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Recent discussions in many scientific disciplines stress the necessity of “FAIR” data. FAIR
data, however, does not necessarily include information on data trustworthiness, where
trustworthiness comprises reliability, validity and provenience/provenance. This opens up
the risk of misinterpreting scientific data, even though all criteria of “FAIR” are fulfilled.
Especially applications such as secondary data processing, data blending, and joint
interpretation or visualization efforts are affected. This paper intends to start a
discussion in the scientific community about how to evaluate, describe, and implement
trustworthiness in a standardized data evaluation approach and in its metadata description
following the FAIR principles. It discusses exemplarily different assessment tools regarding
soil moisture measurements, data processing and visualization and elaborates on which
additional (metadata) information is required to increase the trustworthiness of data for
secondary usage. Taking into account the perspectives of data collectors, providers and
users, the authors identify three aspects of data trustworthiness that promote efficient data
sharing: 1) trustworthiness of the measurement 2) trustworthiness of the data processing
and 3) trustworthiness of the data integration and visualization. The paper should be seen
as the basis for a community discussion on data trustworthiness for a scientifically correct
secondary use of the data.We do not have the intention to replace existing procedures and
do not claim completeness of reliable tools and approaches described. Our intention is to
discuss several important aspects to assess data trustworthiness based on the data life
cycle of soil moisture data as an example.
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1 INTRODUCTION

Every day, scientists acquire a massive variety and amount of
environmental data in real-time or near real-time to understand
processes in the earth system better. The exponential growth of
data is undisputed and provides answers to various
environmental challenges, such as climate change and the rise
of extreme events and related hazards. It is essential to consider
data processing and analysis as an interdisciplinary, boundary-
crossing, data linking step in the data life cycle. Data-driven
research investigates available data repositories and links a
considerable amount of collected heterogeneous data from
various types, such as field sensors, laboratory analyses, remote
sensing data, as well as modeling data. The linking usually
consists of several data processing steps, which should
guarantee the possibility of data quality assessment. Data
quality evaluates the condition of data and especially
information on data accuracy, data completeness, data
consistency, data reliability, and data currency as key
attributes of high-quality data. There are already many tools
available to evaluate some of these key attributes, such as among
others the conformity to the defined data standards [e.g.,
Infrastructure for Spatial Information in the European
Community (INSPIRE)], or quality assurance/quality control
tools [e.g., INSPIRE or Integrated Carbon Observation System
(ICOS)] to identify inaccurate or incomplete data within a given
data set, or the QUACK tool developed by Zahid et al. (2020) in
the frame of Copernicus Climate Change Service (C3S) contracts.

High-quality data could help expand the use of joint data
visualization (e.g., dashboards) and joint analytical methods (e.g.,
machine learning) to increase the informative value of data.
However, data can be of high quality, but lack of information
on reliability and provenience can subsequently lead to
misinterpretation and thus to wrong conclusions. In contrast,
data of reduced quality could be a source of ambiguity and
therefore also inaccurate analysis and weakly derived or wrong
conclusions (e.g. Cai and Zhu, 2015; Brown et al., 2018; Bent et al.,
2020). Although there are already many tools available to assess
the quality and completeness of data, it is not yet a standard
practice that the reliability and provenience of the data can be
easily checked.

In recent years, there has been a growing awareness that
existing research data can be a very valuable base for further
research. A prerequisite is the provision of all kinds of scientific
data and their detailed descriptions. This should keep in mind the
longevity as well as the general purpose of providing other
researchers with access to the data for facilitated knowledge
discovery and enhanced research transparency. An important
approach towards the reuse of research data is the
implementation of the FAIR principles. They provide guidance
for improving Findability, Accessibility, Interoperability, and
Reusability on sharing not only scientific data but all kinds of
digital resources (Wilkinson et al., 2016; Mons et al., 2020). These
principles aim to enable the maximum benefit from research data
by supporting machine-actionable processes in data
infrastructures to make the resources findable for machines
and humans. FAIR considers the form of providing data sets

to the scientific community (Lamprecht et al., 2019). Without
appropriate knowledge about the data trustworthiness, the
processing of data to a higher level, the associated
assumptions and uncertainties as well as data origin, any kind
of data can be of limited practical value. However, the FAIR
principles do not yet address data or software quality in detail and
do not cover content-related trustworthiness aspects (Lamprecht
et al., 2019; Jacobsen et al., 2020).

Data quality assessment considers mainly completeness,
precision, consistency and timeliness of data (Teh and Kempa-
LiehrWang 2020). Two kinds of errors, systematic errors and
random errors, cause inaccurate data and lead to a degradation of
data quality. Systematic errors are consistent and manifold in
nature. For instance, they are related to imperfection of
measurement methods and devices, incorrect calibration
causing outliers, drifts, bias and noise. In most cases,
systematic errors shift data from their true value (bias) all the
time and can be predicted and quantified to a certain degree
through elaborate experiments, usage of references, and specific
mathematical tools. Systematic errors do not affect the data
reliability but affect accuracy. In contrast, random errors
encompass unknown and unpredictable errors such as
statistical fluctuations in environmental conditions, subjective
acquisition (e.g., dependency on reaction time) and errors due to
the statistical character of the process variable itself. Random
errors can be evaluated through statistical analysis of repeated
measurements. Reliable random error estimation is possible the
more data is collected. Random errors affect the reliability but do
not affect the overall accuracy and tend to contribute more to the
total error than systematic errors (Bialocerkowski and Bragge,
2008). The term uncertainty is a quantitative specification of all
errors and includes both systematic and random errors.
Uncertainty in sensor data is the sum of inherent limitations
in the accuracy and precision with which the observed data is
acquired. It is simply impossible to measure any variable with
100% certainty due to numerous limitations and inadvertent
systematic and random errors such as among others non-
representative sampling schemes, unspecified effects of
environmental conditions on the observed data, effects of
specific electrical components of the sensor on the data, or
operators bias (Prabhakar and Cheng, 2009). The uncertainty
factors need to be detected, quantified, removed if possible, and
described in detail to enable data trustworthiness assessment. The
key elements of quality assessment in several existing procedures
and frameworks are quality flags which are defined codes of
numbers assigning the data into different categories and stored
along the data.

Another important information regarding trustworthiness are
sensor specifications provided by the manufacturer. However, this
kind of data refers to the initial test with a brand new sensor and does
not take alterations during sensor lifetime and other influencing
factors during sensor storage, set up and operation into account.
Often, the given manufacturer’s information represents just
theoretical accuracy and precision values. It can be summarized
that quality flags do not provide information of trustworthiness of
single data points, while manufacturer’s information somehow
provide ideal information not relevant to sensors in operation.
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We propose to record sufficient information on factors that
influence the data trustworthiness of sensors during its lifetime
and the overall application in second-level datasets and metadata
descriptions. A second-level dataset contains more detailed
information about data trustworthiness and complements each
dataset. Such a collection of extensive data and metadata in
separate levels allows data users both to assess the data quality
and evaluate the data trustworthiness for the intended application
if needed. In addition, such second-level data and the related
metadata descriptions ensure that the secondary data users are
not overloaded with data and information which he (she) is not
interested in. However, data users also have to be made aware of
the extent to which the information content of the data is reliable.
To guarantee trustworthy data at the highest stage, indicators of
trustworthiness such as reliability, validity, and provenience need
to be evaluated and described in detail in such second-level
datasets and metadata descriptions (see Figure 1). Often, there
are no single agreed definitions of these indicators and therefore,
the authors will give detailed explanations of the terminology and
concepts in this paper.

For the assessment of the trustworthiness of data, the data
reliability and validity in environmental science should be
assessed in terms of how precise and stable measurements are
and with what uncertainties the measured values reflect the true
values.

Regarding the application of FAIR principles in the research
process, the evaluation of the data trustworthiness should
include (besides the consideration of data reliability and
validity) the consideration of data provenience as a term
pertaining to the inherent lineage of objects as they evolve
over time (Castello et al., 2014). Data provenience represents
metadata paired with records providing details about the
origin and history of the data, the executed processing steps
with the corresponding assumptions and uncertainty
evaluations supporting the trustworthiness of data (Diffbot
Technologies Corp., 2021). This digital fingerprint can be used
to evaluate all relevant aspects of a data object. All processing

and transformation steps from the source data to the data
object under consideration must be traceable, repeatable, and
reproducible to provide more transparency in data analysis.
This context shows that provenance description is closely
related to reliability and validity assessment. Based on the
known data origin and previous processing steps, the quality of
the analysis results can be better assessed. This may minimize
potential ambiguities.

This statement paper intends to foster a discussion in the
scientific community about how to evaluate, describe and
implement reliability, validity and provenience issues in a
standardized data evaluation approach and a metadata
description following the FAIR principles or which additional
data should be linked to the data to enable high data
trustworthiness. Such a comprehensive data evaluation
including data processing assessment and metadata description
will improve knowledge generation.

The paper provides data users with insight into the
evaluation criteria of data’s trustworthiness and discusses
the meaning of data reliability, validity, and provenience.
The authors consider relevant issues regarding the
significance of data trustworthiness in a comprehensive data
analysis. These issues are 1) trustworthiness of the sensor data
(reliability issues), 2) data trustworthiness of the data
processing (validity), and 3) data trustworthiness of the
data integration and visualization (provenience). The paper
illustrates these relevancies based on soil moisture data: 1) the
reproducibility, repeatability and internal confidence of soil
moisture measurements, 2) the credibility and transferability
of some processing steps e.g. to derive soil water content from
measured permittivity values, 3) need to report point density
coverage and describe additional data used to create maps or
data products. All examples demonstrate the importance of
reliability, validity, and provenience assessment in a second-
level metadata description for long-term data provision and
could also be transferred to other sensors, methods, and
models.

FIGURE 1 | Indicators of data trustworthiness, data reliability, data validity and data provenience. (1) Stability/Precision and consistency in data play a major role in
reliability assessment. (2) Validity assesses the trueness and accuracy of measured data while considering consistency closeness. (3) Data Provenience supports the
confidence or validity of data by providing detailed information (metadata) on data origin and its processing steps in a consistent manner.
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2 COMPONENTS OF DATA
TRUSTWORTHINESS

Reliability and validity of data can be seen as the two essential and
fundamental features in the evaluation of the quality of research
as well as the evaluation of any measurement device or processing
step for trustworthy transparent research (Mohajan, 2017). In
general, it can be summarized that the uncertainty of a
measurement is composed of two parts. 1) Reliability: the
effects of random errors on the measurement performance
and 2) validity, the effect of one or more influencing
quantities on the observed data (systematic errors) represented
in the bias.

Reliability relates to the probability that repeating a
measurement, method, or procedure would supply consistent
results with comparable values by assessing consistency,
precision, repeatability, and trustworthiness of research (Bush,
2012; Blumberg et al., 2005; Chakrabartty, 2013). Mohajan (2017)
described that observation results are considered reliable if
consistent results have been obtained in identical situations
but under different circumstances. Often, reliability refers to
the consistency of an approach, considering that personal and
chosen research method biases may influence the findings
(Twycross and Shields, 2004; Noble and Smith, 2015).
Therefore, the assessment of data reliability focuses on
quantifying the amount of random errors. Reliability is mainly
divided into two groups: stability/precision, and internal
consistency reliability. The stability/precision is limited mainly
by random errors and can be assessed by testing the repeatability
(test-retest reliability, see Section 2.1.1) and the reproducibility
(intra-rater reliability and inter-rater reliability, see Section
2.1.2). Internal consistency refers to the ability to ensure
stable quantification of a variable across different experimental
conditions, trials, or sessions (Thigpen et al., 2017). The more
reliability exists, themore accurate the results, which increases the
chance of making correct assumptions in research (Mohajan,
2017).

Validity is the degree of accuracy of measured data.
Predictable systematic errors reduce the accuracy. It is often
defined as the extent to which an instrument measures what it
asserts or is designed to measure. Furthermore, it involves
applying defined procedures to check for the accuracy of the
research findings (Blumberg et al., 2005; Thatcher, 2010; Robson
and Sussex 2011; Creswell, 2013; Gordon, 2018). For example, a
data validation algorithm as a kind of data filtering process
evaluates the plausibility of data (EU, 2021). Validity is
paramount for avoiding false data analysis conclusions and
should be prioritized over precision (Ranstam, 2008). The two
essential parts are internal validity (�credibility) and external
validity (�transferability). Internal validity indicates whether the
study results are legitimate in respect to the manner in which a
study was designed, conducted and data analyses were performed
(Mohajan, 2017; Andrade, 2018). Internal validity examines the
extent to which systematic error (bias) is present (Andrade,
2018). Nowadays, the evaluation of internal data validity is
implemented in quality check routines [e.g., checks for
completeness, statistical characteristics (e.g., SD), accuracy, and

timeliness] and hence in metadata description to some extent.
External validity examines whether the research findings can be
generalized to other contexts or to what extent the size or
direction of a researched relationship remains stable in other
contexts and among different samples/measurements (Allen,
2017).

For all secondary data analyses, a detailed assessment of
reliability and validity involves an appraisal of applied
measurement methods for data collection (Saunders et al.,
2009). Reliability is an essential prerequisite for validity and
vice versa. It is possible to have reliable data that are not
valid; however, valid data must also be reliable (Kimberlin and
Winterstein, 2009; Swanson, 2014). The ideal sensor would
combine great accuracy with stability and precise
measurements in high resolution, but in many cases, increased
sensor performance also increases the price (Van Iersel et al.,
2013). However, the different understanding of the meaning of
terms such as accuracy, precision, consistency, stability
describing the quality of measurements proves difficult due to
conflicting meaning and misuse (Menditto et al., 2006). Usually,
an assessment of sensor performance based on the
manufacturer’s initial specifications is impossible mainly due
to unclear differentiation between these two terms accuracy
and precision and its ideal test setup with a brand new sensor
(Van Iersel et al., 2013).

2.1 Sensor Data Reliability
Data reliability analysis evaluates the reliability of research by
indicating the observed sensor data’s consistency and stability
(repeatability and reproducibility). The reliability assessment
relates mainly to measurement data. Therefore, reliability
assessment must incorporate an evaluation of relevant
uncertainties.

A standardized and consistent workflow for the reliability
evaluation is helpful. Here, comprehensive documentation is
essential to make the assessment valuable for later access and
usage. The procedure of reliability assessment can be appraised in
several ways, including test-retest and internal consistency test
(Ware and Gandek, 1998). Our suggestion is to use a broader
concept adopted from applied psychology and medicine,
considering other types of reliability: over time (test-retest
reliability), between operation times (intra-rater reliability),
different researchers (inter-rater reliability) and across items
(internal consistency) (Lo et al., 2017; Chang et al., 2019).
Based on these fundamental tests, we obtain information on
reliability, especially repeatability and reproducibility, and
consistency (see Figure 1). Repeatability and reproducibility
can be seen as two extremes of precision, the first describing
the minimum and the second the maximum variability in results.
Repeatability and reproducibility are expressed quantitatively in
terms of the dispersion characteristics of the data (NIST, 1994).

2.1.1 Test-Retest Reliability Test
The test-retest reliability test evaluates the reproducibility of
measurements and can be related to the assessments of
temporal stability and maximum variability in data (ISO 5725-
1). For instance, temporal stability describes the data variability

Frontiers in Environmental Science | www.frontiersin.org January 2022 | Volume 9 | Article 7726664

Koedel et al. Evaluation of Data Trustworthiness (FAIR+)

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


when the same variable is acquired more than one time in terms
of a discrete-time series but measured at the same location under
the same environmental circumstances. Repeated measurements
with appropriate sampling frequency allow the collection of more
data and enable an uncertainty assessment and an improvement
of accuracy based on statistical methods. These characteristics are
especially crucial for reference measurements, sensor drift
verifications, incorporation of, for example, low-cost or
distributed citizen science sensors into research infrastructures
and, to some extent, for intercomparison experiments.

2.1.2 Intra/Inter-Rater Reliability Test
The intra-rater reliability refers to the measurement consistency
by one identical operator on two occasions, under the same
conditions, using the same standardized protocols and
equipment (Domholdt, 2005). In reality, errors occur even
when one person undertakes measurements, and assessing the
error magnitude is invaluable in interpreting measurement
results (Bialocerkowski and Bragge, 2008).

The inter-rater reliability test evaluates the repeatability of
measurements and relies on data acquired with the same device/
method but different operators and quantifies the equivalence
and the agreement within measurement data. It describes the
minimum variability in data (ISO 5725-1, 1994). Thus, it
establishes the data equivalence obtained with one instrument
used by different operators and evaluates the systematic
differences among operators (Mohajan, 2017). The operator’s
performance, level of skills/expertise, and decisions made by him
often have a non-negligible impact on the uncertainty associated
with a measurement result (random error). This can concern the
measurement itself (e.g., reading errors), but also the subsequent
subjective data processing and interpretation. The outcomes of
the measurement process depend on the education, training,
expertise, and technique of the operators.

Different skill levels and the operator’s ability to identify and
minimize potential errors are essential factors for evaluating those
errors. However, a description in metadata in a standardized
format seems to be difficult due to the lack of standardized tools
assessing the skill and competence level of the operators. The
subjective description of the skill levels goes beyond the scope of
metadata description for many experiments.

2.1.3 Internal Consistency Test
The internal consistency test evaluates the consistency of
measurements. In statistics, the internal consistency reliability
expresses how closely related a set of items are as a group (UCLA,
2020). (DeVellis 2006) stated that internal consistency reliability
examines whether or not the variable within a scale or measuring
time is stable across different environmental conditions and tests.
The environmental sciences assess the extent of differences within
the measured data that investigate the same process variable at
the same location and result in comparable data within the same
range. Measurements by one or multiple sensors are considered
internally consistent if the observed variable remains stable across
different environmental conditions.

Furthermore, tests need to be in a pre-defined consistency
range and their variations are distributed along the typical bell

curve. This type of reliability measure is exemplarily considered
in sensor intercomparison experiments – for instance,
determining biased sensors in a sensor network. If a calibrated
reference sensor is associated, intercomparison experiments
examine both precision as well as accuracy (validity) to this
reference.

2.2 Data Validity
The concept of validity is akin to the concept of accuracy
(Krishnamurty et al., 1995). Therefore, the degree of data
validity assesses the data accuracy. Accuracy is an aspect of
numerical data quality connected with a standard statistical
error between an accepted reference value and the
corresponding measured value. As stated before, it is reduced
by systematic errors. The accuracy can be described by trueness
examining the agreement between the average (mean) value
obtained from an extensive data set and an accepted reference
value, and precision, a general term for variability or spread
between repeated measurements (ISO 5725-1, 1994). Trueness is
typically expressed in terms of bias and precision in terms of
standard deviations.

The internal validity refers to the bias potential and external
validity to the generalizability. The internal and external validity
is analyzed and verified through statistical tests and statistical
confidence limits, which are often already implemented into
automatic quality routines.

A reliable assessment of the validity requires a comparison
with an accepted reference standard. It is important to highlight
that accuracy is a qualitative concept and should not be assessed
quantitatively (NIST, 1994).

Numerous information about data validity and thus about
systematic errors (e.g. outliers, missing data, bias, drifts, and
noises) can be derived from the validation methods. Internal
validity is a prerequisite for external validity and data that deviate
from the true value due to systematic error lack the basis for
generalizability (Dekkers et al., 2010; Spieth et al., 2016). This
means for environmental data that the internal validity must be
assessed, corrected and described, and only then can generalizing
approaches such as Pedo-Transfer Functions be subsequently
applied.

2.3 Data Provenience
Data provenience includes much more information than
available in data lineage description. It describes e.g. also
the quality of the input data and processes that influence data
of interest. Therefore, data provenience is a crucial issue
related to secondary data usage. Data made available
following the FAIR principle are often not the raw data as
original sensor readings. Mostly they are already data
products as a result of processed lower-level data deriving
parameters of scientific interest. Especially, systems using
spatial data rely on spatial provenience properties, such as
information about the origin of merged and split objects
(Glavic & Dittrich, 2007). Glavic and Dittrich (2007)
proposed to divide the provenience evaluation into source
provenience and transformation provenience. For example,
downloadable soil moisture data in Data Publisher for Earth &
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Environmental Science (PANGAEA https://www.pangaea.de/
) are already processed sensor data providing values in percent
(%) derived from measured voltage values. Information about
previous data processing such as applied proxy-transfer
function is often not given and information about the
transformation provenience is often lacking. Indeed, it is
also decisive for which primary objective the data is
monitored. For example, data can be specially acquired for
monitoring purposes, model validation, remote sensing
calibration, data assimilation in the model and joint data
analysis to study changes. Therefore, a wide variety of
different information for each objective is required to
evaluate the data correctly. The monitoring objective
determines, in many cases, the data evaluation, the extent
of the metadata information as well as its auxiliary
parameters.

The trustworthiness of the provided data products depends
on the trustworthiness of the lower-level data, their spatial and
temporal resolution, their uncertainties, their relationships
and correlations and the applied processing suitability. The
data user should be aware that each selection of the source data
and their manipulation within the processing could
significantly influence the data value and quality and thus
the data trustworthiness. It is evident hereby that provenience
description implies reliability and validity assessment of the
input data. Hence, sufficient information on data processing is
necessary for a reliable evaluation of the provided data’s
trustworthiness.

3 THE IMPORTANCE OF DATA
TRUSTWORTHINESS IN ENVIRONMENTAL
SCIENCES—EXEMPLIFIED BY SOIL
MOISTURE DATA

In the following section we want to discuss the challenges in data
trustworthiness by using a typical example of measuring
environmental in-situ data.

Soil moisture is an essential critical state variable in land
surface hydrology and a key component of microclimate.
Furthermore, it can be seen as an essential hydrologic
variable impacting runoff processes, an essential ecological
variable regulating net ecosystem exchange, and an essential
agricultural variable regarding water availability to plants and
their influence on temperature and humidity conditions near
ground (Ochsner et al., 2013; Corradini, 2014). Soil moisture
is characterized by high spatial and temporal variability and
the complex interactions with pedologic, topographic,
vegetative, and meteorological factors influence soil
variability. Therefore, this compartment-linking variable is
ideally suited to show the importance of assessability of data
trustworthiness.

Here we will discuss approaches to assess data reliability,
validity and provenience as a basis for selecting appropriate
data and evaluation tools for data-driven research and higher-
level data assessment.

3.1 Approaches to Assess the Reliability
3.1.1 Test-Retest Reliability
We consider here the temporal variation of measured dielectric
permittivity measured by soil moisture probes to discuss the test-
retest reliability.

Time-domain reflectometry (TDR) is the most widely used
soil water content measurement technique at point scale and is
seen as an inexpensive method of measuring the dielectric
properties of soil, mainly driven by water in pore space
(Schoen, 1996). The measurement of the dielectric permittivity
is an accepted technique to monitor and evaluate shallow soil
water content, but its accuracy is dependent on the appropriate
petro-physical relationship between the measured permittivity
and volumetric water content of the soil (Huisman et al., 2003;
Steelman and Endres, 2011). Such sensors rely mostly on careful
and timely calibration, careful selection of measurement
frequency, careful sensor positioning, and the operator’s
expertise.

As an example below, we illustrate the evaluation of the TDR
dielectric permittivity data reliability based on the readings of
standard SMT100 probes (Truebner GmbH, Neustadt,
Germany), calibrated under the same conditions and installed
at two different locations at a depth of 15 cm below surface. The
dielectric permittivity measured every 10 min averaged over 1 h
and the standard deviation (n � 6) was calculated. Figure 2 shows
that the reproducibility of a measured value is given when
environmental conditions do not change. However, when
conditions are changing the reproducibility is no longer given.
Figure 2 shows low variability among low permittivity readings

FIGURE 2 | Hourly averaged permittivity values of SMT100 probes and
its standard deviation (STD, n � 6) over a measuring period of 67 days.
Classification according to scattering range possible (green): small STD range
indicates nearly stable conditions and slightly changing conditions
increase STD scatter range, (red): great STD range due to changing
conditions; linear regression for both classified ranges and display of residual
sum of squares and residual mean square.
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(dry conditions) and high variability among large permittivity
values (wet conditions). For this measurement technique, there is
a problem when transitions or rapid changes in environmental
conditions occur.

Figure 2 indicates that the standard deviation also increases
non-linearly and scatters in a greater range with increasing
permittivity values. Therefore, the reproducibility is not
comparable under different environmental conditions (dry,
wet). This effect is especially relevant during and after rain
events when the environmental conditions change and the soil
water content increases rapidly.When very dry conditions prevail
up to 8 (0.15 m3/m3), the SD is less than 5% in good agreement
with the manufacturer’s specifications and varies only slightly.
The STD scatter range increases slightly for conditions between 8
and 9 (0.15 and 0.17 m3/m3) and shows a greater variance for
measured permittivity values above 9 (0.17 m3/m3). For each
classified range a linear regression was carried out to determine
the residual sum of squares (RSS) and residual mean square,
i.e., mean residual square (MSR). RSS determines the dispersion
of data points in considering the difference between data and an
estimation fitting model, while MSR is used to provide an
unbiased estimate of the variance of the errors. Small RSS
values represent easy to define mathematical models. However,
the RSS as a single measure cannot answer the question whether
one or more data points deviate too much from that model and
therefore, the MSR is needed. Figure 2 shows that RSS and MSR
for the second range are smaller than the first range.

Therefore, it can be concluded that the permittivity values are
consistent and the TDR measurements are accurate and stable
when the environmental conditions are not changing
significantly. However, when these conditions change, e.g. with
increasing soil water content, the STD also increases significantly.
Reasons for that increase could be inhomogeneous wetting and
heterogeneities in soil properties. It is essential that sufficiently
long time series are measured and provided to re-users to assess
the temporal stability of this sensor. Also, the standard deviation
is an essential statistical parameter in this context. The extent to
which other statistical quantities, such as RSS or MRS in our
example, are meaningful in terms of temporal variability
assessment can be examined on the basis of the respective
data. A prerequisite for such analyses is the existence of
sufficiently long time series. To describe the trustworthiness of
data, the test-retest datasets have to be linked.

3.1.2 Internal Consistency Test
Wireless soil moisture sensor networks provide distributed
observations of soil moisture dynamics with high temporal
resolution, as they typically involve a high number of TDR-
sensors. Low-cost sensors are preferred for this application and
unfortunately, they often show a non-negligible sensor-to-sensor
variability. However, field measurements with multiple sensors at
a nearly identical location and depth over a specific time period
do not necessarily provide the same data. The influencing factors
can be, among others, installation errors, altering sensors, or the
heterogeneity of the soil material. Hence, a sensor-to-sensor
consistency needs to be evaluated by assessing the extent to
which two identical sensors at almost identical locations

measure the same value simultaneously and respond in the
same way to changing environmental conditions.

As an example, we evaluate measured data quality acquired
with similar SMT100 sensors at two very close locations (10 cm
distance) with two sensors at one depth (see Figure 3). The
manufacturer provides information on the precision range of a
sensor with ±3% for water content. The error range in measured
relative permittivity follows a Laplace-Gauss distribution with a
maximum range of almost Δϵ � 2.7.

Therefore, the percentage error range is the highest for small
relative permittivity values and the smallest for high values. In
Figure 3 it can be seen that sensors are consistent if the variations
in measured relative permittivity values are minimal and the
correlation of both sensors correspond with the ideal consistency
and is within the specified uncertainty range. The deeper sensors
have lower variability and can be evaluated as consistent at least in
the permittivity range between 6 and 8. The greater the relative
permittivity the greater are the deviations from the ideal
correlation line. The lower sensors show more variability and
both sensors seem not to be consistent. A possible cause can be an
installation error or a sensor malfunctioning.

Figure 4 shows an alternative evaluation method, the Bland-
Altman analysis which is based on the quantification of the
agreement between two quantitative measurements by
determining the bias or mean difference as a measure of
accuracy and construct limits of agreement (LOA) as a
measure of precision (Altman and Bland, 1983 and; Altman
and Bland 1986). It is used to evaluate the agreement among
two different instruments or two measurement techniques
(Montenij et al., 2017).

These evaluations are essential for later data integration as well
as data blending: whether or not it is possible for two sensors to
provide the same measured permittivity data or consistency. For
example, such a test may show a considerable variation of soil
moisture derived from different sensors installed at almost the
same location and the same depth. However, differences in the
observed permittivity ranges measured with the sensors reveal
biases caused by slightly different sensor characteristics as well as
the heterogeneous soil conditions and changing environmental
conditions. Hence, the soil moisture data interpretation is
complicated without any detailed information on consistency
reliability (e.g., based on sensor intercomparison results).
Significantly, the lower level uncertainty can be evaluated by
sensor intercomparison experiments or long-term data series,
and the sensor behavior, especially variability, can also be assessed
with the help of this data to some extent.

3.1.3 Inter-Rater Reliability Test
The inter-rater reliability can be caused by different experiences
with, or general knowledge of, the behavior and property of
relevant materials and instruments. Excellent examples of the
operator’s influence on data reliability are 1) the measurement of
water depth in a stream with a meter-ruler, 2) deriving data from
historic maps or records and, 3) data acquisition/processing
based on man-made optical evaluations such as ecological data
acquisition (phenology) for ground-truthing of remote sensing
campaigns. The expertise of skilled persons is particularly
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FIGURE 3 | shows two examples of measurement behavior of two similar sensors at two almost identical locations at the same time. Above) Two sensors at a
depth of 15 cm below the surface. Higher variability in measured permittivity is observed at this depth, and the test-retest reliability is not seen. While the measured
permittivity of the two sensors differs only slightly at the beginning of the measurement, the difference rises with time. However, both sensors show the same response
characteristics to rain events (displayed as gray bars). The correlation between these two sensors shows no satisfying consistency compared to the ideal
consistency (dotted light gray line with uncertainty ranges - below). Two sensors at a depth of 45 cm below the surface. At this depth, a limited permittivity range and test-
retest reliability are observed due to only minor changes. The difference in measured permittivity between these sensors is small and it is assumed that these two sensors
are consistent because they are very close to the ideal behavior.

FIGURE 4 | Result of a Bland- Altman analysis (Bland and Altman, 1999) for two x two sensors at a depth of 15 cm (A) and 45 cm (B). Panel shows the mean
difference between two sensors at one depth (blue dotted line), expressing the bias to the corresponding zero difference. The precision range between the LOA (orange
dotted line) is much smaller for the deeper sensors than the shallower sensors. Also, the curve for the deeper sensors indicates a nearly consistent behavior (constant
variability until x � 7.8) followed by a constant coefficient of variation that proves an internal consistency. The lower sensors indicate a more significant bias and do
not show constant variation coefficients; therefore, they cannot be classified as consistent.
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essential when it comes to a subjective assessment of
environmental conditions such as choosing the right places for
collecting soil samples (e.g., for later laboratory investigations of
soil properties), evaluating plant species and the state of
vegetation (phenology). It is clear that porosity and bulk
density as important soil properties show variability, which is
strongly affected by soil sampling quality. For instance, field
investigators need to identify and assess all the main
uncertainties when estimating field measurement uncertainty.
These documented uncertainties also rely on the expertise of the
investigator. However, such random errors are difficult to
quantify and describe.

Furthermore, the installation, calibration and maintenance of
TDR soil moisture sensors, for example, require such expertise.
Improper sensor installation can lead to measurement errors that
can falsify the overall result. Therefore, standardized operations
procedures and standardized tests reported in DIN standards
should be performed in the field. To reduce the inter-rater
reliability, all measurements should be performed according to
these standards and should be documented in this manner.

3.2 Approaches to Assess the Validity
3.2.1 Internal Validity
Internal validity refers to the bias potential: a consistent,
repeatable error causing predictable systematic overestimated
or underestimated values (Trajković, 2008). Such errors
include sensor drifts and outliers, for example. Also, due to
the time discretization of the measurements, errors arise when
approximating the real conditions between two sampling points
by straight-line approaches. However, this error becomes
significant when the conditions change rapidly. By increasing
the sampling frequency, the error could be reduced.

Many sensors show temporal drifting processes of the
measured property, regardless of the manufacturer, the sensor
complexity, the sensor acquisition costs, and its application with
their lifetime. This temporal sensor drift is caused by physical
changes in the sensor, variations caused by the surrounding

environment (e.g., temperature or humidity effects,
biofouling), or degradation by related sensor-aging. The
existence of the drift in the measurement is difficult to detect
and distinguish from the fundamental errors and noise in the
measurement (Cho, 2012). Implementing sensor redundancy
configuration and repeated sensor calibrations can reduce the
operational risk from drifting. However, there is still a possibility
of out of tolerance drifting before the next calibration. Therefore,
it is essential to assess and describe the drift effects caused by
various influencing factors through permanent drift evaluation to
a defined reference or implemented automatic calibration
procedures within a test-retest frame. Accuracy refers to the
closeness of the measured value to the true or reference value.

Figure 5 shows an example of the accuracy of measured
permittivity values to reference values. These reference values
in different depths were gained by gravimetric in-situ
determination of soil water content and a recalculation to
permittivity values. The accuracy is better for sensors with
smaller variability. This can be seen for the deeper sensors.

3.2.2 External Validity
The external validity refers to the generalizability of the data. In
this subsection, we discuss data transferability derived from
proxy-transfer functions to obtain water content data.

Many methods of data provisioning are based on indirect
measurement of the target variables. Hence, the measured
value(s) must be transferred to the required parameters, for
instance, by established and reported empirical or
sophisticated equations or inversion algorithms. For many
geoscientific applications (e.g., for the soil water content), so-
called Pedo-Transfer Functions (PTFs) are used. Caused by the
fact that pedo indicates the soil, we use the more general term
Proxy–Transfer Functions (also PTFs). Examples of such PTFs
are manifold and can be found among others in marine science,
biogeoscience, hydrology, soil science, remote sensing (e.g.,
Zhang and Zhou, 2016; Klotz et al., 2017; Van Looy et al.,
2017). Well-known soil-related examples include the

FIGURE 5 |Difference to reference sensor for 3 depths (15, 30 and 45 cm), Box-Whisker Plot (Min, Maximum, Median value in red), dotted linemedian of difference
at a certain depth.
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established transfer from measured relative permittivity to soil
water content, the transfer of measured neutron counts of Cosmic
Ray measurements to soil water content, the transfer of the
measured brightness temperature measured by remote sensing
to soil moisture content. The application of such PTFs mainly
relies on internal consistency reliability, i.e., with detailed
information a specific PTF provides identical results. If the
targeted parameter cannot be measured directly and needs to
be derived with the help of these PTF, several assumptions are
incorporated, and therefore the uncertainties of these
assumptions influence the trustworthiness of higher-level data.

Here, we show this with a well-established example relevant to
soil science, geophysics, and remote sensing. Mainly, pre-
established Pedo-Transfer Functions (PTFs) such as empirical
equations based on laboratory data, volumetric mixing formulae
using compound electrical properties or model approximations

are commonly used (Topp et al., 1980; Ledieu et al., 1986; Roth
et al., 1990; Graeves et al., 1996; Wilson et al., 1996).

Out of these, in Table 1 three well-known PTFs are the
empirical Topp formula, the empirical relationship established
by Roth et al. (1992) or the Complex Refractive Index Method
(CRIM) formula describing a three-phase system are discussed
(Topp et al., 1980; Graeves et al., 1996; Wilson et al., 1996;
Steelman and Endres, 2011).

It is difficult to determine the most appropriate PTF without
any other geological constraints or additional in situ experimental
measurements (Bano, 2004). Figure 6 shows the application of
these three PTFs to the data. In general, the soil water content
derived through these formulas shows the same trend. However,
the Topp and Roth results are generally lower than the CRIM
results (Dawreaa et al., 2019; Du et al., 2020). The CRIM formula
requires either an estimation based on soil data or a time-

TABLE 1 |Discussed Pedo-Transfer Functions (PTFs), their relationship of relative permittivity or dielectric constant to volumetric water content in soil (soil water content) and
error estimation.

—

Topp et al. (1980) θ � −5.3x10−2 + 2.92x10−2pεr − 5.5 x10−4pε2r + 4.3 x10−6pε3r
• empirical relationship
• εr : Measured dielectric permittivity
• error estimation � 0.013 cm3/cm3

Roth et al. (1992) θ � −7.28x10−2 + 4.4x10−2pεr − 1.95 x10−4pε2r + 3.61 x10−6pε3r
• Empirical relationship for mineral soils
• εr : measured dielectric permittivity
• Error estimation � 0.015 cm3/cm3

Complex Refractive Method (CRIM) (e.g., Wharton et al., 1980;
Dobson et al., 1985; Birchak et al., 1994)

θ � εαr −(1−porosity)pεαsolid−porositypεαair
εαwater−εαair

• Three-phase system
• porosity: soil porosity, while εsolid: permittivity of solid material, εair: permittivity of air, and εwater:

permittivity of water constituents, εr : measured dielectric permittivity, α: geometric parameter or
shape factor (α � 0.5 (Pepin et al., 1995), α � 0.46 (Roth et al., 1990), α � 0.25 − 0.8) (Brovelli and
Cassiani, 2008)

• Error Estimation using uncertainty propagation after Gauss

FIGURE 6 | Application of different PTFs on measured dielectric permittivity data. The panel shows derived soil water content in cm3/cm3 and the related
uncertainty for three different PTFs. Panel shows the changing environmental conditions. Starting at day 153, there are drying processes in the subsurface. The soil water
contents derived with different PTF show synchronous course but biased.
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consuming laboratory determination of five additional
parameters, which also influences the overall uncertainty
range. In our case, the porosity was calculated from the
particle density and the bulk density and subsequent
assumptions for εsolid � 3.4 (Roth et al., 1990), εair � 1, and
the temperature-dependent dielectric permittivity of water, εwater,
was assumed to be 78.54 at 25°C (Weast, 1987). However, it is also
a frequency-dependent variable.

Minasny et al. (1999) found that the uncertainty due to the
PTFs parameters is usually small compared to the uncertainty
inherent in the measured input data. However, Figure 6 indicates
that this is not obvious in the exemplary data.

Uncertainty in such Proxy-Transfer Functions can result from
the structure, coefficients, bias in the model, uncertainties in the
input parameters, and measurement errors (Minasny and
Bratney, 2002; Dobarco et al., 2019). The overall uncertainty is
difficult to assess, but some approaches result in an uncertainty
assessment for some known effects. As one example, Gaussian
error propagation can be used to analytically determine the
uncertainty by considering that the uncertainties of the
individual measured variables can partially compensate for
each other. Applied to our data, the uncertainty with the Topp
formula is about 5 vol% and 6–7 vol% for the more complex
CRIM formula. Studies of Roth et al. (1990) indicate a relative
uncertainty of 16 vol%, using the Topp formula for very dry soil,
whereas 1.2 vol% are indicated for wet soil. Therefore (Roth et al.,
1992), established empirical relationships using TDR for mineral
soils, organic soils, and magnetic soils. Especially for dry soils, it is
therefore essential to always assess and describe the applied
empirical relationship and the related uncertainties in the
metadata for interpreting or sharing the data. Another
approach to quantify the resulting uncertainty is application of
the Monte Carlo method, or machine learning methods such as
Latin hypercube sampling, which are tested for their suitability
(Minasny and Bratney, 2002).

3.3 Approaches to Describe the
Provenience
Data Provenience supports the confidence and validity of data by
providing detailed information on data origin and its processing
steps in a consistent way. In recent years, the application of
blockchain technology to the management of research data and,
in particular, to the security of the provenance of research data
and its integrity are also being discussed (Stokes, 2016;
Ramachandran and Kantacioglu, 2017; Boeker, 2021). There
will certainly be outstanding approaches with blockchain
technology regarding provenience assessment in the next few
years but this technology will not be evaluated in this paper. This
subchapter focuses on provenience associated with data
visualization and the trustworthiness assessment of maps and
Geographical Information Systems (GIS) applications.
Nowadays, many maps are used digitally via e.g., Web Map
Service (WMS), Web Map Tile Service (WMTS), Web Feature
Service (WFS) for further analysis or data blending. The
production, distribution and usage of geospatial data is
undergoing massive changes in the last years with citizens

consuming and producing a huge amount of data. The
trustworthiness of maps depends on the trustworthiness of
source data and the description of manipulating/processing
this source data to gain spatial representative maps. In
particular, the density of their input data plays an essential
role in describing the source data and is strongly related to the
transformation processes.

With the complexity of maps, professional execution and
adapted scaling and resolution can give users an unjustified
degree of perfection concerning the information displayed.
Digital maps generated by applying geostatistical software
provided by GIS usually imply a higher coverage than can be
attributed to the original observation (source) data. Likewise,
different line and dot thicknesses obscure the precise positional
accuracy depending on the zoom (displayed scale). This
visualization usually gives the impression of being isolated
from the acquisition and analyzing process that produced the
visual product without closer examination. Besides, visualizing
informative maps by combining several independent source data
with different reliability characteristics is challenging. Especially
if information about source provenience is not given,
understanding and assessing this visualization is difficult.
Many spatially and temporally varying sources of uncertainties
in digital maps reported byWang et al. (2005) accumulate and are
propagated to the maps. These sources of uncertainty include 1)
sampling and measurement errors during data acquisition and 2)
positioning errors, e.g., due to inaccurate image interpretation
and digitizing of boundaries. Besides, sources of uncertainty are
also 3) overlapping and scaling errors, 4) errors related to the
rectification of images during data processing as well as 5) model
errors, e.g., due to misunderstanding of existing relationships
during data analysis (Wang et al., 2005).

Standardized geospatial data quality evaluation processes are
well described in the ISO 19157 standard, which represents a
conceptual model of data quality defining a set of data quality
measures for use in evaluating and reporting data quality
(completeness, logical consistency, positional consistency,
temporal consistency, thematic consistency and usability). This
standard is applicable to data producers providing quality
information to describe and assess how well a data set
conforms to its product specification and to data users
attempting to determine whether or not specific geographic
data are of sufficient quality for their particular application.
ISO 19157 acknowledges that important information on data
quality such as % of missing and interpolated data, can exist as
standalone quality reports. Even if such standards exist, the
implementation and everyday usage is not yet fully established
in the scientific community. Besides the data quality as evaluated
by this ISO 19157 standard, the description of source and
transformation provenience is essential to assess the
trustworthiness of the map production.

Interpolation and arithmetic map operations are widespread
procedures used in GIS or machine learning procedures.
Arithmetic map operations combine raster maps resulting in a
new and improved raster map, and the propagation of the
associated uncertainty depends on reliable measurements of
the local accuracy and local covariance. Spatial interpolations
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derived from limited measurement data are always associated
with uncertainties. The interpolation error should be more
significant in areas where small-scale variation is more
considerable. Therefore, the resulting map must have some
standardized information about assessing these related
uncertainties and provide detailed information about the
transformation provenience (e.g., Crosetto et al., 2000;
Heuvelink and Pebesma, 2002; Atkinson and Foody, 2006).

As an example, we used derived soil water content data over a
specific area. Figure 7 shows the kriging result in dependence on
the percentage of available source data. A procedure selected a
defined percentage (5, 33, 66 and 100%) of the input data and
performed kriging. This example shows the strong dependence
on the number of data points and the influence of maximum and
minimum values on the result and demonstrates the importance
of this information for the understanding of the generated maps.

Also, Kriging techniques as a data interpolation method based
on pre-defined covariance models predict values at unsampled
locations from available measurement data. The different Kriging
approaches such as simple Kriging, ordinary Kriging, universal
Kriging, external drift Kriging and simple detrended Kriging
provide different ways to calculate the weights dependent on
the given covariance model and the location of the target point.
Therefore, information about the Kriging method used and the
covariance model are essential to improve the trustworthiness
of maps.

Another important information is the point density coverage
describing the distribution of observation points within an
interpolated map. Although, the amount of missing and
interpolated points is to be mentioned in accordance with ISO
19157, in interpolated maps this kind of information is mostly
missing. Therefore, point density analysis seems to be a useful
tool for assessing the trustworthiness of maps and has to be
included into the provenience description. A simple point density
calculation sums up the points within a specific prior defined grid
and divides this by the area size. Point density analyses or Kernel
density analysis functionalities in GIS such as ArcGIS and QGIS,

provide a quantitative value and visual display capability that
shows the concentration of points is available. Figure 8 shows the
point density coverage in a prior defined regular grid and

FIGURE 7 | Random selection of data points with a defined percentage of source data and kriging (linear slope � 1 and anisotropy � 1.0).

FIGURE 8 | Point density coverage (grayscale) and the derived soil water
content intensity after Topp formula. The figure shows several grid cells where
no measurement points are located and therefore, these map values
represent only interpolated values. There are also grid areas where
maximum values were measured and where surrounding grid areas have no
measured values as a basis. In such cases, the influence of maximum values is
particularly noticeable.
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indicates that no real observation points are present in some grid
cells and the given value is based on the used kriging method.

Also, some auxiliary data such as remote sensing data or other
observation data in a medium or small resolution are used to
derive detailed soil moisture patterns and their provenience needs
to be described for secondary users. As one example, Schroeter
et al. (2015) and (Schroeter et al. 2017) implemented external
drivers of soil formation that control processes of water
redistribution within fuzzy c-means sampling and estimation
(FCM SEA) approach to capture the spatiotemporal variability
of soil moisture in an exemplary catchment. The additional
integration of several terrain attributes and red-edge based
normalized difference vegetation index patterns projected on
the Digital Elevation Model (DEM) with a 1.0 m × 1.0 m
resolution provides a much more detailed soil moisture map
even when the sampling points could not achieve such a highmap
resolution (see Figure 9). However, without the knowledge and
detailed information of the input parameters and their resolution,
the assumptions within the fuzzy c-means algorithm and the
estimation error to estimate the sampling points for validation,
the secondary user of such a map is unable to understand the
significance, accuracy and limitations of such a map.

Therefore, information on source provenience and their point
density coverage and transformation provenience such as the
used manipulating methods, the applied interpolation method
and their settings used to create the spatial information must be
made available to the map user on request to allow a
trustworthiness assessment. In consequence, essential
information on provenience should include metadata on the
data origin (measuring principle, uncertainties, link to
corresponding metadata), previous data processing steps (QA/

QC steps, defined ranges, manipulating steps such as averaging or
smoothing), visualization processing steps and assumptions
made (point density coverage and used interpolation method
and settings). Here, the two standards ISO 19115 and ISO 19139,
dealing with standardizing the metadata of GIS products should
be taken into account for metadata description. The plugins for
QGIS and ArcGIS allow a rapid implementation and a great
acceptance of those tools.

4 DISCUSSION

Data reuse and interoperability for all kinds of data but especially
for geospatial data becomes very popular also to minimize the
costs and delays and therefore, the roles and responsibilities of
producers, distributors and users and services are evolving
(Bédard et al., 2015). Extensive data documentation with the
help of metadata is essential to provide structured information
that describes, explains and locates the data to enable the correct
and proper discovery, usage, sharing, as well as management of
data resources over a more extended period. The requirements of
detailed metadata information depend on the concrete scientific
context. Many scientific user communities develop metadata
schemes as a precursor of a standard to optimally describe the
generated data in accordance with their scientific needs. Also,
several different metadata schemes are already available as
standards for general purpose (e.g., Dublin Core, Metadata
Object Description Schema) or several specific scientific
standards such as the Darwin Core, Ecological Metadata
Language, or NASA standards (Guenther, 2003; Fegraus et al.,
2005; Méndez, 2006; Wieczorek et al., 2012; Hider, 2019).

FIGURE 9 | Simplified flow chart of the fuzzy c-means sampling and estimation approach (FCM SEA) with combined integration of terrain attributes and red-edge
based normalized difference vegetation index patterns (after Schroeter et al., 2017).
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However, scientific communities are often small and highly
specialized, establishing extensive and less standardized
corresponding metadata. For each standard, e.g. in ICOS
variables and parameters, their meaning and unit are specified
(ICOS, 2021). However, there is a significant overlap among
metadata content schemes/standards.

Nowadays, in addition to the scientists, data engineers and
data scientists are involved in the process of generating the
appropriate metadata content and deciding on the metadata
content necessary for proper data sharing. Often, metadata
compilation is perceived as a burden by researchers and,
therefore, is incomplete and error-prone (Zilioli et al., 2019a).
Nevertheless, curation staff can support scientists by stimulating
their willingness to share (meta)data by identifying contextual
causes that constrain the practice or simplifying the creation
procedures with informatics facilities (e.g., Fugazza et al., 2018;
Zilioli et al., 2019b).

Still, many examples show that scientific datasets are often
generated with incomplete metadata or do not follow standards to
facilitate interoperability and reusability. Metadata are often
missing, incomplete, or ambiguous, and sometimes different
sources give conflicting information (Kennedy and Kent,

2014). Kent et al. (2007) assessed metadata from International
Comprehensive Ocean-Atmosphere Data Set (ICOADS) and
World Meteorological Organization (WMO) publications and
found disagreement in around 20–40% of cases where metadata
was described within both sources. Another difficulty of sharing
data is the incompatible representation of data due to, for
example, the usage of different schemas and different formats
(Wang et al., 2014). (Gordon and Habermann 2018) investigated
different conventions and missing metadata in different
repositories. They stated that comparing completeness across
metadata collections in multiple dialects is a multi-faceted
problem. Metadata representations (dialects) are typically
specific by the communities and the study determined
different grades of completeness in the relevant repositories
(Gordon and Habermann, 2018). To avoid this discrepancy
within the metadata description, a standardized scheme for
data reliability assessment should be discussed and decided
within an interdisciplinary scientific community.

In Table 2, the authors summarize the information needed to
describe data trustworthiness with its three indicators regarding
environmental data elaborated on the basis of the described soil
moisture examples. It turns out that it is a big challenge to find

TABLE 2 | Summary of essential information in the FAIR + metadata description for the above-discussed data trustworthiness issues. This table should be seen as a first
attempt and a basis for further discussions.

Types of trustworthiness Essential information in
the FAIR +

metadata description

Test-retest reliability ▪ Link to sufficient long-term series to allow test-retest measures
▪ Statistical indicators (e.g., STD)
▪ Time period of test-retest (e.g., time between tests, the possibility of seasonal influences, test duration)
▪ (Link) measurement procedure (e.g., setup up, standardized routines)
▪ Test site (e.g. laboratory/field site, possible changes between tests)
▪ Link to temporal influencing factors (e.g. meteorological parameters, temperature and pressure effects)
▪ . . .

Internal consistency reliability ▪ Detailed description of devices (e.g. manufacturer precision range and drift information)
▪ Link to data of influencing factors (e.g. environmental drivers)
▪ Link to comparable sensors
▪ Link to statistical indicators (e.g. deviation to References)
▪ . . .

Inter-rater reliability ▪ Information on operator (name, contact)
▪ Information on different operators (number and time interval)
▪ Standards to be followed
▪ . . .

Internal Validity ▪ Link to References data
▪ Accuracy assessment to References
▪ . . .

External Validity ▪ Applied Proxy Transfer Functions
▪ Related Input Parameters and assumptions
▪ . . .

Data Provenience ▪ Link sources of input data and their description
▪ Previous data processing steps (data manipulation, data fusion, QA/QC tools)
▪ Interpolation method and assumption
▪ Description of supporting points of maps by means of point density coverage
▪ Information on map visualization parameters (in case of no GIS usage)
▪ . . .
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statistical quantities or indicators to describe reliability, validity
and provenance on soil moisture data sufficiently in a
standardized way. However, this list should be seen as a first
attempt and a basis for further discussions. It is clear that only
some of the points are equally important and can be generalized
to other measured data. Other environmental variables often
require other reliability and validity assessment approaches and
other indicators included in data provenience information. It is
obvious, to introduce data trustworthiness issues into metadata
description assessment of reliability with reproducibility,
repeatability and consistency tests and validity considering
the credibility and transferability, as well as provenience
issues, need to be taken into account, and a standardized
vocabulary within environmental science is the essential
precondition to start with. Besides, the meaning of specific
terms needs to be clarified and well accepted in an
interdisciplinary community.

An important discussion in the environmental community
is to what extent all essential information should be described
in the metadata. Too many required metadata generate
unmanageability and are then mostly not provided by the
observers due to time pressure. Especially for metadata
descriptions with a large breadth of varied content, the
metadata can be divided into multiple metadata fields.
This division can improve the unmanageability but also
tend to be not transparent enough for environmental data
with its various number of data producers, processors
and users.

Perhaps it is more manageable if each dataset is sufficiently
linked to secondary datasets with its own metadata description
and this linking is described in the metadata. The authors
recommend linking the data with descriptive statistical
analyses or other data collected with the same instruments
and the same task such as the soil moisture measurements
from one campaign to data from another campaign using the
same devices. Also, automatic tools used for QA/QC and
statistical measurement can create records linked to the
original dataset and automatically insert information into the
metadata.

Many re-users of measurement data assume that
manufacturer’s specification, certain calibration routines and
the measurement of other auxiliary variables are sufficient to
evaluate and describe the data trustworthiness. They are not fully
aware of the errors, uncertainties, variability such as drifts with
sensor lifetime and non-reproducibility that exist in
measurement data and how to assess them.

This paper provides a basis for discussion regarding the
requirements to evaluate and describe data trustworthiness.
The first possible approaches to assessing reliability, validity
and provenience within the data lifecycle are discussed.
However, no claim of completeness is made. These
requirements in terms of reproducibility, repeatability,
consistency, and transferability using TDR soil moisture
measurements are discussed and shown in the paper. Soil
moisture is a suitable climate variable to point out the
whole workflow and the inherent uncertainties starting at
the measurement of dielectrical permittivity, the derivation

of volumetric soil moisture by using PTFs and subsequently
the spatial representation of this derived quantity. Of course,
these discussed approaches could be adapted to other
variables, sensors or measurement methods, and prediction
or models at any time. The authors see the paper as a
grounding basis for discussion to evaluate and describe the
data trustworthiness in a standardized way and make it
available to all further secondary data users.

The paper defined the meaning of data trustworthiness in the
context of environmental data. The discussed examples focus
only on selected parts within this trustworthiness assessment
issue. However, these examples clearly indicate the difficulties
and constraints in assessing the data trustworthiness and its
related metadata description. FAIR Data protocols, Standard
Operating Procedures (SOPs), and information about data
trustworthiness assessment should become standard for groups
of various sensors. Large observation networks, ICOS for
example, have already established standards and follow these
standardized routines.

Obviously, there is a crucial requirement to include related
data trustworthiness evaluation data and the description in
second-level datasets and their metadata to strengthen open
data within the scientific community and reuse them. Hence,
it is necessary to improve data collectors’ awareness of the
established linked datasets or metadata content and to
emphasize the advantages of comprehensively archived data
and metadata information concerning, for example, secondary
data usage, data evaluation and campaign planning, in order to
justify the additional expenditure of time.

A guiding principle of all kinds of data research should be that
without a detailed data trustworthiness evaluation and
corresponding metadata description, data becomes un-FAIR.

Next, the trustworthiness of metadata should be investigated
and evaluated. Appropriate approaches should be developed and
verified based on existing metadata repositories.
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