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Plastic-related industrial discharge is suspected as a significant source of
microplastics (MPs) in the influent of wastewater treatment plants (WWTPs).
However, little is known about the characteristics of MPs in industrial wastewater.
Taking the Haicang WWTP in Xiamen, China, as an example, this study compared
MPs in industrial wastewater with the domestic one in terms of abundance, particle
size, polymer type, shape and color. Wentworth modulus, grain size parameters and
principal component analysis (PCA) were performed to describe the MP difference
between those two. It was found that the abundance of MPs in industrial wastewater
was more than twice that in domestic wastewater, and the flux of MPs discharged into
the aquatic environment through industrial wastewater was about 3.2 times that of
domestic wastewater. The main shapes of MPs in industrial wastewater and domestic
wastewater were fiber and granule, respectively. The proportion of polyester (PES)
and polyethylene terephthalate (PET) in industrial wastewater was higher than that in
domestic wastewater, related to the type of factories served by the WWTP.
Compared with domestic wastewater, the rough surface of MPs in industrial
wastewater was more complex and diverse, which might have a high capability of
adsorbing other pollutants, thereby causing more significant harm to the
environment. Our results supported that industrial sources of MPs are the priority
areas in environmental management, and immediate action is taken to prevent
industrial-sources MPs from entering the environment.
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RESEARCH HIGHLIGHTS

• Wentworth modulus and principal component analysis were performed to describe the
Heterogeneity of MPs between industrial and domestic sources.

• MP characteristics of industrial wastewater, including high loading, small-size and rough
surfaces, are different from domestic wastewater.

• Industrial wastewater is a targeted intervention point at the source mitigation of MPs.
• The moisture content of sludge is a crucial factor when analyzing the MP balance in
WWTPs.
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INTRODUCTION

Microplastic (MP) pollution is caused by the surrounding
industrial and residential activities (Nizzetto et al., 2016;
Deng et al., 2020). It is generally believed that there is a
positive correlation between MP pollution in the aquatic
environment and the degree of industrialization (Yonkos
et al., 2014; Townsend et al., 2019). Available field survey
(Li et al., 2018; Liu F. et al., 2019; Liu et al., 2020; Wu et al.,
2020) and model study (Piehl et al., 2021) have confirmed
that MP emissions from industrial areas are higher than those
from residential areas, business quarters, etc. Industrial waste
discharges are found to be one of the main contributors to the
MP pollution in the aquatic environment, such as rivers
(Lechner et al., 2014; Yonkos et al., 2014; Lechner and
Ramler, 2015; Woodward et al., 2021), lakes (Zbyszewski
and Corcoran, 2011), and oceans (Franco et al., 2020; Su
et al., 2020). MP pollution from industrial wastewater is
considered higher than that of residential wastewater
(Zbyszewski and Corcoran, 2011; Townsend et al., 2019;
Chen et al., 2020; Su et al., 2020). However, there is a lack
of knowledge of industrial wastewater in overall MP
emissions (Bitter and Lackner, 2020). Literature on the
contribution of industrial sources to the MP pollution in
municipal wastewater is scarce (Lechner et al., 2014; Franco
et al., 2020; Wang et al., 2020; Franco et al., 2021). Identifying
and regulating the sources of MPs become the focus of the
environmental MP research (Lechner and Ramler, 2015),
especially in the industrial zones (Liu et al., 2021). It is
necessary to gain insight into the importance of various
MP sources and pathways in the municipal sewer systems
to adopt effective management strategies against MP
pollution (Helm, 2017; Hou et al., 2021; Piehl et al., 2021).

Wastewater treatment plants (WWTPs) are considered to
be one of the largest sinks of industrial and residential MP
discharge (Ruan et al., 2019; Hou et al., 2021). At the same
time, it is believed to be one of the primary point sources of
MPs entry into the aquatic environments (Kazour et al., 2019;
Lv et al., 2019; Schmidt et al., 2020) due to the large volume of
effluents generated every day (Conley et al., 2019; Bretas
Alvim et al., 2020) and the current immature treatment
technologies (Rodríguez-Narvaez et al., 2021). The
concentration, morphology, and chemical composition of
MPs in the influent of WWTPs may depend on many
factors (Mason et al., 2016), yet the primary one of which
is the source of MPs (Carr et al., 2016; Yuan et al., 2020;
Rodríguez-Narvaez et al., 2021). Sources of MPs to WWTPs
are directly linked to sewage systems and wastewater origin
(Barchiesi et al., 2021). In urban areas, combined sewer
systems are common, in which domestic and industrial
wastewater are jointly transported to WWTPs for
treatment (Baresel and Olshammar, 2019; Schernewski
et al., 2020; Rasmussen et al., 2021). It is an international
practice to use WWTPs to collect and treat various types of
industrial and domestic wastewater in metropolises (Qiu
et al., 2010; Mahon et al., 2017; Ngo et al., 2019; Funck
et al., 2021; Takdastan et al., 2021; Zhang et al., 2021).

Most industrial wastewaters are treated in WWTPs or pre-
treated in factories before being discharged (Nizzetto et al.,
2016; Wang et al., 2020), but some still are released directly to
the municipal sewer systems or receiving waters (Woodward
et al., 2021).

Most previous works focused on the migration and removal
of MPs at different stages in WWTPs (Tagg et al., 2020). Little
information is available for the heterogeneity of MPs from
various sources, especially the characteristics of MPs in
industrial wastewater (Li et al., 2018; Long et al., 2019;
Wang et al., 2020; Zhang et al., 2021). Therefore, the
contribution of industrial sources to the WWTPs and
aquatic environment contamination in terms of MPs is not
yet defined precisely (Mallow et al., 2020; Wang et al., 2020).
One likely reason is that few countries have formulated
discharge standards for MPs in industrial wastewater,
turning MP pollution into a global issue (Lechner and
Ramler, 2015; Freeman et al., 2020). Another reason is that
factories will not voluntarily reveal or make public their MP
pollution status (Franco et al., 2020), where industrial
wastewater plays a significant part. Extensive work has
indicated that environmental pollution by MPs in
wastewater can only be solved at the source (Science Advice
for Policy by European Academies, 2019), which is the most
economical and feasible way. Characterizing the difference of
MPs between industrial and domestic sources will help
formulate targeted and efficient source control policies
(Helm, 2017; Bitter and Lackner, 2020). Industrial activities
are considered the point sources of MPs and the priority of
releasing substantial MPs into the municipal sewer systems
(Bitter and Lackner, 2020). Some countries have taken some
activities, such as prohibiting the addition of microbeads in
personal care products to reduce the domestic-sources MP
pollution (Xanthos and Walker, 2017). However, microbeads
are still used in large quantities in industries (Woodward et al.,
2021). A lack of in-depth knowledge restricts the
implementation of targeted measures to effectively reduce
MP pollution in industrial wastewater. Urgent monitoring
and research are needed to identify the characteristics of the
industrial contribution to MPs inflow to WWTPs, and generate
science-based solutions (Prata, 2018b; Barchiesi et al., 2021).

Haicang WWTP, located in Xiamen, China, separates
industrial wastewater and domestic wastewater before entering
the influent pump station. Therefore, it provides a natural
experiment for the characterization of MPs from different
sources. In this context, the characteristics of MPs in
industrial and domestic wastewater from Haicang WWTP
were performed adopting the improved sampling method
created by Long et al. (2019), and the results were compared
with our previous work. Wentworth modulus, grain size
parameters, and principal component analysis (PCA) were
performed to describe the difference between MPs from
industrial and domestic sources. The study aims to investigate
the heterogeneity and contribution of MPs between industrial
and domestic wastewater, thus appropriate strategies and
management activities can be developed to address the
wastewater MP pollution.
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MATERIALS AND METHODS

Study Area
Haicang District, located in the west of Xiamen City, is one of the
fast-growing economic areas in southeast China driven by
industrial activity. Haicang WWTP, operating in June, 2000
with a designed treatment capacity of 100,000 tonnes/day, is
serving the industrial and domestic wastewater in the region (Lin,
2008). Separate sewer systems convey industrial and domestic
wastewater, combine at the influent pump station, and enter the
plant. Approximately 60% of the influent originated from
industrial sources and the rest from residential sources. The
primary contributors to industrial wastewater are ten mega-
factories. Five of them, including automobile production,
polyester chemical fiber industry, food manufacturing plants,
and garbage incineration, are widely producing or using
plastic products. The daily mean wastewater treatment volume
in 2018 was approaching the designed treatment capacity with the
fast urbanization and rapid industrial development. An improved
activated sludge process is adopted for secondary treatment, then
the effluent is discharged into Xiamen Bay. The flow chart of the
treatment process is shown in Figure 1. The capacity of Haicang
WWTP is being expanded to satisfy the increasing demand for
wastewater treatment. An official estimated data shows that by
2035, the daily treatment capacity will reach 400,000 tonnes/day.

Sampling and Processing
Wastewater and sludge sampling was conducted on October 24,
2018, and the sampling sites were described in Figure 1. To
ensure compatibility with previous datasets, wastewater and
sludge samples were collected and processed using the same
method employed during the 2017 study (Long et al., 2019).
The flows in the sampling days were 6.84 × 104 tonnes and 10.37
× 104 tonnes, respectively, with corresponding main intervals of
flow frequency were 6.0–7.2 × 104 tonnes, 10–11 × 104 tonnes,
respectively (Supplementary Figure S1, Supplementary Table
S1), which indicated that representative samples were captured.

An improved sampling method involving an electromagnetic
flowmeter and a fast digital camera was adopted for wastewater
sampling (Long et al., 2019). Within this process, a multi-use
pump (Newa-NJ4500, Italy) was used to convey the sampling

wastewater sequentially through an intelligent electromagnetic
flowmeter (SIN-LDGDN20, China) and a cascade filtration unit
using four removable stainless steel mesh screens (Narcissus,
China) with 355, 125, 63, and 43 μm apertures, respectively.
When sampling, photographed the electromagnetic flowmeter
using a fast digital camera (Canon EOS 5D Mark III, Japan) to
record the starting flow. When one of the mesh screens was
clogged by the high organic content in the influent, suspended the
sampling and recorded the flow as described above. Removed the
clogged mesh screens and kept the unblocked ones running as
necessary following the same procedure. This combined
approach overcame the interference of organic matter-rich in
the influent and offered the benefit of sampling multiple volumes
individually and accurately (Table 1). In addition, three sludge
samples were taken randomly by stainless steel spoon and stored
into glass bottles rinsed with ultrapure water previously. The
samples were capped tightly and brought to the laboratory for
further analysis.

The following mature experimental methods were adopted
to purify and isolate the MPs from wastewater (Long et al.,
2019). Firstly, transferred the wastewater samples in the glass
bottle to a pre-cleaned 500-ml beaker with ultrapure water
and covered it with aluminum foil to prevent contamination.
Then the beaker was placed into the oven at 90°C to dry the
water (Masura et al., 2015) for subsequent elimination of
natural organics. In this step, the dried samples should be
taken out to avoid damaging the MPs when water was
completely dried. Next, the wet peroxide oxidation (WPO)

FIGURE 1 | Schematic of Haicang WWTP and sampling sites in 2018.

TABLE 1 | The sample volume of various mesh screens at different sites.

Site Year Flow rates
(∼L/min)

355 μm 125 μm 63 μm 43 μm

W1-i 2017 6.92 110.73 110.73 20.00 20.00
2018 6.12 111.17 111.17 111.17 37.74

W1-d 2017 8.49 127.38 127.38 52.15 52.15
2018 7.76 62.10 62.10 23.22 17.72

W2 2017 N/Aa N/A N/A N/A N/A
2018 7.62 106.81 106.81 50.56 26.95

W3 2017 17.44 348.71 348.71 348.71 348.71
2018 18.85 301.78 301.78 301.78 301.78

aN/A: not available.
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using 30% H2O2 solution combining 0.05 M FeSO4 solution
was employed (Masura et al., 2015; Dyachenko et al., 2017) to
eliminate the natural organics in the samples. Due to the high
content of natural organics in the influent, it couldn’t be
digested entirely at one time. Therefore, repeated this step
until the digestion was complete. After WPO, evaporated the
sample solution to dryness again, added 100–120 ml
saturated sodium chloride solution (∼1.2 g/cm3), and then
transferred the solution to a 500 ml separating funnel. In this
process, the beaker should be washed with saturated sodium
chloride solution instead of ultrapure water to avoid reducing
the concentration of the solution. After density separation,
the supernatant was transferred onto the PC membrane
(Nuclepore®, Whatman) using a vacuum pump. Stored the
membrane in a covered Petri Dish, air-dried, and for further
analysis.

The processing of the sludge sample was similar to the
wastewater sample, but the former needed to be weighed. An
amount of sludge (10–20 g) was scooped into the 500-ml beaker
using stainless steel spoon, covered with aluminum foil, and dried
in the oven. Measured and recorded the quality of the sludge
samples before and after drying. The remaining steps referred to
the treatment method of the wastewater sample. It should be
noted that since the sludge contains a more significant fraction of
MPs and their density may be higher, zinc chloride solution
(∼1.6 g/cm3) was used as the density separation reagent for sludge
samples.

Identification of MPs
This experiment combined a dissection microscope (Leica,
ZOOM 2000, 10.5–45×5 objective, Germany) and Fourier
Transform Infrared (FTIR, Bruker, HYPERION3000 +
VERTEX70, Germany) spectroscopy to classify and identify
MPs. First, with the help of a dissection microscope and metal
tweezers, the particles were individually picked out from the PC
membrane onto a micro slide (P/N: 0042–545, Thermo Fisher
Scientific, United States). Then, the particles were carefully
counted and categorized by shapes (fibers, pellets, granules,
fragments) and color (black, yellow, red, blue, green, white,
and clear). Because of the large number of particles on the PC
membrane, especially from the influent, it was reasonable and
feasible to take subsamples (Murphy et al., 2016) from each
membrane to identify polymer type by FTIR spectroscopy.
Accordingly, under the 40× magnification of dissection
microscope, 20 circular subsamples (d � 8 mm) were taken
per membrane to the quantity and identify the polymer type
(Supplementary Figure S2). The area of subsamples was >20% of
the effective area of the PC membrane, and the method following
ref. (Long et al., 2019) was used to estimate the total amount of
MPs on each membrane.

Under the video wizard of software OPUS 7.8 (Bruker Optics
GmbH, Germany), 624 particles were identified by an infrared
(IR) objective (15×magnification) in a reflectionmode along with
16 scans at a resolution of 8 cm−1 in the wavenumber range of
4,000–400 cm−1. Each particle must be measured at three
different points to eliminate the interference of natural
organics. Furthermore, the spectrum with minor interference

and pronounced characteristic peaks should be selected to
further compare with the reference library to determine the
polymer type. Finally, a total of 779 particles were analyzed
using FTIR spectroscopy, and 385 (49.42%) items were
identified as MPs in this study (Supplementary Table S2).
The results of industrial and domestic wastewater samples are
shown in Supplementary Table S3 and Supplementary Table
S4, respectively (W1-i � 77, W1-d � 96). According to the
method (Long et al., 2019), it was estimated that 155 particles
remained on the PC membranes as (unclassified) MPs and, the
total amount of MPs was 540 in all samples (Supplementary
Table S2). In the 2017 survey, 278 particles (W1-i � 149, W1-d �
129) were checked, and 91, 67 were confirmed as MPs,
respectively (Supplementary Table S5, S6).

Statistical Analyses
The particle size of MPs in millimeters was converted to
Wentworth modulus (∅) as Eq. 1 (Krumbein, 1934;
McManus, 1963) to facilitate calculation and comparison.

∅ � −log2( d

d0
) (1)

where, d is the particle size of MPs in millimeters, d0 � 1 mm,∅ is
a dimensionless parameter.

The grain size parameters (Mean size Mz, Standard Deviation
σi, Skewness Ski, Graphic Kurtosis Kg) were used to quantitatively
describe and compare the MP characteristics. They were
calculated by Eq. 2, Eq. 3, Eq. 4 and Eq. 5 (Folk andWard, 1957).

Mz � (∅16 +∅50 +∅84)
3

(2)

σ i � ∅84 −∅16

4
+ ∅95 −∅5

6.6
(3)

Ski � ∅84 +∅16 − 2∅50

2(∅84 −∅16) + ∅95 +∅5 − 2∅50

2(∅95 −∅5) (4)

Kg � (∅95 −∅5)
2.44(∅75 −∅25) (5)

where, ∅5, ∅16, ∅25, ∅50, ∅75, ∅84 and ∅95 are the ∅ value
variables corresponding to 5, 16, 25, 50, 75, 84 and 95% on the
probability cumulative curve of MPs.

Principal component analysis (PCA) was performed to
explore the types, shapes and colors variability of MPs in
wastewater from industrial and domestic sources.

Quality Assurance and Quality Control
Many strict control measures (Woodall et al., 2015) were
employed to prevent potential contamination as much as
possible during the sampling and laboratory, such as wearing
cotton laboratory coats, masks, and rubber gloves throughout
the process, using non-plastic and deep-cleaned equipment and
conducting the experiments in a clean environment.
Additionally, some other special measures were taken in this
study to minimize contamination and ensure the quality and
testability of results (Long et al., 2019). Both single-blind
recovery and spiked recovery experiments were used to verify
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the effectiveness of the sampling and experimental methods.
Polystyrene (PS) microspheres with a diameter of 90 μm
(Fluoresbrite®, Yellow Green Microspheres, United States)
were added to the blank and influent samples, respectively.
Then, the same procedure as described above was used in the
recovery experiments. The recovery rate of a single-blind
method (89.93%) is higher than the spiked method (80.06%).
The possible reason may be that the PS microspheres are easily
carried away by the high content of natural organics in the
influent sample and are unrecoverable. Nonetheless, the
recovery rate of 80.06% can also meet the experimental

conditions and promise an effective procedure. Therefore, the
results are conservative.

RESULTS AND DISCUSSION

Abundance of MPs
As shown in Table 2 and Figure 2, the abundance of MPs in
industrial wastewater (W1-i) is 2.76 items/L, more than twice as
much as the domestic wastewater (W1-d, 1.29 items/L). The
results are consistent with our previous study in 2017 of the same

TABLE 2 | MP abundance and removal rate at various sampling sites on the sampling day.

Site MP abundance (items/L) MP amount (×107 items/day) Removal rate (%)

2017 2018 2017 2018 2017 2018

W1-i 2.56 2.76 10.50 17.18 N/Aa N/A
W1-d 1.44 1.29 3.94 5.35 N/A N/A
W1b 2.11 2.17 14.44 22.53 N/A N/A
W2 N/A 1.65 N/A 17.12 N/A 24.25
W3 0.20 0.14 1.37 1.45 N/A 69.21
Total N/A N/A N/A N/A 90.48 93.47

aN/A: not available.
bW1 is the weighted average of W1-i and W1-d, that is, W1 � 60%×W1-i+40%×W1-d.

FIGURE 2 | The abundance (A), annual estimated discharge (B) of MPs in industrial and domestic wastewater. The abundance of MPs (C) and removal rate (D) in
different processes of Haicang WWTP.
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WWTP (Long et al., 2019) (Figure 2A), and prove that MP
abundance is higher from industrial sources than that from
domestic sources (Chen et al., 2020; Franco et al., 2020).
Annual fluxes of industrial and domestic MP discharge were
extrapolated based on representative samples and wastewater
discharge data in different years. It is estimated that the
annual discharge of MPs from industrial and domestic sources
increases steadily and will reach 17.41×1010 items, 7.92×1010
items, respectively, by 2035 (Figure 2B, Supplementary Table
S7). With the urbanization of Haicang district, despite the volume
of domestic wastewater is increasing faster than industrial
wastewater (Supplementary Table S7), the annual emissions
of industrial sources MPs are still more than twice that of
domestic sources due to the high abundance of MPs (black
dotted line in Figure 2B). Therefore, the higher concentrations
and daily release of MPs from industrial sources will elevate loads
of MPs in the influent of studied WWTP.

This study confirmed that plastic-related industrial discharge
might be the key factor contributing to the load of MPs in
WWTPs (Long et al., 2019; Deng et al., 2020; Zou et al.,
2020). MP abundance in wastewater is highly related to the
presence and quantity of industries (Barchiesi et al., 2021).
Both individual industrial types (Xu et al., 2018; Zhou et al.,
2020; Franco et al., 2021) and regional scales (Liu et al., 2020; Wu
et al., 2020) studies have shown that MP emissions from
industrial sources are higher than those from domestic
sources. However, most current WWTPs are not designed for

MP removal, and any additional MP elimination processes will
increase the capital cost and be challenging to achieve in the short
term (Hou et al., 2021). Environmental management plays a
significant role in controlling the production and transmission of
MPs (Chen et al., 2020). The industries should take measures to
prevent MPs from entering the sewer systems (Helm, 2017),
especially within small and medium-sized enterprises lacking
proper wastewater treatment capacity. Compared with
domestic sources, industrial sources are more relevant in
reducing MP contamination in wastewater (Lechner and
Ramler, 2015). Simple measures may prevent MPs from
entering the wastewater in industries (Prata, 2018a).
Governments may play a role in guiding enterprises to eco-
friendly production through taxes and incentives, which are
essential to reduce the losses of MPs (Prata, 2018b). On the
other hand, according to the “polluter pays” principle, enterprises
should take social responsibility for reducing MP discharge by
improving plastic waste management, introducing plastic
recycling and upgrading programs even in the absence of
legislation (Li et al., 2016; Prata, 2018b). Therefore, it is
believed that industrial sources should be the priority areas to
reduce MP contamination.

The abundance and characteristics of MPs in different sites of
HaicangWWTP are shown in Figure 2C, Supplementary Figure
S3, S4. The MP abundance in 2018 in the primary effluent (W2)
and secondary effluent (W3) is 1.64 items/L and 0.14 items/L,
respectively. It is suggested that the removal rate of MPs in the

TABLE 3 | The characteristics of sludgy samples.

Site Year Wet weight
(g)

Dry weight
(g)

Moisture content
(%)

MP abundance MP amount
(×107 items/day)(items/g·ww) (items/g·dw)

S1 2017 N/Aa N/A N/A N/A N/A N/A
2018 39.24 12.46 68.25 1.45 4.57 N/A

S2 2017 91.12 3.70 95.94 0.24 5.95 4.92
2018 113.62 4.16 96.34 0.36 9.86 21.47

S3 2017 N/A N/A N/A N/A N/A N/A
2018 30.85 19.28 37.50 1.88 3.01 15.68

aN/A: not available.

FIGURE 3 | MP abundance in sludge (A) and MP balance analysis of Haicang WWTP (B) in 2018.
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primary treatment and secondary treatments are 24.25 and
69.21%, respectively. The total removal rate of MPs in 2017
and 2018 in Haicang WWTP are 90.48% and 93.47%,
respectively (Figure 2D), confirming that secondary treatment
is the leading efficient process to remove MPs in activated sludge-
based WWTPs (Ben-David et al., 2021; Wu et al., 2021). The
essential mechanism may be that MPs are trapped by bacteria in
the activated sludge-related process and settle along with sludge
in the secondary sedimentation tank (Liu X. et al., 2019; Sun et al.,
2019; Zhang et al., 2020; Liu et al., 2021).

Our findings suggest that the moisture content in the sludge
samples varies greatly and significantly affects the expression of
MP abundance in wet and dry sample scenarios (Table 3;
Figure 3A). In the wet samples scenario, MP abundance in
the sludge cake (S3) is 1.88 items/g·ww, more than five times
that of excess sludge (S2). However, in the dry samples scenario,
MP abundance in S3 is 3.01 items/g·dw, about 27.6% of that in S2
(9.86 items/g·dw). Based on the treated amount of wastewater and
sludge production on the sampling day in 2018 (Supplementary
Table S1), MP balance in studied WWTP was estimated and the
result is presented in Figure 3B. The sum of the MPs in the
effluent and excess sludge is 22.92×107 items/day, slightly larger
than that in the influent (22.51×107 items/day). There are two
possible reasons for this imbalance. One reason is that MPs
entering the excess sludge are controlled by the number of
MPs in the influent and affected by the dynamic sludge return
ratio. The hydraulic retention time of wastewater in the WWTP
causes the MPs between the influent and effluent to be out of
sync. At the same time, stress forces employed in the wastewater
treatment system can induce fragmentation and an increasing
amount of MPs (Enfrin et al., 2019). The decrease of MPs after

sludge dewatering indicate that about 27% of MPs escaped into
the reject water and recycled back into the wastewater treatment
system, in line with the existing estimating (Talvitie et al., 2017;
Sun et al., 2019). The principal reason is that MPs trapped in
unstable flocs are probably easy to fall off in the dewatering
process (Sun et al., 2019; Alavian Petroody et al., 2021). It shows
that the distribution of MPs in WWTPs is unclear yet, and the
moisture content of sludge must be considered and the
abundance of MPs in wet sludge may be more useful when
analyzing the MP balance.

Characteristics of MPs
The grain size of MPs (∅) in W1-i and W1-d in 2018 is
approximate to Gaussian distribution with some differences
(Figure 4; Table 4). A notable difference was not detected
between industrial and domestic wastewater using the
traditional method (Franco et al., 2021). In contrast, it is
convenient to distinguish the subtle difference of MP size
between various sources using grain size parameters in this
study. Since the grain size parameters were calculated from the
continuous frequency curve of MP particle size, which was
independent of the grade scale (Krumbein, 1934). Therefore, it
is possible to use particle size parameters to quantitatively
describe the characteristics of MP size in a holistic view. For
example, the Mz (∅) inW1-i (1.49) is more extensive than that in
W1-d (1.36), while the σi (∅) inW1-i (1.0) is slightly smaller than
that in W1-d (1.1). Therefore, it implies that the fraction of the
small particle size of MPs in industrial wastewater (W1-i) is larger
than the domestic wastewater (W1-d), which is consistent with
the existing results (Liu et al., 2019). As a result, the particle size
distribution is more concentrated (Figure 4) and the mean
particle size of MPs is decreased in industrial sources (Su
et al., 2020; Wang et al., 2020). The possible reason might be
that MPs from industry are mainly produced by chopping plastic
materials (Helm, 2017; Wang et al., 2020), while the MPs from
domestic are various.

MP types, shapes and colors from industrial and domestic
wastewater are highly variable across different years (Figures
5A,C,E). However, PCA results show that MPs from industrial
and domestic sources display apparent differences in features
such as types, shapes and colors (Figures 5B,D,F).

As shown in Figure 5B, most of the type variance is captured
by PC1 and PC2, which explains the 54.45 and 34.15% of the
disparity, respectively. W1-d (2017) and W1-d (2018) have
similar MP polymer compositions, of which polypropylene
(PP) and polyethylene (PE) are the main polymer types. PP

FIGURE 4 | The distribution of grain size of MPs in different sources.

TABLE 4 | Grain size parameters of MPs in different sources in 2018.

Parameters (ø) W1-i W1-d

Mz 1.49 1.36
σi 1.0 1.1
Ski −0.20 −0.27
Kg 1.17 1.11
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and PE are generally used to manufacture household products
and are the main polymer compositions in domestic plastics
waste (Song et al., 2011) and wastewater (Zhang et al., 2020).
There is little difference in the polymer type of MPs betweenW1-
d (2017) and W1-d (2018), indicating a significant aggregation
and constancy of MPs from domestic sources. However, the
distance between W1-i (2017) and W1-i (2018) represents that
the polymer compositions of MPs are unstable, demonstrating
the significant separation of polymer type. The polymer
compositions of industrial sources MPs are related to the
factories’ types and their products in the vicinity (Zou et al.,
2020). Among the primary sources of industrial wastewater that
contributed to Haicang WWTP, polyethylene terephthalate
(PET) fiber is the main product of the plastic production
factory, and polyester (PES) and PET are widely used in the
automobile manufacturer. Those increase PES and PET types of

MPs in industrial wastewater significantly, which is higher than
that in domestic wastewater. Our results sustain that residential
areas hold MP concentrations of comparable size and
composition, while the industrial areas show much variability
among themselves (Liu et al., 2019).

The results show that fibers, fragments and granules subsist
in both industrial and domestic wastewater. Still, the pellets are
rarely detected in 2018 (Figure 5C), which is in agreement
with other studies (Murphy et al., 2016; Xu et al., 2019; Franco
et al., 2020). It may be attributed to the fact that secondary MPs
are predominant, while primary MPs are minimal in
wastewater (Blair et al., 2019). Fragments and granules are
the dominant shapes of MPs in domestic wastewater. The PCA
result reveals that W1-d (2017) andW1-d (2018) are clustering
(Figure 5D), indicating that the shapes of MPs from domestic
wastewater have similar laws with the type. However, the

FIGURE 5 | Characteristics of MPs in wastewater from industrial and domestic sources and their biplots of PCA analysis in 2018.
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shapes of MPs from industrial wastewater are different
between 2017 and 2018. Especially, fibers are the primary
shape in industrial wastewater in 2018. The distance
between W1-i (2017) and W1-i (2018) displays the
variances of MP types (Figure 5D).

The surface morphology of MPs from industrial wastewater
differs significantly from that of domestic (Supplementary
Figure S5 and Supplementary Figure S6). Compared with
industrial MPs, domestic MPs have a smooth and clear
surface, and fewer impurities are attached after WPO
treatment. It may be related to that polishing operations in
industries will generate a massive amount of MPs with twisted
and curved morphology (Helm, 2017; Lee et al., 2021).
Simultaneously, industrial wastewater contains more synthetic
compounds that are difficult to assimilate by the WPO process
(Jiménez, 2009). MPs have been recognized as vectors for toxic
contaminants (Rios et al., 2007). The path of MPs through
WWTPs would further enhance their adsorption propensity
and increase the spread of pollutants in the environment
(Enfrin et al., 2019; Hou et al., 2021). Recent studies
demonstrate that the organic matter in the activated sludge
process of a WWTP could oxidize MP surface and increase
their roughness and porosity, leading to ten times growth in
their adsorption to other entities such as metals and various
persistent pollutants (Enfrin et al., 2019; Li et al., 2019). This
implies that industrial-based MPs with rough surfaces and small
sizes tend to have greater adsorption than domestic sources
(Zhan et al., 2016). Therefore, MPs from industrial sources
may be harmful to the environment than domestic sources.
Further study needs to compare the toxicological differences of
MPs from the two kinds of sources and provide guidance for the
priority direction to reduce MP contamination in wastewater.

In terms of color, white, transparent and red with component
scores for PC1 are the main contributors to domestic-source
MPs; blue, yellow and black with component scores for PC2 and
PC1 are the main contributors to industrial-source MPs
(Figure 5F). The white and transparent MPs in domestic
wastewater are mainly PE, PP or PE&PP copolymers, which
is compatible with the wide use of PE and PP in daily life. The
main components of black MPs in industrial wastewater are PES
and PP, and the transparent MPs are PE, PP and PET. No clear
patterns are found in relation to the MP color difference
between industrial and domestic wastewater, implying that
MP color can not be used to distinguish the sources of
MPs alone.

CONCLUSION

This study analyzed and compared the differences of MPs in
industrial and domestic wastewater using the example of Haicang
WWTP. The key conclusions are as follows. The surveys

performed in 2017 and 2018 independently show that the
abundance of MPs in industrial wastewater is nearly twice
that of domestic wastewater. The flux of MPs discharged into
the municipal sewer systems through industrial wastewater is
about 3.2 times that of domestic wastewater. There are
differences in morphology, polymer type, and particle size
between industrial and domestic sources MPs. Industrial
sources contribute more to the MP pollution of municipal
wastewater. At the same time, more other pollutants are
adsorbed by industrial-based MPs, which may aggravate
compound pollution. As for the source mitigation of MPs,
the high loading, small-size and complex morphology of MPs
in industrial wastewater present a targeted intervention point.
This research provides some new ideas and novel insights for
promoting the traceability of MPs in wastewater. However,
source-specific classifications within MPs categories in
wastewater are still tricky due to the diversity and complexity
of MP sources, which requires further improvements in
methods and techniques.
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