the efficacy of ecological
management projects (Harper et al., 2021; Maasri et al., 2021). As
optical remote sensing is widely effective in terrestrial vegetation
monitoring in many applications including biodiversity
assessment, forestry, agriculture, etc. (e.g., Asner et al., 2009;
Johansen et al., 2020; Sanders et al., 2021), there is a desire to
expand the use of the discipline to underwater ecosystems.
Optical remote sensing has been suggested as a preferred
method for large scale SAV monitoring (Duffy et al., 2019;
United Nations Environment Programme, 2020; Dierssen
et al., 2021; Maasri et al., 2021) and has been effective in
detecting SAV communities at local and regional scales
(Wolter et al., 2005; Giardino et al., 2015; Santos et al., 2016;
Chen et al., 2018). Past SAV monitoring applications have
however largely focused on seagrasses and marine algae
growing in clear coastal waters. Further exploration into
freshwater plant species is therefore needed to determine if
optical remote sensing is suited to freshwater SAV monitoring.

Detecting or identifying a target through optical remote sensing
relies on the principle of spectroscopywhereby an unknownmaterial
is labeled according to the similarities in its spectral response to those
of known reference materials or spectra (Lillesand et al., 2008). This
method requires that all materials being labeled are represented in
the reference set and the spectral signatures of these materials as
recorded by the sensor are sufficiently distinct to be separable. The
spectral separability of terrestrial vegetation has been thoroughly
evaluated (Martin et al., 1998; Cochrane, 2000; e.g., Clark et al., 2005)
and has paved the way for very specific applications such as precision
agriculture and forestry. While there is a small body of existing work
examining the spectral separability of SAV (here including both
plants and macroalgae due to their functional and spectral
similarities), it does not sufficiently address freshwaters. For
example, Fyfe. (2003) examined three species of seagrasses across
different habitats and water conditions using a spectroradiometer
and found them to be separable amongst the species as well as
separable within the same species depending on sampling location
(i.e., population level separability). McIlwaine et al. (2019) separated
between eight species of macroalgae. Both studies however
exclusively treated marine SAV. A study conducted by Brooks
et al. (2019) applied multiscale spectroradiometer data and
multispectral imagery to investigate freshwater vegetation, but
separated only amongst individual samples, not classes, thus
limiting the applicability of the results to large scale SAV
mapping. Thus, there remains a need to establish spectral

separability amongst freshwater SAV before widescale mapping
and monitoring efforts are pursued.

At the leaf level, the spectral signatures of vegetation are
determined by the relative concentrations of their pigments
and by their cellular structure (Gates et al., 1965; Silva et al.,
2008). As green vegetation shares a common set of pigments, the
spectra of various green vegetation species tend to be similarly
shaped: a notable reflectance peak at 550 nm represents
chlorophyll-a (Chl-a) reflecting green light, troughs around
445 and 660 nm where blue and red light are absorbed,
respectively, and a steep increase in reflectance in the near
infrared (NIR) where multiple refractions produce high
apparent reflectance (Gates et al., 1965). At the canopy level,
the combination of illumination conditions and plant structure
(e.g., leaf orientation relative to incident sunlight, self-shading,
etc.), and intra-individual spectral diversity affect the recorded at-
sensor reflectance (Williams et al., 2003; Arroyo-Mora et al.,
2021). SAV is, however, located beneath a water column, even if
that water column is thin (i.e., <0.5 m). All light reaching
submerged leaves is thus affected by the water column which
contains not only water but also suspended and dissolved
constituents like phytoplankton or salts. The combined effect
is that wavelengths of light below 450 nm are strongly scattered,
NIR wavelengths are strongly absorbed, and the wavelengths in
between–the visible region (VIS)–are inconsistently affected
depending on the water column constituents and depth (Kirk,
1994). Depending on the state of the surface (e.g., roughness) and
the viewing geometry of the sensors, surface reflectance effects
such as glint may further confound analysis and need to be
compensated for (Rowan and Kalacska, 2021). Because both
water and water column constituents confound the signal
from aquatic targets, optical remote sensing for SAV studies is
limited to applications in shallow waters of clear to moderate
water type (Rowan and Kalacska, 2021). These waters are highly
transparent and demonstrate minimal interference from water
column constituents (Uudeberg et al., 2019). The spectral
information reasonably expected to be available for
spectroscopy and mapping from in situ measurements of SAV,
even in this subset of water types, is therefore limited to the visible
portion of the spectrum and, in very shallow waters, the very
short NIR. Considering that the NIR region can provide spectral
information that is useful in classification (Castro-Esau et al.,
2006), the truncation of spectral information may hinder the
classification of SAV.

In addition to the water column, SAV is often covered by a
thin biofilm, a layer of debris, bacteria, and epibionts, whose
thickness and composition vary due to flow regime, disturbances,
and water quality. This leaf fouling can thus not only obscure the
signal originating from a target but also contribute its own
(Williams et al., 2003). As leaf pigment contents change
throughout growth, the spectral signature of an individual
plant may thus change substantially according to the stage of
growth in which it is measured. Past work with estuarian SAV has
suggested that measurements taken in the late-growing season
produce the most accurate classification results (Klemas, 2013).
This has, however, not yet been tested in freshwater SAV.
Understanding how sampling conditions such as presence of
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fouling and plant maturity affect their spectral response, and
thereby the spectral separability of the SAV, is thus essential if
freshwater SAV mapping efforts are to succeed.

To be useful for in situmonitoring campaigns, an examination
of SAV spectral separability would thus need to not only establish
a sufficient leaf level spectral diversity, but also consider how this
separability may be affected by the experimental conditions of
larger-scale in situ applications (e.g., airborne and satellite based).
The spectral resolution required to separate between SAV
operational taxonomic units (OTUs), the minimum size of
SAV stands that can be detected, the effect of biophysical
vegetation conditions on separability, and how narrowly
vegetation OTUs can be defined while remaining spectrally
separable have all yet to be thoroughly examined. Addressing
each of these knowledge gaps will inform what kind of research
questions optical remote sensing can be used to answer in
shallow, clear to moderate optical water types such as the
freshwaters examined as well as many brackish and coastal
waters of similar depth. In this study, our overall objective was
to provide a foundational understanding of freshwater SAV
spectral separability at different spectral and spatial scales. At
the finest scale, the separability of different SAV species was
evaluated at the leaf level and how this separability translates to
both resampled airborne hyperspectral and multi-spectral
satellite-based sensors commonly used in SAV studies was
assessed. Both the full spectral resolution leaf-level and
resampled air/spaceborne spectra were assessed in terms of

OTUs (e.g., species, genus, kingdom), leaf biofouling and
sampling season. Lastly, we conducted a target detection
analysis with an actual airborne hyperspectral image (144
bands from 400–1,000 nm), to explore the extent to which
SAV can be mapped and discuss the implications of image
characteristics (e.g., spatial resolution, image pre-processing)
on the use of these data for operational SAV mapping.

METHODS

Site Description
The St Lawrence River connects the North American Great Lakes to
the Northern Atlantic, with a large stretch forming the Canada-
United States border. It is a major navigational channel for
commercial and leisure traffic (nearly 15,000 vessels passed
through the St. Lawrence Seaway in 2019 (The St. Lawrence
Seaway Management Corporation and Saint Larence Seaway
Development Corporation, 2020)) and is especially vulnerable to
human disturbances and ecological invasions (International Joint
Commission, 2003; Pagnucco et al., 2015). The St. Lawrence is also
the subject of many restoration and ecological management
programs from the local to international scales (Ministere de
l’Environment et de la Lutte Contre les Changements Climatiques,
2005; Raisin Region Conservation Authority, 2021). The study site
was a shallow bay along the St. Lawrence to the west of Phillpott’s
Island, in the Long Sault Parkway recreation area (Figure 1). The

FIGURE 1 | Subset of CASI airborne hyperspectral imagery (red � 658.77 nm, green � 548.70 nm, blue � 481.71 nm) presenting the study site west of Philpott’s
Island in the Long Sault Parkway recreation area, Ontario, Canada. The yellow box outlines the shallow bay where samples were collected and SAV is mapped. The
location of the two calibration tarps is shown in purple. The inset indicates the study site location (red star) in relation to the North American Great Lakes.

Frontiers in Environmental Science | www.frontiersin.org October 2021 | Volume 9 | Article 7603723

Rowan et al. Multi-Scale Hyperspectral Freshwater Vegetation Identification

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


FIGURE 2 | Examples of the vegetation encountered at the site (A-I) and examples of vegetation provided to expert interpreters (J-N). (A) Vallisneria americana; (B)
Potamogeton richardsonii; (C) Sagittaria graminea; (D) Myriophyllum spicatum; (E) Elodea canadensis; (F) Metaphyton; (G) Potamogeton robbinsii; (H) Chara sp.; (I)
Vallisneria americana with heavy leaf fouling; (J) Chara sp.; (K) Potamogeton richardsonii; (L) Sagittaria graminea; (M) Myriophyllum spicatum; (N) Potamogeton sp..
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FIGURE 3 | The multi-scale approach implemented in this study. Laboratory spectral measurements were collected of the leaves of each plant sample collected
from the site; microscopy images of leaf cross-sections were then taken for each species to inform subsequent analysis of the leaf spectra. Leaf spectra were then
resampled to an airborne and six spaceborne imaging sensors that deploy for large scale in situ applications. A shallow freshwater site was imaged using an airborne
hyperspectral sensor from which spectra of the same vegetation examined in the lab could be extracted. Underwater video footage of four transects provided
training and ground truth points for SAV target detection from the airborne imagery. Video stills were additionally presented to fellow researchers to be manually
interpreted to present the utility of remote sensing in the context of the performance of conventional SAV monitoring methods.
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region surrounding the Parkway is primarily zoned for agriculture
and residential space, though there is some industrial activity in the
nearby towns (Township of South Stormont, 2020). The area had
previously been the small town of Moulinette, Ontario, before being
flooded in 1958 during construction of the Moses-Saunders
hydroelectric dam (Rasky, 1954). Infrastructural remnants
provided reference points during surveying and in imagery
(Supplementary Figure S1). The area north of the flooded
highway was lentic, while current could be felt south of the
flooded road causing lotic conditions. The sampling area was
restricted to depths of less than 1.5 m due to strong currents in
deeper waters and covered an area of approximately 1.85 ha.
Vegetation found at the site includes various Potamogeton species,
Chara sp., Sagittaria graminea, Vallisneria americana, and the
invasive Myriophyllum spicatum (Figure 2). Where not covered
by vegetation or asphalt, the bottom varied between large rocks
and gravel along the shoreline to a fine silt in the middle of the bay.

Multiscale Approach
Figure 3 shows the different levels at which SAV was assessed
including leaf-level spectroscopy (i.e., finest spectral resolution),
resampled air/spaceborne sensors, and actual airborne
hyperspectral imagery. The following sections thoroughly
describe the data acquisition, processing and analysis
employed in this study. A flowchart of the analytical steps is
shown in Figure 4.

Submerged Aquatic Vegetation Sampling
Spectralon Panel Measurements
A 99% reflective Spectralon (Labsphere, North Sutton, New
Hampshire) panel was submerged to different depths to

determine the absorptive properties of the water column in
relation to a separate 99% reflective Spectralon panel which
remained on dry land. Spectra of the panel were collected using
an Analytical Spectral Devices (ASD) Fieldspec 3
spectroradiometer (Malvern Panalytical, Boulder Colorado),
referred to hereafter as “ASD,” at depths from ∼1 mm to
115 cm at 5 cm intervals (Supplementary Figure S1). This
instrument measures reflected radiation in the 350–2,500 nm
range, has a spectral resolution of 3 nm and a sampling
interval of 1.4 nm in the visible (VIS) and near infrared
(NIR) regions and a spectral resolution of 10 nm with a
sampling interval of 2 nm in the shortwave infrared
(SWIR) (Asd Inc., 2010). Measurements were repeated at
three locations within the bay for each depth and then
averaged following the calculation of the estimated absolute
reflectance (Rabs) according to Elmer et al. (2020) and Soffer
et al. (2019).

Plant Sample Collection
Plants were collected twice: on August 5th, 2019, and on August
12th, 2020, with water temperatures of 21°C and 23.5°C,
respectively. The 2020 flora was substantially more mature
than the previous year, likely due to differences in springtime
flooding (severe flooding in 2019 potentially delayed the
growing season). Many plants were flowering in 2020 and
leaves were senescing. The 2019 and 2020 samples were
therefore designated as peak-growing season and late-
growing season, respectively. The study area was informally
surveyed by a snorkeler to identify as many species as possible
and approximate their relative abundance; the plants were
harvested according to those estimates. Whenever possible,

FIGURE 4 | Workflow for both the leaf level spectral analysis and the processing and analysis of the CASI image.
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plants of the same species were collected from different
areas and depths to maximize intra-specific variability.
Sampling in 2020 was additionally selective to find plants
with healthy leaves. Two silt samples were collected in 2019.
Samples were labeled, stored in river water, and transported to
a dark room.

The taxonomy of each sample was determined according to
Crow et al. (2000). In the cases of uncertainty at the species
level, the sample was labelled to the genus level. Supplementary
Table S1 presents an overview of the samples collected in
both years and the coded nomenclature used throughout
this work.

Microscopy
To supplement the leaf level spectral measurements (see Leaf
Level Spectral Measurements) because vegetation’s NIR
reflectance is strongly influenced by leaf structure (Knipling,
1970), microscopy photographs were collected of each
species sampled in 2020 to qualitatively assess the structural
diversity present in the SAV being studied. Images were
acquired at the McGill University Multi-Scale Imaging
Facility, Sainte-Anne-de-Bellevue, Québec, Canada. Plants
were kept in water until being prepared for imaging,
ensuring their freshness; they were neither preserved nor
stained before imaging. Thin cross sections were cut across
the center of each leaf, ensuring all internal structures
(i.e., mesophyll, lacunae, vascular bundles, etc.) were
included in the images. Cross sections were placed in a
small amount of water to avoid desiccation. Photographs
were taken using an AxioCam MRm Rev.2. mounted on a
Zeiss AxioImager Z1 microscope equipped with an LED light
and a halogen lamp for illumination. Magnifications between
×4 and ×40 were applied depending on the subject.

Ground Truth Data Collection
Ground truth points recording the locations of different SAV
species in the bay were gathered to provide input and validation
data for analysis of the airborne imagery. Points recording
locations of exposed silt and cement and asphalt (i.e., from a
submerged road and building foundations) without vegetation
cover were also collected. These points were collected in two
ways: recorded observations at each location of the 2019 plant
sampling, and underwater video footage of four 20 m transects,
each with thirty-one location markers (Supplementary Figure
S1). The locations sampled and the placement of the transects
were stratified to include the full variability in vegetation cover
present. Sampling points were included for use in imagery
analysis if they were observed to have homogeneous cover of
one of the operational taxonomic units (OTUs) considered over
at least ∼1 m2. Video footage of each transect was collected by
tracing over the length of the transect in a square wave pattern
with a Go Pro hero 5 held nadir at the surface of the water.
Frames of each transect marker (124 in total) were extracted
from this video and assessed to determine ground cover.
Transect markers were assigned to a given OTU if the frame
containing the marker was covered at least 40% by a single class;
points could thus be assigned to up to two vegetation classes:

unassigned points were discarded; points assigned to a single
class were divided into training and validation sets; points
assigned to two classes were used in validation but not
training. Sampling locations and transect marker placements
were recorded using a Reach RS+ (EMLID, St. Petersburg,
Russia) Global Navigation Satellite System (GNSS) receiver
unit according to (Kalacska, 2018), with incoming Network
Transport of RTCM via Internet Protocol (NTRIP) corrections
from a SmartNet North America base station located ∼25 km
away in Morrisburg, Ontario.

High Spatial Resolution Orthomosaic
To supplement the input and validation data available for
analysis from the ground truth points, a high spatial
resolution RGB orthomosaic was produced from which
additional training and validation data could be extracted. A
DJI Inspire 2 Remotely Piloted Aircraft System (RPAS) with an
X5S camera (micro 4/3 sensor) and a DJI MFT 15 mm/1.7
aspherical lens (72° diagonal field of view) was used to
acquire photographs of the bay from an altitude of 40 m
AGL. A total of 703 photographs were acquired in a double
grid pattern with 85% front and side overlaps. The 20.8 MP .jpg
photographs were 5,280 pixels wide by 3,956 pixels tall. Pix4D
Mapper v4.7.1 was used to generate an orthomosaic following
the Structure-from-Motion MultiView Stereo workflow
described in (Kalacska et al., 2018). Twenty-three ground
control points (GCPs) consisting of submerged targets placed
throughout the bay were used to improve the positional
accuracy of the orthomosaic during processing with Pix4D
Mapper since the geotags of the Inspire 2 are neither real-
time kinematic nor post-processing kinematic corrected
(Kalacska et al., 2020). The coordinates of the GCPs were
measured with the Reach RS + GNSS receiver as described
above. Two hundred and forty points over areas of at least 1 m2

of homogenous ground cover were manually identified from the
orthomosaic. As not all species sampled at the site grow in
canopy-forming stands and some stands were homogenous by
growth type rather than species, the points were limited to the
following 7 classes: ribbon-like leaves (Sagittaria graminea and
Vallisneria americana), Potamogeton richardsonii, metaphyton,
Chara sp., Potamogeton sp., paved asphalt, and other non-
vegetation (silt and rock).

Leaf-Level Spectra
Leaf-Level Spectral Measurements
The leaf-level spectra of each sample were collected in a
darkroom through a modified contact measurement
procedure using the ASD and a low intensity halogen contact
probe. The probe ensures a constant viewing and illumination
geometry with a 1 cm diameter spot. The samples were placed in
a matte black dish with a ∼1–2 mm layer of water covering the
leaves to avoid desiccation. The probe was placed close enough
for the lens to touch the thin water layer over the leaves and a
spectrum was collected over each leaf or leaf segment as there
was often visible variability present within individual plants and
leaves (Supplementary Table S1). The samples were measured
both in their natural fouled state as well as after rinsing to

Frontiers in Environmental Science | www.frontiersin.org October 2021 | Volume 9 | Article 7603727

Rowan et al. Multi-Scale Hyperspectral Freshwater Vegetation Identification

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


remove the fouling. The 2019 samples of metaphyton,
Potamogeton crispus, and Nymphaea odorata were not re-
measured following rinsing due to sample degradation. The
reflectance ratio of each sample acquired by the ASD was
converted to Rabs following Elmer et al. (2020). Each sample
was pressed in paper, dried, and kept as records locally to be
deposited within a herbarium at a later date. The leaf spectra
were then sorted into 7 datasets in each year according to the
OTUs outlined in Supplementary Table S2.

Resampled Airborne Hyperspectral andMulti-Spectral
Satellite Submerged Aquatic Vegetation Spectra
Both airborne hyperspectral and multispectral satellite imagery
have a lower spectral resolution and are thus incomparable to that
of the leaf level spectra collected under laboratory conditions with
a spectroradiometer. It was therefore important to analyze the leaf
level spectra resampled to the spectral response functions of the
air/spaceborne sensors simulating how the signatures would be
recorded by these coarser resolution sensors. The leaf spectra
were resampled to the relative spectral response (RSR) functions
of six former or current multispectral satellite sensors and an
airborne hyperspectral imager, the Compact Airborne
Spectrographic Imager-1500 (CASI) (Figure 5, Supplementary
Table S3). See Image Acquisition and Processing for a description

of the CASI. The resampled spectra then underwent the
subsequent analysis described below alongside the original
ASD spectra to compare results across sensors.

Feature Selection and Classification
The leaf level spectra underwent dimension reduction and
classification, steps that are often also applied to imagery, to
determine the theoretical best separability and classification
accuracy achievable for this set of SAV species. All leaf spectra
were subset to the 400–950 nm range due to the artificial
illumination causing substantial noise in shorter wavelengths,
and the near-complete absorption of longer wavelengths by even
a very thin water column, as determined from measurements of
the submerged Spectralon panel (see Submerged Panel
Measurements–Determination of Usable Wavelength Range). A
forward feature selection (FFS) with a nearest neighbour criterion
(Devijver and Kittler, 1982) was implemented in MATLAB
R2020a (Mathworks, Natick Massachusetts) using the
PRTools5 toolbox (Duin and Pekalska, 2016) to determine the
optimal bandset to distinguish between the various OTUs. After
feature selection, each dataset, reduced to the optimal bands was
divided 60/40 into training and testing samples. After an initial
trial run with all thirty-four classifiers in the PRTools toolbox on
the peak-growing season, species level of both fouled and

FIGURE 5 | Relative Spectral Response (RSR) functions of two satellite sensors and the airborne sensor resampled to in this work for the 400–950 nm spectral
range, and an example of a Vallisneria americana spectrum obtained after each spectral resampling. (A) RSR of the Landsat 8OLI sensor. (B) V. americana spectrum
resampled to Landsat 8OLI. (C)MODIS’s RSR. (D) V. americana spectrum resampled to MODIS. (E) RSR of the CASI airborne hyperspectral imager. (F) V. americana
spectrum resampled to the CASI.
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unfouled samples (a19 dataset; Supplementary Table S2), all
classifiers that resulted in a validation accuracy ≥80% were
retained and applied to all datasets (see Leaf Level and
Resampled Air/Spaceborne Spectral Classification).

Airborne Hyperspectral Imagery
Image Acquisition and Processing
A 144-band airborne hyperspectral image of the study area
(Figure 1) was acquired with the CASI-1500 sensor (ITRES
Ltd., Calgary, AB) on July 26th, 2019, by the National Research
Council of Canada’s Flight Research Laboratory (NRC-FRL)
(acquisition parameters are provided in Supplementary Table
S4). The image was preprocessed to units of radiance (uW/cm2/sr/
nm) using lab-derived calibration parameters applied using
standard processing modules as provided by the manufacturer
(Soffer et al., 2019). Because surface water results in a weak signal,
conventional radiometric correction procedures developed for
imagery of terrestrial environments result in radiance values
that are erroneously low and often negative at wavelengths
below 450 nm (Soffer et al., 2021). As such, a two-part, non-
linear In-Flight Radiometric Refinement (IFRR) methodology
following Soffer et al. (2021) specifically developed for pixel
spectral responses equivalent to surface reflectance levels <3%
was applied prior to atmospheric correction.

The IFRR refined radiance image was then atmospherically
corrected with ATCOR4 v7.3.0. to generate surface reflectance
(Figure 4; Supplementary Table S4). To compensate for the
effect of the water column, the Depth Invariant Index (DII)
(Lyzenga, 1978; Lyzenga, 1981) was calculated for all band pairs
including only wavelengths below 950 nm (Inamdar et al., 2021c,
submitted). A maximum correlation coefficient threshold of 0.9
was applied to reduce the dimensionality of the DII data from
5,565 (all pairs) to 124. Following the methodology described in
(Inamdar et al., 2021a; Inamdar et al., 2021b), the DII bands were
geocorrected without raster resampling to generate a
hyperspectral point cloud which assigns 3D spatial coordinates
to each image spectrum without introducing the pixel
duplications and loss that result from conventional nearest
neighbour raster resampling. Next, in CloudCompare v2.12,
the point cloud was subset to the study site and was rasterized
to 25 cm pixels (empty cells were not interpolated over) to allow
data visualization of the point cloud in raster data format without
introducing pixel loss or duplication; NoData values were given to
empty cells. In ENVI v5.5.3 (Harris Geospatial Solutions, Inc.,
Broomfield, CO), all NoData pixels were masked out. Ground
truth points (Submerged Aquatic Vegetation Ground Truth Data
Collection) and points extracted from the orthomosaic (High
Spatial Resolution Orthomosaic) were imported into ENVI and
the nearest DII data pixel to each was manually selected and
assigned the point’s label, sometimes resulting in a single data
pixel being assigned multiple ground truth point labels.

Target Detection
Target detection was used to identify SAV classes in the airborne
HSI as not all materials in the HSI were known and the classes
covered relatively small areas. A target detection was performed
in ENVI on the 124 band DII image for each of the classes of

interest (i.e., five canopy-forming vegetation types, the paved
asphalt road, silt/rock, all vegetation combined, and a non-
vegetation class). The selected pixels corresponding to the
ground truth and orthomosaic points were divided 60/40 into
input (target and non-target) spectra and validation points. The
Adaptive Coherence Estimator (ACE) algorithm (Scharf and
McWhorter, 1996) (Eq. (1)) was used to create rule images for
each class with all other classes input as non-target spectra.
Assignment thresholds were then selected to maximize the
detection of known class extent while minimizing false
positive detections (Supplementary Table S5). ACE was
chosen for its ability to detect sub-pixel targets as was
common at the field site due to the small areal extent of most
SAV stands and is calculated as follows:

ACE � (STΣ−1
b x)

2

(STΣ−1
b S)(xTΣ−1

b x)
(1)

where ST is the mean input spectrum of the target class after
undergoing a matrix transposition, x is the pixel spectrum under
consideration and b is the covariance matrix of the classes
identified as non-target background (Manolakis and Shaw, 2002).

Accuracy Assessment
To account for the spatial uncertainty in both the reported locations
of the ground truth data and the geocorrection of the CASI imagery,
buffers were created around all detected pixels and validation points
according to the spatial uncertainty of each data set. For the
validation points recorded in situ, the buffer diameter was
calculated as the sum of the manufacturer reported accuracy for
NTRIP baselines >10 km (i.e., 1 m) and the average standard
deviation of the points reported by the Reach RS + unit (Elmer
and Kalacska, 2021). For the pixels output from the target detection,
the uncertainty buffer considered the reported spatial accuracy of the
CASI imagery (2.25 m) (Elmer and Kalacska, 2021) and the effective
pixel resolution, the area corresponding to the full-width half -max
of the CASI’s point spread function (Inamdar et al., 2021a)
(i.e., 1.038m in the across-track and 0.978 m in the along-track)
as determined following (Inamdar et al., 2021b). The sum of the
spatial accuracy and the effective pixel resolution resulted in elliptical
uncertainty boundaries where materials contributing to each pixel’s
recorded signal were located. Validation points were deemed to have
been correctly detected if the point’s and the pixel’s buffers
overlapped.

Expert Visual Interpretation
To assess the relative utility of employing remote sensingmethods to
aquatic vegetation monitoring, the validation accuracy of the target
detections performed on the imagery was compared to the accuracy
a team of researchers could achieve bymanually inspecting the same
vegetation OTUs. Field assistants that had participated in this
fieldwork, and select external researchers with experience in
botany and/or remote sensing, interpreted 135 pictures from the
field site consisting of field photos and frames extracted from the
underwater video transects. All pictures were color corrected to
improve their interpretability. The pictures were made available
online similar to the implementation described by Danylo et al.
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(2021). The online platform chosen to host the pictures and record
the selections was SurveyLegend (surveylegend.com). The content
consisted of three sections: first, examples of vegetation were
presented; second, expert interpreters identified photos with at
least 40% of the frame covered by a specified vegetation type;
and third, expert interpreters selected all photos with any amount
of a specified vegetation type. It is acknowledged that this method
did not account for user expertise or the choice of photos included; it
is presented strictly as a coarse estimate of manual detection
accuracy.

RESULTS

Submerged Panel Measurements–
Determination of Usable
Wavelength Range
The average Rabs measurements of the Spectralon panel
submerged across depths up to 115 cm are shown in Figure 6.
In general, as expected, the reflected signal decreases in amplitude
with increasing depth (Figure 6A). The reflectance of the panel in

the VIS wavelengths (450–650 nm) does not however
demonstrate consistent exponential decay across all depths; at
certain wavelengths (e.g., 440 nm), increased reflectance values at
lower depths were recorded (Figure 6B). Beyond 900 nm, there is
strong absorption by the water column with reflectance <0.06 for
any depth of 5 cm or more. For all depths of more than 15 cm,
reflectance is <0.02 at wavelengths greater than 950 nm,
indicating that spectral information from almost all aquatic
targets would be limited to wavelengths shorter than 950 nm.

Leaf Spectroscopy
Impact of Biofouling and Season
The average laboratory spectra for each leaf-level OTU for each
year (Supplementary Table S2) are shown in Figure 7. While all
plant and algae spectra have the expected spectral signature of
green vegetation (Gates et al., 1965) the amplitude is low,
especially in the NIR (<0.27). Fouling had only a minimal
effect on the spectra (Supplementary Figure S2A,B,
Supplementary Figure S3A). Averaged across all species,
removing the fouling produced a maximum difference in the
reflectance amplitude of 3.9% at 921 nm in the peak-growing
season and of 1.1% at 900 nm in the late-growing season, with the

FIGURE 6 | Effect of the water column on the reflectance of a submerged 99% Spectralon panel. (A) Estimated Absolute Reflectance (Rabs) at 5 cm depth intervals
between ∼0 and 115 cm. (B) Rabs at select VIS (440 nm, 565 nm, and 680 nm) and NIR (750 and 810 nm) wavelengths plotted against panel submergence depth.
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average difference ranging from −0.1 to 3.9% and from −1.1 to
0.5%, respectively. Seasonality had a more varied effect on mean
spectra across species (Supplementary Figure S2C,D,
Supplementary Figure S3C,D). The maximum difference in
reflectance between peak-growing season and late-growing
season samples, averaged across all species, was 4.5% at
921 nm in fouled samples and 1.3% at 909 nm in unfouled
samples, with the average differences between seasons ranging
from -1.6 to 4.5% and -1–1.3%, respectively.

Forward Feature Selection Across Operational
Taxonomic Units
The forward feature selection produced ranked lists of features
(i.e., bands) according to the marginal contributions of each
wavelength to maximum theoretical separability (Leave-one-

out Nearest Neighbor criterion (LNN)) for each dataset for
each sensor (Supplemental Figures S4 and S5, Tables 1, 2).
In both seasons and across all OTUs, features in the VIS tended to
be higher ranked than those in the NIR (Supplemental Figure
S4). In the peak-growing season samples, five of the seven OTUs
most important contributors to separability were near the Chl-a
reflectance peak (∼550 nm), with the other two top ranked
features located in the total pigment absorbance peak
(∼450 nm) and the red edge region (∼700 nm). In the late-
growing season however, five out of seven OTUs top-ranked
feature were located in the NIR region; the majority of subsequent
highly ranked wavelengths remained in the VIS. In every case,
most of the maximum separability between classes can be
attributed to just a few of the top ranked wavelengths
(Supplemental Figures S5). Ninety five percent of the total
separability between classes could be achieved with at most 24
of the top ranked bands (out of a maximum 551 bands).
Increasing the separability from 95% to the maximum value
could require >200 additional input bands (Table 1).

The original laboratory spectra produced the highest
separability values in all cases (Table 2). On a scale from 0
(classes entirely inseparable) to 1 (classes perfectly separable), the
peak-growing season samples had LNN criterion values ranging
from 0.8 (all samples, grouped by species) to 1 (vegetation/non-
vegetation) depending on the coarseness of the OTU definition.
The late-growing season samples had LNN criterion values
between 0.55 (unfouled and all samples, grouped by species)
and 1 (vegetation/non-vegetation). While separation between
kingdoms and between vegetation/non-vegetation were equally
high (0.98 and 1, respectively) in both years, the more granular
OTUs were found to be sensitive to the effect of seasonality; peak-
growing season samples were more separable than late-growing
season samples (e.g., LNN values 0.80 and 0.55 for the species
level OTU from the peak-growing season and late-growing
season samples, respectively). A slight improvement in
separability (from 0.82 to 0.84 and from 0.55 to 0.56 for peak-
growing season and late-growing season samples, respectively)
was seen in the fouled samples as compared to the unfouled
samples, in both years (Table 2).

Leaf Cross Sections
Cross-section photographs of the leaves taken via microscope
revealed common patterns in leaf structure, largely divided
between the plants with thin flat leaves (E. canadensis, P.
richardsonii, P. robbinsii, S. graminea, V. americana) and
those with compound leaflets (C. demersum, N. flexilis, M.
spicatum) or exclusively stems (E. acicularis) (Supplementary
Figure S6). In all plants, large lacunae were visible (or
developing) with a single layer of large mesophyll cells
dividing them. There were no disaggregated intra-cellular air
spaces as is common in the spongy mesophyll of terrestrial,
emergent, and floating vegetation (Supplementary Figure
S6G), nor was there columnar mesophyll in any submerged
leaves. Thin flat leaves tended to only be a few cells thick
except for in proximity to a vascular bundle where the cells
were smaller and more densely packed. Leaflets and stems were
roughly circular with up to four large central lacunae and radial

FIGURE 7 | Average spectra of all classes in each grouping scheme for
both 2019 and 2020. (A) All samples grouped by species (a19 and a20); (B) All
samples grouped by genus (p19 and p20); (C) All samples in ad hoc grouping
(g19 and g20); (D) All samples grouped by kingdom (alga19 and alga20);
(E) All vegetation samples plus silt samples grouped as vegetation or non-
vegetation (s19 and s20).
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thicknesses of only a few cells. Chara sp., a macroalgae, was
distinct from the plants in lacking all interior structure.

Resampled Airborne Hyperspectral Imagery and
Multispectral Satellite Spectral Separability
Resampling the spectra to the RSRs of space- and air-borne
sensors (Figure 5) clearly demonstrates the dependence of
separability on spectral resolution and number of bands
(Table 2). For example, spectra resampled to the RSR of
Landsat TM5 resulted in LNN separability on the fouled,
peak-growing season species level OTU of 0.56, compared to
0.84 from the original ASD spectra. This pattern of increasing
separability with increasing spectral resolution and number of
bands was consistent across resampled datasets (Table 2). The
theoretical LNN separability from all RSR resampled spectra was
found to be adequately (>0.70) high to separate spectra between
kingdoms and between vegetation/non-vegetation OTUs in both
years. Spectra resampled to the RSRs of Sentinel-2, MODIS and

the CASI (airborne hyperspectral) produced acceptably high
separability values for the species level OTUs from the peak-
growing season fouled and unfouled samples (i.e., 0.73 and 0.70,
0.73 and 0.70, and 0.81 and 0.76, respectively), as well as for the
genus level OTU from the peak-growing season samples (0.70,
0.70, and 0.77, respectively) and the ad hoc OTU (0.75, 0.74, and
0.82, respectively) (Table 2).

Leaf-Level and Resampled Air/Spaceborne Spectral
Classification
Classification accuracy (at the species level OTU from the peak-
growing season with both fouled and unfouled spectra) with
the FDSC, NUSVC, and RBSVC classifiers was >80%
(Supplementary Table S1). Classification accuracies across
OTUs for each of those three classifiers are presented in
Table 3. Although the NUSVC performed well on the leaf
level spectroradiometer data, it resulted in 26 and 23% lower
accuracy at the species level than FDSC and RBSVC, respectively.

TABLE 1 | Results of the forward feature selection algorithm for the full resolution ASD spectra. The 95% of maximum LNN criterion value and number of features required to
produce 95% of the maximum separability are included as many selected features provide only marginal gains in separability.

Dataset grouping, fouling, season (code) Max LNN 95% of max LNN No. features selected
to max LNN

No. features to
95% of max

LNN

By species, fouled, peak-growing season (f19) 0.84 0.80 38 10
By species, unfouled, peak-growing season (u19) 0.82 0.77 281 13
By species, combined, peak-growing season (a19) 0.80 0.76 276 23
By genus, combined, peak-growing season (p19) 0.81 0.77 258 14
Ad hoc, combined, peak-growing season (g19) 0.84 0.80 267 10
By kingdom, combined, peak-growing season (alga19) 0.98 0.93 52 4
Vegetation/non-vegetation, combined, peak-growing season (s19) 1.00 0.95 58 1
By species, fouled, late-growing season (f20) 0.56 0.53 32 19
By species, unfouled, late-growing season (u20) 0.55 0.52 57 15
By species, combined, late-growing season (a20) 0.55 0.52 238 15
By genus, combined, late-growing season (p20) 0.56 0.54 162 15
Ad hoc, combined, late-growing season (g20) 0.62 0.59 64 10
By kingdom, combined, late-growing season (alga20) 0.98 0.93 13 3
Vegetation/non-vegetation, combined, late- growing season (s20) 1.00 0.95 6 1

TABLE 2 |Maximum LNN values for each grouping and year for the original (ASD) spectra and all resampled spectra. Multi and hyperspectral sensors to which the spectra
were resampled are ordered by increasing spectral information (No. bands). Cells have been coloured according to their value for rapid interpretation (gradient: red � 0.2,
yellow � 0.6, blue � 1). All values above 0.7 have been bolded for easy identification. *CASI is an airborne hyperspectral imager, all others are multi-spectral spaceborne
sensors.
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The accuracies of the FDSC and RBSVC classifiers were similar
across OTUs, years, and resampled sensors, with the resultant
classification accuracies being similar to the maximum theoretical
separability determined for each dataset (Table 3).

Imagery
High-Spatial Resolution RGB Orthomosaic
The Structure from Motion photogrammetry (703 UAS
photographs) produced a high-spatial resolution orthomosaic
with a ground sampling distance of 1.16 cm (Figure 8A).
Pix4D Mapper found a median of 71,013 key points per
photograph (435 photographs out of the 703 input were
calibrated), and a median of 1,489.9 matches between adjacent
photographs. The mean residual root mean square error in the

positional accuracy of the orthomosaic related to the GCPs was
1.14 m. The blank spaces in the lower middle section of the final
orthomosaic are due to the interference of surface glare which
precluded identifying key points in those areas (Figure 8A).

Airborne Hyperspectral Imagery Target Detection
The atmospherically corrected CASI HSI image and the
directly-georeferenced DII image are presented in Figures
8B,C. SAV was detected in 5,444 pixels (5,527 m2, 0.55 ha)
of the total 65,160 water pixels (66,148 m2, 6.6 ha) contained in
the DII image. Likewise, non-vegetation substrate was detected
in 2,518 pixels (2,556 m2, 0.26 ha) (Supplementary Table S2).
A total of 6,368 pixels (6,465 m2, 0.65 ha) were detected to
contain one of the seven more granular target classes. The

TABLE 3 |Classification accuracy of the FSDC, NUSVC, and RBSVC classifiers for each grouping and year for the original (ASD) and all resampled spectra. Accuracy values
have been colour coded for rapid interpretation (gradient: red � 0, yellow � 0.5, blue � 1). All values above 0.7 have been bolded for easy identification. Datasets are
described in Supplementary Table S3.2.
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range of the ACE detection statistic attributable to mixed
pixels varied widely across classes, though the mean ACE
value of the mixed pixels was never greater than the
threshold value (Figure 9). For some classes, such as
metaphyton and non-vegetation, the range of the ACE
detection statistic values representing mixed pixels is
exceedingly small, perhaps indicating that the points
considered mixed pixels did not contain enough of the
material to produce an identifiable spectral contribution.

Target Detection Validation
An example of the target detection validation for Potamogeton sp. is
shown in Figure 10. In this example, pure points of Potamogeton
cover were detected in 10 of 13 instances, resulting in a recall of 77%;

mixed pixels were however poorly detected with only one of nine
mixed pixels detected (combined pure and mixed pixel recall of
50%). Overall, the target detections, for the OTUs and the binary
vegetation/non-vegetation classes, were effective, especially when
considering validation points representing pure pixels (Table 4).
The target detection validationwith pure pixels resulted in an overall,
average accuracy of 87.8% across the individual OTUs and two non-
vegetation classes, and 93.6% for the binary vegetation/non-
vegetation classes. Including mixed pixels (i.e., points with more
than one cover type present) in the validation reduced the overall
accuracy of the target detection to an average of 67.0% across the
OTUs. In this case the label of each class with >40% areal coverage
was assessed. The asphalt class was perfectly recalled, and the silt/
rock class achieved 94% recall, however 408 (414m2, 0.04 ha)

FIGURE 8 | CASI imagery used in this work at various processing stages and the input points used in target detection and validation. (A) RPAS orthomosaic
showing points of each class chosen through visual interpretation and the locations of the transect points. (B) Atmospherically compensated CASI image (red �
687.5 nm, green � 548.7, blue � 500.3 nm, optimized linear stretch applied on extent) before geocorrection. (C) DII-transformed CASI image following rasterization of
the directly georeferenced point cloud without resampling (red � 682.7 and 701.8 nm DII, green � 553.5 and 563.1 nm DII, blue � 424.3 and 438.7 nm DII, linear
stretch on extent applied). Each pixel is a 25 cm by 25 cm visualization of the set of DIIs centered at the coordinates calculated to be where the signal originated from.
(D) Conventionally geocorrected CASI imagery after atmospheric compensation, for reference.
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instances of asphalt were detected in the silt/rock class. The
metaphyton class was poorly recalled; potentially due to the
limited training and validation data or due to biophysical
properties of the metaphyton itself. The binary vegetation and
non-vegetation classes were very well detected (recall of 94%).
Notably, 5 of the 6 instances of missed vegetation (false
negatives) represented points of ribbon-like plants (V. americana
and S. graminea).

Expert Interpretation
Twelve visual interpreters each completed the manual online SAV
identification. The true positives from the visual interpreters are
shown in Figure 11, alongside true positives of the ACE target
detection validation. Generally, the visual interpreters accurately
identified extensive (>40% areal coverage) SAV cover, with class
recall rates of between 67 and 96%. Detection of individual plants
was however less effective and consistent, with recall between 49
and 89% (Figure 11). While manual image interpretation was
more successful at detecting most of the SAV OTUs, higher recall
values were achieved using ACE for detecting Chara sp. and P.
richardsonii at the species level. There was a wide variability in
interpretation responses, for example in the detection of extensive
P. richardsonii or ribbon-like plants as seen in Figure 11,
suggesting that in situ manual observations of vegetation by

those who are not already closely acquainted with the plants
may not be accurate.

DISCUSSION

The leaf level separability analysis has shown that freshwater SAV
does indeed contain sufficient spectral diversity within the VIS
and NIR to be reliably separated with hyperspectral data across
various OTU definitions (Table 2). In situ mapping of that same
set of SAV, while successful overall, highlights that the use of
remote sensing in monitoring SAV is limited by the spatial
resolution of imagery available.

Water Column Impacts
Our submerged panels measurements reveal that the usable
spectral region was limited to wavelengths <950 nm due to the
strong absorption of radiation by water in the NIR (Figure 6).
Although 950 nm is somewhat more restrictive than the
maximum wavelength used in other work (e.g., 1,050 nm by
Visser et al. (2013) and 1,000 nm by Brooks et al. (2019)), the
selection of this upper limit is supported by water’s third
harmonic absorption peak at ∼960 nm, after which absorption
remains high (Kirk, 1994). Therefore, future work should expect

FIGURE 9 | Results of the ACE target detection. Curves depict the number of pixels according to the ACE detection statistic assigned. Horizontal bars indicate the
range of ACE detection statistic values attributable to each type of pixel (pure target, mixed target, background) with the mean value indicated by a coloured tick mark.
Pure and background pixels are separated at the threshold values presented in Table SM3.6; mixed pixel ranges were determined according to ACE detection statistic
values of mixed transect points. (A) Chara sp. (B) Metaphyton. (C) P. richardsonii. (D) Potamogeton sp. (E) Ribbon. (F) Road, no mixed pixels identified. (G) Silt/
Rock. (H) Non-vegetation. (I) Vegetation.
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FIGURE 10 | Example of validation for the Potamogeton sp. target detection with grey ellipses around detected pixels, pure validation points, mixed validation
points, and validation points correctly detected identified. Conventionally geocorrected true colour CASI image shown in background for context. Insets are underwater
photograph examples of pure Potamogeton sp. (A) and mixed (B) Potamogeton sp. and Chara sp. cover. In this example, 10 of the 13 pure cover points were detected
shown by the green circles; one mixed cover point was detected.

TABLE 4 | Validation results of the target detection analyses. Mixed pixels are identified as having at least 40% cover of the class in question.

Class Pure pixels only Pure and mixed pixels

No. Validation
points

True Positives Recall (%) No. Validation
points

True Positives Recall (%)

Chara sp 24 19 79 81 53 65
Metaphyton 2 0 0 4 0 0
P. richardsonii 6 6 100 20 18 90
Ribbon 18 15 83 32 20 63
Potamogeton sp 13 10 77 22 11 50
Road 20 20 100 20 20 100
Silt/Rock 17 16 94 51 32 63
Overall 98 86 88 230 154 67
Vegetation 56 50 89 — — —

Non-vegetation 38 38 100 — — —

Overall 94 88 94 — — —

FIGURE 11 |Comparison of recall results from visual interpretation, for both 40% class cover and any instance of class presence, and CASI airborne hyperspectral
image target detection. The range of responses is shown by the error bars for visual interpretation results.
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useful information exclusively from the VIS (e.g., up to 700 nm)
and shortest wavelengths in the NIR regardless of bathymetry for
all water types. As little as 5 cm of submergence reduced the panel
Rabs to 0.66 at 550 nm and to 0.34 at 900 nm. Under a 40 cm thick
water column, Rabs reduced further to 0.52 at 550 nm and 0.00 at
900 nm (Figure 6). A very high signal-to-noise ratio (SNR) would
hence be necessary to meaningfully capture radiance from
underwater targets (e.g., Muller-Karger et al. (2018) cite an
SNR of 800 as sufficient for aquatic studies). However, even
upcoming sensors conceptualized specifically for aquatic
applications are not expected to meet such high SNR demands
(e.g., PRISM has a SNR of 500 in the blue region (Mouroulis et al.,
2014); PACE is expected to have an SNR ranging from 400 to
1700 (Werdell et al., 2019)).

Leaf Spectroscopy
Effect of Biofouling and Season
At the leaf level, confirming previous findings by Fyfe. (2003), it
was found that light fouling had very little effect on species mean
reflectance signatures though it did mask some intra-class
variability in the NIR (Supplementary Figure S1A,B), which
may explain the minor, yet positive, effect fouling produced on
class separability in both years (Table 2). As neither the fouling
load nor its composition were examined, the relationship between
fouling and spectral response cannot be here defined. Still, these
results are encouraging for future mapping efforts in fluvial
freshwaters such as the St. Lawrence River where light fouling
is common. As expected, season substantially affected the SAV
species spectral signatures (Supplementary Figure S2B).
Increased variability was prominent in the late-growing season
samples compared to their peak-growing season counterparts
(Supplementary Figure S2C,D) potentially due to the increased
relative concentration of accessory pigments later in the growing
season (Salisbury and Ross, 1992; Gitelson and Merzlyak, 1994).
This evolution in leaf spectral response through senescence,
combined with the recorded changes in spectral response as a
young leaf matures (Gates et al., 1965), indicate that SAV spectral
measurements are temporally distinct and could be used to
estimate plant maturity.

Leaf-Level Feature Selection and Separability
Physiological changes occurring within leaves throughout
maturation were reflected in the features selected as
important contributors to class separability (Figure 8).
Mesophyll thickness, intra-cellular space, and leaf thickness
determine the number of multiple refractions within a leaf
and mediate NIR reflectance, previously shown in terrestrial
plants (Castro-Esau et al., 2006). The lack of structural
complexity and diversity in the SAV leaves examined here
(Supplementary Figure S6) thus explain the NIR’s
irrelevance in achieving spectral separability in the peak-
growing season. However, the introduced structural diversity
in the late-growing season due to uneven senescence resulted in
NIR features to contribute most to separability for the majority
of the OTUs (e.g., 938 and 809 nm were top ranked for
discriminating across all species and between vegetation and
non-vegetation, respectively).

Besides changes in leaf and cellular structure, the selected
features mirrored the evolution of pigment concentrations
throughout the growing season. The Chl-a reflectance peak,
referred to as the green peak (∼550 nm) was the primary
contributor to spectral separability for most OTUs during the
peak-growing season when plants invest in Chl-a production.
Chl-a absorptance was comparatively unimportant later in the
summer when Chl-a is less abundant due to increased shading
(Maksimović et al., 2020) and plants redirect resources toward
accessory pigments (Salisbury and Ross, 1992). This temporal
variability in relative pigment abundance also explains the
substantial increase in moderately to highly ranked features in
the red and red edge regions (650–710 nm). The total pigment
absorptance feature (∼445 nm) was the most important
contributor to separability in both years when distinguishing
between plants and algae possibly due to the differences in
pigment composition and content between the two kingdoms
(UCMuseum of Paleontology, 2001). The dissimilarity in selected
features between the two seasons signifies that the spectral
response of SAV is temporally specific; data collected in the
peak of summer should not be used to train or validate work done
on later in the summer, or vice versa.

Contradictory to previous work (Klemas, 2013), the decrease
in OTU class separability in the late-growing season suggests that
SAV monitoring campaigns should target the peak-growing
season to maximize accuracy. The maximum separability
between classes (Table 2) is also related directly to the
coarseness of the OTUs. Though aggregating multiple similar
species into more coarsely defined classes such as genera (rather
than species) increases the intra-class spectral variability, it can
likewise increase inter-class variability, improving classification
results. Although this study is the first instance of it being
documented in vascular aquatic plants, the improvement in
class separability in higher-level OTUs has previously been
demonstrated in macroalgae (species vs clade) and trees
(population vs species) (Cavender-Bares et al., 2016;
McIlwaine et al., 2019). Interestingly, class separability
increased not only across progressively higher taxa but also in
the combination of species into the ad hoc group that was not
exclusively based on evolutionary proximity. While spectral
similarity may relate to a common phenotype or functional
group, shared traits cannot be assumed to confer the spectral
similarity that would produce accurate classification (Laliberté
et al., 2020). The high separability of the ad hoc group (Table 2) is
therefore encouraging for ecosystem managers that may be
interested in classes other than taxonomy, like growth type.

Resampled Air and Spaceborne Sensor Spectra
Even though high spectral separability was obtained after
resampling the leaf level spectra to the RSRs of Sentinel-2 and
MODIS (Table 2), these resampled spectra model a signal
originating from a single species (i.e., pure pixels) and do not
account for the uncertainties of even the most accurate
radiometric, atmospheric and water column corrections,
conditions that cannot be met with actual imagery. To be
reliably detected in imagery, targets need to be at least twice
the length of a pixel’s diagonal (Heblinski et al., 2011). Patches of
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vegetation would thus need to be at least 28 m in diameter to be
detected by Sentinel-2’s 10m pixels; only one stand of vegetation of
this size was observed in this study, while all others were much
smaller (<10m in diameter). Reliable detection in MODIS pixels
would require patches over 282 m in diameter. The spatial
resolution of current spaceborne sensors thus precludes their
use with many in-land freshwater ecosystems in which such
large extents of vegetation are rare. Past sensors, such as
Landsat TM5 and EO-1 ALI, had been included to examine the
feasibility of retrospective analysis on archived data (Table 2).
While the retrieval of historical images to extend time series is
common in other fields, the poor separability between all but the
coarsest OTUs (i.e., the binary vegetation/non-vegetation classes)
severely restricts the utility of archived satellite imagery in SAV
research.

In contrast to the satellites, very good separability (LNN
criterion values of between 0.76 and 1 for the species-level
OTU of unfouled samples and the vegetation/non-vegetation
OUT, respectively) was achieved for peak-growing season
spectra resampled to the CASI RSR for all OTUs (Table 2).
This is unsurprising, given the CASI’s high spectral resolution in
terms of both band width and number of bands. As the CASI is an
airborne sensor, the high spatial resolution (∼1 m pixel size) is
also much better suited to the spatial distribution patterns of SAV
than spaceborne platforms. Airborne hyperspectral imagery such
as that produced by the CASI is thus expected to be appropriate
for SAV mapping.

Imagery
Airborne Hyperspectral Imagery Depth Invariant Index
A novel DII transformation (Inamdar et al., 2021c; Lyzenga 1978,
Lyzenga, 1981) based on a hyperspectral point cloud as opposed to
conventional geocorrected, resampled raster imagery (Inamdar
et al., 2021a; Inamdar et al., 2021b) was implemented to
optimize the data quality of the CASI imagery. While Lyzenga’s
DII may be highly effective at distinguishing between bottom cover
types, its performance depends entirely on the two input bands. If
two (or more) targets do not reflect differently in the two
wavelengths chosen, a DII calculated using those bands will not
be unique to either material (Lyzenga, 1978). Considering that two
materials may be spectrally alike in some, but not all pairs of
wavelengths, computing all possible DIIs ensures that the spectral
diversity in the signals is represented. A set of all possible DII
values however increases the data dimensionality, rendering it (in
the case of hyperspectral data) computationally unfeasible
(i.e., 5565 DII bands from a 106 input-band image). The DII
transformation used here addressed this by sub-setting all
possible DIIs to only those below a 0.9 covariance threshold.
Thus, most unique spectral information was retained, the
imagery dimension was limited, and the water column was
compensated for. Work by Mumby et al. (1998) demonstrated
that implementing as few as two DII bands and some contextual
editing could improve bottom cover classification accuracy
(between 4 and 13 classes) by up to 23%. It is thus expected
thatmaximizing the number of DII bands with unique information
would similarly increase mapping accuracy. However, if reliable
bathymetric information is available, empirical methods such as

that described in Purkis and Pasterkamp. (2004) could be used to
retrieve relative bottom reflectance as opposed to the transformed
DII values, facilitating interpretation. By rasterizing the
georeferenced DII point cloud without resampling (Figure 9),
the original image acquisition geometry was respected and
facilitated extraction of the target DII spectra and validation
points based on the RGB orthomosaic and field sampling.
Furthermore, because the goal of this study was fine scale target
detection, it was critical to preserve all pixels captured in the raw
imagery. The Directly-georeferenced Hyperspectral Point Cloud
method implemented here was shown to substantially reduce
target detection false negatives due to pixel loss over
conventionally georeferenced and resampled raster imagery
(Inamdar et al., 2021a); applying this method therefore
maximized the number of potential target pixels included in the
analysis.

Airborne Hyperspectral Imagery Target Detection
The ACE detection statistic thresholds were chosen to discern
known areas of class cover and minimize false positives. These
thresholds were strict, as shown in Figure 9 by the mean mixed
pixel always being outside the target class range. It is thus unlikely
that these sub-pixel targets could be effectively detected without
producing many false positives. The target classes were limited to
the OTUs present in patches of similar size to the CASI pixel
resolution (∼1 m) to avoid classes of uniquely sub-pixel targets.
Hence, not all SAV species included in the leaf level analysis were
targets in the imagery (e.g., E. canadensis and M. spicatum were
both abundant at the site, but did not form large, monotypic
stands). If a sparse or non-canopy forming species, such as the
invasive M. spicatum were of critical interest, monitoring efforts
would require imagery on the scale of a few centimeters such as
that produced from RPAS-mounted sensors (e.g., Arroyo-Mora
et al., 2019).

The ACE target detections identified points of pure bottom
cover well, particularly for the binary vegetation/non-vegetation
classes (Table 4; Figure 10). ACE uses target and non-target
input spectra to estimate and disregard noise that is shared
between the two groups. It produces a single statistic value
that is invariant to changes in scaling (such as might be
produced by changes in signal strength due to variable water
column thickness) (Kraut et al., 2005). Previous work by Flynn
and Chapra. (2014) confirms the utility of ACE in mapping
aquatic targets by correctly detecting Cladophora extent with 90%
accuracy. Macfarlane et al. (2021) additionally determined the
ACE algorithm to be most effective in airborne hyperspectral
target detection in a cross-comparison of five target detection
processes. As ACE uses all input target spectra to calculate a mean
target profile, it is unsurprising that five of the six false negative
vegetation points were in dense patches of ribbon-like plants.
These plants (S. graminea and V. americana) tended to be visibly
darker and redder than other species (Figure 2) and were, in
some areas, sufficiently dark to be confused with deep water
pixels. Thus, spectra of these dense stands were too different from
the average of all vegetation (mostly greener and brighter)
(Figure 7) to be detected without introducing innumerable
false positives. Separating the darker, redder vegetation into its
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own class may thereby be more effective. The very good overall
detection recall across vegetation types (Table 4) suggests that a
similar methodology would be of use inmanagement situations in
which the growth type is of interest, such as in maintaining clear
navigation corridors or preventing the establishment of tall
vegetation near water intakes.

Manual Field Photograph Interpretation
Manual interpretation of field photographs was conducted to
compare the performance of traditional surveys of SAV and the
remote sensing methodology used here. Interpreters completed
two tasks (selecting images that presented >40% cover of a
specified bottom type and identifying all images with any
instance of the specified bottom type) to simulate detection
of full-pixel and sub-pixel targets. Recall values were not
substantially different between manual detection of extensive
bottom cover and the ACE target detection of pure pixels
(Figure 11), suggesting that the remote sensing methods
used here could produce similarly accurate results to in
person surveys conducted by researchers that are not already
well acquainted with the vegetation. Photograph interpretation
for sub-pixel target identification was generally less successful,
with more response variability. This decrease in manual
interpretation success mirrors the decline in recall of the
ACE target detections when including mixed pixels in the
validation set (Table 4). While manual interpretation
remains more effective at detecting targets over a small area,
the remote sensing methods used here provided acceptable
target detection rates and could be applied to a larger spatial
scale by a smaller team.

Overall Importance
Our results show that the SAV examined do present enough
spectral diversity to be separable despite the limited spectral range
available in aquatic remote sensing and the general lack of
identifying information in the NIR. That separability extends
beyond taxonomic groupings, having been observed in the ad hoc
grouping roughly based on phenotype. Mapping and identifying
SAV through optical remote sensing are therefore anticipated to
be an appropriate tool in a broad range of management and
research applications. Using airborne hyperspectral imagery to
map that same SAV demonstrated that very high detection rates
can be achieved for targets of a similar size to the imagery pixels.
The increasing availability of RPAS platforms, and thereby higher
spatial resolution imagery, is expected to further extend the scope
of aquatic targets suited to detection and mapping through
remote sensing. This work has shown that optical remote
sensing is indeed a viable alternative to manual surveys for
monitoring SAV in shallow clear to moderate optical water
types from freshwater ecosystems, and its spectrum of
potential uses is still growing.

CONCLUSION

To address some of the fundamental knowledge gaps remaining
in the application of optical remote sensing to freshwater

ecosystems identified by Rowan and Kalacska. (2021), the
spectral separability amongst thirteen SAV species was
examined under laboratory conditions and through actual
airborne imagery. Implementing a multi-scale approach
provided insight into what is currently possible for
researchers/practitioners working across scales and with
varying resources and highlighted future possibilities from
further technological innovation and investment. The species
of SAV were reliably separable under laboratory conditions from
leaf-level spectroradiometer data, with light leaf fouling having
minimal effect but seasonality being an important determinant of
separability. As the samples were found to be less separable late in
the growing season than at its peak, it is recommended that future
studies consider avoiding late-growing season data collection.
Additionally, separability was improved with progressively
higher-level OTUs (i.e., genus or kingdom). Resampling the
leaf level spectra to simulate spaceborne sensors reduced
separability, demonstrating that most publicly available
satellite data products do not have the necessary spectral
resolution required for reliable SAV separation; those that do,
lack the high spatial resolution needed to study freshwater SAV
communities. Resampling the leaf level spectra to simulate the
CASI, an airborne hyperspectral sensor, produced high
separability results. Combining this high separability with
the fine spatial resolution achievable from airborne
platforms, airborne HSI with similar spatial and spectral
characteristics could be amenable to SAV monitoring
applications. Detecting instances of target vegetation and
bottom cover from the airborne HSI was effective, though
it was limited to cover types occurring in patches of similar
size to the imagery pixels, meaning not all species at the site
could be detected. Before SAV can be operationally mapped
in freshwaters across broad spatial extents, higher resolution
spaceborne sensors and more precise pre-processing
workflows for low signal level targets are needed. The
enhanced radiometric correction (i.e., IFRR) used here
enhanced the useable low-level signals and the novel DII
transformation allowed for an effective water column
compensation. Importantly, the directly-georeferenced
point cloud data model ensured maximal retention of
information and spatial integrity. These improvements
over conventional aquatic remote sensing workflows are
thus recommended for application in future SAV
monitoring and mapping endeavors. Freshwater SAV has
here been shown to contain sufficient spectral diversity for
reliable separation, though the success of in situ applications
remains limited by the spectral and spatial resolution of
available data.
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