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Climate change and land use/cover change (LUCC) have been widely recognized as the
main driving forces that can affect regional hydrological processes, and quantitative
assessment of their impacts is of great importance for the sustainable development of
regional ecosystems, land use planning and water resources management. This study
investigates the impacts of climate change and LUCC on variables such as streamflow
(SF), soil moisture (SM) and evapotranspiration (ET) in the Guangdong-Hong Kong-Macao
Greater Bay Area (GBA) by using Soil and Water Assessment Tools (SWAT) model under
different scenarios during 1979–2018. The results show that the simulation performances
were overall good, with Nash-Sutcliffe Efficiency Coefficient (NSE) and coefficient of
determination (R2) greater than 0.80 for the monthly-scale SF calibration and
validation. According to the results of trend and change point tests of meteorological
series, the baseline period (1979–1997) and the interference period (1998–2018) were
determined. Interestingly, other land use types were basically converted to urban land,
leading to a rapid urbanization in the GBA. Compared with the SF values of the eight
estuaries of the Pearl River Basin in the baseline period, both climate change and LUCC
has led to the decrease in the SF values in the interference period, and the combined effect
of climate change and LUCCwas slightly greater than their individual effect. Overall, climate
change and LUCC both have important impacts on regional hydrological processes in
the GBA.
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1 INTRODUCTION

Climate change and land use/cover change (LUCC) are the two
main driving forces affecting hydrological processes (Shi and
Chen, 2018; Lamichhane and Shakya, 2019; Dosdogru et al., 2020;
Guo et al., 2020; Wang Q et al., 2020). Climate change, especially
changes in precipitation and temperature, will greatly affect the
hydrological processes (Maghsood et al., 2019; Zhao et al., 2019;
Jiang et al., 2021). Streamflow (SF) is one of the important
elements in the hydrological cycle, and climate change can
affect the SF mainly through changes in precipitation and
evapotranspiration (ET). As one of the main sources of the SF,
precipitation has a direct effect on the SF; while temperature has
an indirect effect on the SF through affecting the ET (Xu et al.,
2019; Yang et al., 2019). In addition, LUCC such as reservoir
construction, irrigation abstraction, and soil and water
conservation projects have a growing impact on the regional
hydrological cycle (Iqbal et al., 2018; Xu et al., 2019; Yang et al.,
2019; Zhao et al., 2021), especially under the influence of
urbanization due to rapid socioeconomic development.
Different land use types have different effects on precipitation
interception, blocking, transpiration, and infiltration (Berg et al.,
2016; Yonaba et al., 2021), so LUCC not only causes changes in
surface or groundwater volume, but also changes the way regional
water circulates. The expansion of urban land will reduce water
retention and infiltration, increase the SF, and even increase the
flood frequency (Baker and Miller, 2013; Wang Q et al., 2018).
Therefore, quantitative assessment of the impacts of climate
change and LUCC on regional hydrological processes is of
great importance for water resources management and
sustainable development (Yan et al., 2018; Liang et al., 2020).

Currently, there are three broad types of methods to quantify
the contribution of climate change and LUCC to the SF, including
empirical statistical methods (time series analysis), sensitivity
analysis methods, and hydrological modeling methods. The
empirical statistical methods are mainly based on the
correlation and trend analysis of time series data (Ahn and
Merwade, 2014; Hu et al., 2020), which are generally easy to
implement but usually require a long-term historical
hydrometeorological data (Jiang and Wang, 2016). Due to the
lack of physical mechanisms, this type of methods may not be
able to capture the exact nonlinear nature of the hydrological
system (Wang et al., 2012). The sensitivity analysis methods are
mainly based on the water balance within a basin. After the
derivation of a series of equations, sensitivity analysis can be
carried out to quantitatively calculate the SF attribution (Zhang K
et al., 2020). This type of methods allows to estimate the
sensitivity of the SF to climate variables using sensitivity
indices with few data (Wang et al., 2012; Tu et al., 2015), but
cannot directly quantify the effects of hydrological extremes and
human activities, which limits its value (Zeng et al., 2020). The
hydrological modeling methods usually divide the whole study
period into a base period and an interference period, and the
simulation results for these two periods are then compared to
quantitatively distinguish the effects of climate change and
human activities on the SF. This type of methods needs to
consider a variety of parameters, and the key issue is to

establish a suitable model for analysis (Tan et al., 2020). The
third type of methods seems to be the most popular in recent
years, and thus, will be used in this study.

In the context of global warming, previous studies mainly have
focused on the SF responses (Baker and Miller, 2013; Jiang and
Wang, 2016; Kundu et al., 2017; Zeng et al., 2020) rather than
other important variables such as the ET and soil moisture (SM),
which can also affect regional hydrological processes and need
further investigation. Moreover, several studies have directly
attributed LUCC to human activities (Ahn and Merwade,
2014; Zhai and Tao, 2017; Xu et al., 2020), which needs to be
adequately discussed. In addition, the impacts of climate change
and LUCC on regional hydrological processes are spatially
distinct (Li B et al., 2020; Wang Q et al., 2020; Yonaba et al.,
2021). Understanding these impacts requires an accurate
assessment of the different conditions for a given region.
Although several previous studies have attempted to consider
both the individual and combined impacts of climate change and
LUCC on regional hydrological processes, for a designated
region, it is important and necessary to explore the relative
contributions of climate change and LUCC to regional
hydrological processes under various scenarios so that a
deeper understanding of the influence mechanisms can be
obtained.

For the above reasons, this study takes the Guangdong-Hong
Kong-Macao Greater Bay Area (GBA), which is one of the most
developed regions in China, as the study area to investigate the
impacts of climate change and LUCC on regional hydrological
processes. The GBA has been undergoing rapid urbanization in
the past decades (Zhang J et al., 2020), and there have been more
frequent extreme events recently (Wang et al., 2021), leading to
an increasing flood risk in the GBA (Zhang et al., 2019a).
Therefore, to identify and understand the evolution of climate
change and LUCC in the GBA and their impacts on regional
hydrological processes is vital to better promote the sustainable
development of the GBA (Liu F et al., 2020). The main objective
of this study is to quantify the individual and combined impacts
of climate change and LUCC on regional hydrological processes.
First, we analyzed the spatial and temporal evolution
characteristics of LUCC based on land use data series. Second,
we determined the baseline and interference periods based on
meteorological data series. Then, we analyzed the spatial and
temporal evolution characteristics of hydrological elements based
on hydrological simulation results. Finally, we conducted
quantitative analysis of the impacts of climate change and
LUCC on several hydrological elements under different
scenarios. Overall, the outcomes of this study can provide a
reference for the rational allocation of regional water resources
in such regions.

2 MATERIALS AND METHODS

2.1 Study Area
The GBA is located in South China (21°30′-23°40′N, 112°12′-
113°48′E) and covers an area of 56,000 km2 . The GBA includes
two special administrative regions [i.e., Hong Kong (HK) and
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Macao (MC)] and nine cities in Guangdong Province
[i.e., Guangzhou (GZ), Dongguan (DG), Huizhou (HZ),
Shenzhen (SZ), Foshan (FS), Zhongshan (ZS), Zhuhai (ZH),
Jiangmen (JM), and Zhaoqing (ZQ)]. The GBA has a
subtropical climate with a mean annual temperature of 22.3°C
and a mean annual rainfall of 1832 mm. The center of the GBA is
the alluvial plain of the Pearl River Delta, surrounded by hills in
the west, north, and east (Li andWen, 2018; Lyu et al., 2018; Yang
et al., 2020). The GBA is a highly integrated urbanized region with
the economy aggregate almost equal to that of the New York Bay
Area (Wang et al., 2021); however, the development levels among
cities are still uneven. Among the 11 cities, HK, SZ, and GZ are far
ahead of other cities in terms of annual gross domestic product
(GDP). In 2019, the GBA had a total population of over 72
million and a GDP of 11.59 trillion Yuan (Liu F et al., 2020). The
rapid urbanization and high-intensity land development in the
GBA has put tremendous pressure on regional hydrological and
ecological systems, making this a key policy concern that required
attention.

2.2 Research Data
This study will select the Soil and Water Assessment Tool
(SWAT) as the hydrological model, and this model needs the
topographic, soil properties, land use, and meteorological data as
the input data. The topographic data are from the Shuttle Radar
Topography Mission at 90 m × 90 m resolution (https://www2.

jpl.nasa.gov/srtm/). The soil data (scale � 1:1,000,000) are from
the HarmonizedWorld Soil Database, and there are totally 49 soil
types (http://www.fao.org/home/en/). The land use data during
1992–2018 are from the European Space Agency, with a
resolution of 30 m (https://www.esa.int/), and the main land
use types included are Urban aeras, Cropland, Herbaceous,
Tree or shrub cover, Bare areas, and Water bodies. The daily
precipitation, maximum and minimum temperature, mean wind
speed, solar radiation and relative humidity data during
1979–2018 are from the China Meteorological Assimilation
Datasets for the SWAT model (CMADS, http://www.cmads.
org/), with the resolution of 1/3°; its format is designed to
match the input data format of the SWAT model, and thus,
the CMADS data can be directly used without format conversion
(Liu et al., 2018; Meng et al., 2019; Song et al., 2020;Wang N et al.,
2020; Zhang L et al., 2020; Liu et al., 2021). The daily SF data
during 2000–2013 at the Boluo hydrological station (the outlet of
the East River Basin, see Figure 1) are provided by the Pearl River
Water Resources Commission (Shi et al., 2018; Liu S et al., 2020).

2.3 Methodology
2.3.1 The Soil and Water Assessment Tools Model
The SWAT model is a typical GIS-based distributed hydrological
model developed by the U.S. Department of Agriculture
Agricultural Research Center (Zhang et al., 2019b; Sun et al.,
2020), and has been widely used to numerous river basins

FIGURE 1 | Location of GBA, eight estuaries of the Pearl River Basin, and the Boluo hydrological station.
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worldwide (Abbaspour et al., 2007; Baker and Miller, 2013). This
model was originally developed to predict and evaluate the long-
term impacts of human activities on water cycle, sediment, and
agricultural pollutant transport in large-scale watersheds
characterized by different soil types, land use types, and
management conditions (Song et al., 2020; Wang N et al.,
2020). The SWAT model adopts Soil Conservation Service
(SCS) Curve Number (CN) method to simulate the surface SF,
which is a simple conceptual approach for estimating the depth of
SF based on rainfall depth. It relies on only one parameter
(i.e., CN), and has been widely used (Wu et al., 2019).
Regarding Hydrological Response Unit (HRU) as the basic
simulation unit, the SWAT model can well simulate a variety
of the land-surface hydrological processes at the sub-basin scale,
e.g., the SF changes. The SWAT model has a good physical
mechanism to define the model inputs, boundary conditions,
spatial variability, and hydrological characteristics in a
comprehensive and objective way. The spatial and temporal
heterogeneities in the watershed can be reflected in the model
as parameters with actual physical significances, so that the model
has a good physical support from the input to the intermediate
processing process to the output results, increasing the credibility
and accuracy of the simulation results (Wang Q et al., 2018; Li B
et al., 2020). Moreover, the SWAT model has been widely used in
different watersheds in Guangdong Province and proved to be an
effective tool for studying the hydrological responses to climate
change and LUCC (Wu and Chen, 2013; Yin et al., 2017; Zhou YL
et al., 2018; Touseef et al., 2020; Wang QF et al., 2020). Therefore,
the SWAT model is selected for hydrological simulations in the
study area. In this study, the East River Basin will be divided into
25 sub-basins and the GBA will be divided into 290 sub-basins.
The overlapping area of the East River Basin and the GBA is
11,445 km2 (i.e., 38% of the East River Basin and 20.74% of the
GBA). Therefore, the SWAT model will be calibrated in the East
River Basin since it is a whole watershed, and then be applied in
the GBA.

Water balance is the base of the SWAT model, and the
hydrological processes mainly include precipitation, SF,
infiltration, ET, baseflow, and so on. The terrestrial phase of
the hydrological cycle in the SWAT model adheres to the water
balance equation as follows.

SMt � SM0 +∑t
i�1
(Rday − Qsurf − Ea −Wseep − Qgw) (1)

where SMt is the final soil moisture on day i,mm; SM0 is the pre-
soil moisture on day i, mm; t is time, d; Rday is the precipitation
on day i, mm; Qsurf is the surface SF amount on day i, mm; Ea is
the ET on day i, mm; Wseep is the infiltration and SF amount
present in the soil slope stratum on day i, mm; and Qgw is the
groundwater flow on day i, mm.

SWAT-CUP (Calibration and Uncertainty Programs)
integrates the SUFI-2 (Sequential Uncertainty Fitting version
2) algorithm, PSO (Particle Swarm Optimization) algorithm,
GLUE (Generalized Likelihood Uncertainty Estimation)
algorithm, ParaSOL (Parameter Solution) algorithm, and
MCMC (Markov Chain Monte Carlo) algorithm. In this study,

the SUFI-2 algorithm is used for automatic calibration of the
SWATmodel (Yang et al., 2008; Mandal et al., 2021). The SUFI-2
algorithm takes better account of the model uncertainty and is
widely used in the performance evaluation of hydrological
simulations because it requires fewer parameters to be
calculated during the calibration process than other algorithms
(Yang et al., 2008; Dosdogru et al., 2020). This algorithm can
provide the optimal value and the uncertainty range of each
calibrated parameter (Gao et al., 2020; Ma et al., 2020; Martínez-
Retureta et al., 2020). However, the SUFI-2 algorithm does not
consider the parameter relativity that affects the performance. To
quantitatively evaluate the performance of the SF simulation, five
objective functions, i.e., coefficient of determination (R2), Nash-
Sutcliffe Efficiency Coefficient (NSE), P-factor (i.e., the
percentage of observations bracketed by the 95% of the
predicted uncertainty (95PPU)), R-factor, and percent bias
(PBIAS), are used as the assessment criteria:

NSE � 1 − ∑n

i�1(Qi − Si)2∑n

i�1(Qi − �Q)2 (2)

R2 � (∑n

i�1(Qi − �Q) × (Si − �S))2∑n

i�1(Qi − �Q)2∑n

i�1((Si − �S))2 (3)

PBIAS � ∑n

i�n(Qi − Si)∑n

i�nQi

× 100 (4)

R − factor �
1
n∑n

ti�1(yM
ti,97.5%

− yM
ti,2.5%)

σobs
× 100 (5)

where Qi is the observed SF; Si is the simulated SF; Q is the
average of the observed SF; �S is the average of the simulated SF;
n is the combination of the data; yM

ti,97.5% and yM
ti,2.5% represent

the upper and lower boundary of the 95PPU; σobs stands for the
standard deviation of the measured data (Narsimlu et al., 2015);
and i � 1, 2, . . . , n. Usually, when R2 > 0.6 and NSE >0.5, the
model performance is considered plausible (Meng et al., 2018;
Zhang et al., 2018). The criteria referenced in this study is: NSE
≥0.65 obtained from monthly-scale simulations or NSE ≥0.5
obtained from daily-scale during the calibration period
(Awotwi et al., 2019; Marhaento et al., 2019). PBIAS is used
to detect the average deviation between simulated and observed
values, and the PBIAS value of 0 means the optimal simulation
results (Cheng et al., 2018; Zhou X et al., 2018; Chen et al.,
2019).

2.3.2 Trend Test and Change Point Test Methods
The Mann-Kendall method, which is a non-parametric rank-
based statistical method, has been commonly used to detect the
trends in the time series of hydrometeorological variables such
as precipitation, SF, and temperature (Dakhlalla and Parajuli,
2015; Piniewski et al., 2017; Zhou et al., 2020a; Zhou et al.,
2020b; Zou et al., 2020; Jiang et al., 2021). It has a simple
calculation process, and the results are not disturbed by a few
outliers in the time series. Moreover, the samples do not need to
obey a certain distribution, making this method suitable for time
series with non-normal distribution (Toride et al., 2018). For a
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given significance level α, there is the threshold value Uα, and
the trend in the time series can be obtained by analyzing the
statistical characteristics of UFk and UBk. The positive statistic
UFk means that there is an upward trend in the time series, and
vice versa. If the absolute value of the statistic UFk exceeds the
threshold value Uα, it means that the upward or downward
trend is significant. However, the Mann-Kendall method only
has good performance in detecting the trend and change point
of the mean value time series; to enhance the reliability of the
results, this study adopts the sliding t-test method as an
auxiliary method, which can detect the change point by
testing whether the difference between the mean values of
two samples is significant. Specifically, in the case that the
Mann-Kendall test results are not significant, it is necessary
to use the sliding t-test method to test the change point (Coron
et al., 2012; Chen et al., 2018; Wang X et al., 2018).

The sliding t-test method has been commonly used to detect
the change points in the time series of hydrometeorological
variables such as precipitation, SF, and temperature by
examining whether the difference between the means of the
two sample groups is significant (Wang X et al., 2018; Hu
et al., 2020). If the difference exceeds a certain level of
significance, it can be assumed that there is a qualitative change.

For a sequence x, if the difference t between the mean values of
its preceding and following subsequences x1 and x2 is higher than
a certain significance level tα, this point is considered as a change
point. The principle is as follows:

t � �x1 − �x2

s ·
������
1
n1

+ 1
n2

√
(6)

s �
���������
n1s

2
1 + n2s

2
2

n1 + n2 − 2

√
(7)

where �x1 and �x2 denote the means of the two subsequences, s21
and s22 denote the variance of the two subsequences, and the
equation obeys the t−distribution with degrees of freedom
v � n1 + n2 − 2. By setting the reference points consecutively
in a sliding fashion and calculating them in turns, a sequence
of t-statistics ti (i � 1, 2, . . . , n − (n1 + n2) + 1) is obtained.
Given the significance level α, if |ti|< tα, the two subseries
means before and after the reference point are considered not
significantly different, otherwise, it indicates that there is a change
point (Coron et al., 2012; Chen et al., 2018; Wang X et al., 2018).

2.3.3 Scenario Combinations
To assess the impacts of climate change and LUCC on regional
hydrological processes, scenario combinations are often used

when conducting the SF simulation with hydrological models
(Deng et al., 2014; Tan et al., 2020; Zhou et al., 2021). According
to the results in subsection 3.3, the baseline period (1979–1997)
and the interference period (1998–2018) can be determined, and
then, the scenarios for quantitative attribution analysis can be set
as shown in Table 1.

S1 scenario is regarded as the reference scenario, which uses
the land use/cover and climate data in the baseline period. By
comparing the simulation results under S1 and other scenarios
(S2, S3, and S4), the contributions of climate changes and LUCC
to regional hydrological processes (e.g., the SF) in the GBA can be
quantified. Based on S1 scenario, S2 scenario is designed to
quantify the contribution of climate change, using the land
use/cover data in the baseline period and climate data in the
interference period, S3 scenario is designed to quantify the
contribution of LUCC, using the land use/cover data in the
interference period and climate data in the baseline period,
and S4 scenario is designed to quantify the combined impacts
of both climate change and LUCC, using the land use/cover and
climate data in the interference period. In addition, the relative
contribution of climate change and LUCC to the SF can be
calculated as follows:

αl � Q2 − Q1

Q4 − Q1
× 100% (8)

αc � Q3 − Q1

Q4 − Q1
× 100% (9)

whereQ1,Q2,Q3, andQ4 are the mean annual SF simulated under
S1, S2, S3, and S4 scenarios, respectively. αl and αc denote the
relative contributions of LUCC and climate change to the SF,
respectively.

3 RESULTS

3.1 Performance of the SWAT Model
With the SWAT model, we divided the East River Basin into
25 sub-basins and the GBA into 290 sub-basins. Combined with
49 soil types and 6 land use types, taking HRU as the basic
simulation unit, the hydrological elements of each sub-basin were
modeled and aggregated, and they are converged to the outlet of
the whole river basin. Sensitivity analysis and automatic
calibration were performed by using the SUFI-2 in the SWAT-
CUP, which indicated that 10 parameters listed in Table 2 were
the most sensitive.

In this study, we divided the SF data into the calibration period
of 2000–2006 and the validation period of 2007–2013 to ensure
that the SF data used for calibration and validation contain a

TABLE 1 | Scenarios for quantitative attribution analysis.

Scenario Land use/cover data Climate data Objective

S1 1992 1979–1997 —

S2 1992 1998–2018 Impacts of climate changes
S3 2018 1979–1997 Impacts of LUCC
S4 2018 1998–2018 Impacts of both climate changes and LUCC
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certain range of hydrological events (i.e., high, normal, and low
flow years) in each period (Wang et al., 2010). Figure 2A shows
the comparison of the observed and simulated SF data at the
Boluo hydrological station during 2000–2006 (calibration period)
and 2007–2013 (validation period). The results show that NSE, R2

and PBIAS were 0.91, 0.92, 24.1% for the calibration period, while
0.89, 0.9 and 29.6% for the validation period. In general, R2 > 0.85,

NSE >0.90 and PBAIS <30% indicate that the SWAT model is
suitable for the study area. Meanwhile, the results show that
P-factor > 0.7, R-factor < 1.5, which proves that the simulation
performance is good. Figures 2B,C show the linear fittings of the
simulated SF and observed SF during the calibration and
validation periods, respectively. The results show that the R2

values were greater than 0.9, indicating that the simulation results

TABLE 2 | The final values of the sensitive parameters.

Parameter Description Final range Fitted value

CN2a Runoff curve number −0.31–0.16 −0.05
ALPHA_BF Baseflow alpha factor −0.10–0.42 0.10
GW_DELAY Groundwater delay 155–475 348.93
GWQMN Threshold water depth in the shallow aquifer for flow 285–857 506.63
ESCO Base flow alpha factor for bank storage 0.07–0.6 0.35
CH_N2 Manning’s “n”value for the main channel 0.05–0.24 0.09
CANMX Maximum canopy storage −16–33 −13.06
SOL_AWCa Available water capacity −0.15–0.38 0.07
CH_K2 Channel effective hydraulic conductivity 55–131 98.90
GW_REVAP Groundwater “revap” coefficient 0.02–0.13 0.03

aNote: denotes the relative values.

FIGURE 2 | (A) Comparison of the observed SF and simulated SF at the Boluo hydrological station during the calibration and validation periods; (B) linear fitting of
the simulated SF and observed SF during the calibration period; and (C) linear fitting of the simulated SF and observed SF during the validation period.
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of this study were reliable (Meng et al., 2019; Guo et al., 2020; Tan
et al., 2020; Wang Q et al., 2020).

3.2 Land Use/Cover Change
Figure 3 shows the land use/cover maps in 1992 and 2018
(Figure 3A) and the area changes of land use/cover from 1992 to
2018 (Figure 3B). Compared with 1992, the area of urban areas
in the GBA had a dramatic increase of 256.74% in 2018, while
the areas of all other land use/cover types decreased
(i.e., −13.21%, −67.84%, −2.06%, −78.49%, and −7.83% for
cropland, herbaceous, tree or shrub cover, bare areas, and
water bodies, respectively. It is worth noting that the main
types of land use/cover in the GBA are cropland and tree or
shrub cover, which account for about 70% of the GBA and are
mainly distributed in ZQ, JM and HZ. In contrast, urban areas

are mainly concentrated in the Pearl River Delta Plain
(Figure 3A), and its area increased rapidly from 1992 to
2018 due to the rapid socioeconomic development
(Figure 3B). The cities with the top five urbanization
expansion areas are GZ, SZ, DG, FS, and ZS.

In addition, the conversion matrix of LUCC indicates that
most herbaceous and bare areas have changed to urban areas, and
only a small proportion of cropland and water bodies have
changed to urban areas (Table 3). As a result, the area of
urban areas has presented a substantial growth. It is worth
mentioning that only the conversion rates from other land
use/cover types to urban areas were relatively larger, and the
interconversions of different land use/cover types would have
different effects on hydrological variables, leading to impacts on
regional hydrological cycle in the GBA (Tu et al., 2015).

FIGURE 3 | (A) Land use/cover maps in 1992 and 2018; (B) area changes of land use/cover from 1992 to 2018.

TABLE 3 | Conversion matrix of LUCC.

1992 2018

Bare areas
(%)

Cropland (%) Herbaceous (%) Tree or
shrub cover

(%)

Urban areas
(%)

Water bodies
(%)

Bare areas 12.88 0.00 0.00 0.00 87.12 0.00
Cropland 0.00 82.74 0.03 2.21 15.00 0.02
Herbaceous 0.00 3.19 25.38 1.86 69.28 0.28
Tree or shrub cover 0.00 3.12 0.23 95.76 0.85 0.04
Urban areas 0.00 0.00 0.00 0.00 100.00 0.00
Water bodies 0.01 1.50 2.67 0.68 3.67 91.46
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3.3 Climate Change
To isolate the individual impacts of climate change and LUCC on
regional hydrological processes, this study firstly determined the
change points in the time series of climate variables, and then
determined the baseline period and the interference period.
Generally, the contribution of potential evapotranspiration is
much smaller than that of precipitation, especially on rainy
days; moreover, potential evapotranspiration can be closely
related to temperature. Therefore, we only analyzed the
precipitation and temperature changes but did not analyze the
potential evaporation change in this study. In addition, Xue et al.
(2021) demonstrated that radiation could be negligible when
simulating streamflow with the SWAT model. Therefore, we did
not consider the radiation changes in this study. Figures 4A,B
show the temporal variations of precipitation and temperature in
the GBA during 1979–2018 by using Mann-Kendall method,
while Figures 4C,D show the results of change point test for
precipitation and temperature by using sliding t-test method.
Change points around 2017 and 1997 were found in the time
series of precipitation (Figure 4C) and temperature (Figure 4D)
from 1979 to 2018. Combining the change point tests for
precipitation and temperature, the middle year 1997 was
regarded as the change point from 1979 to 2018. Therefore, in
this study, years before 1997 were classified as the baseline period
and years after 1997 were classified as the interference period.
Then, the temporal trends of precipitation and temperature
during these two periods could be obtained, as shown in
Figures 4A,B, respectively. Different trends could be observed
for these two climatic variables since 1979, and the annual
changing rates of precipitation and temperature were not quite
large. Precipitation showed an increasing trend in the baseline
period but a decreasing trend in the interference period, with the
changing rates of 57.28 mm/10a and −39.44 mm/10a,
respectively. Temperature showed increasing trends in both

baseline and interference periods, and the increasing trend in
the interference period (i.e., 0.33°C/10a) was slightly greater than
that in the baseline period (i.e., 0.22°C/10a). In addition, the
climatic variables in the GBA differed in spatial distribution
characteristics during the 40-year period. Figure 5 shows the
spatial distribution characteristics of precipitation and
temperature in the GBA during 1979–2018. Compared with
the baseline period, decreasing precipitation could be
identified in the northwestern, northeastern, and central-
eastern parts of the GBA, while increasing temperature could
be identified in the northeastern part of the GBA.

3.4 Changes in Hydrological Variables
The SWAT model was used to simulate the changes of three
hydrological variables (i.e., SF, SM, and ET) in the GBA during
the study period. Since the SF differences in Humen and
Modaomen between 1992 and 2018 were relatively large, this
study will take these two estuaries as examples to analyze the
variation characteristics of hydrological variables. During
1979–1997, the SF and SM in Humen increased with the
changing rates of 41.97 m3/10a and 6.70 mm/10a, respectively;
the SF and SM inModaomen increased with the changing rates of
40.35 m3/10a and 9.23 mm/10a, respectively. In contrast, during
1998–2018, the SF and SM of Humen and Modaomen showed
decreasing trends, with the changing rates of −47.60 m3/10a and
−3.10 mm/10a for the SF and SM in Humen, and −45.18 m3/10a
and −1.47 mm/10a for the SF and SM in Modaomen. However,
the ET trends were significantly different from those of SF and
SM. Both Humen and Modaomen showed decreasing trends
from 1979 to 1997 with the changing rates of −11.17 mm/10a
and −16.18 mm/10a, respectively. During 1998–2018, Humen
showed an increasing trend (15.57 mm/10a), while Modaomen
showed a decreasing trend (−2.29 mm/10a). Generally, the
changes of the SF, SM, and ET in the GBA might be related

FIGURE 4 | Temporal trends of (A) precipitation and (B) temperature in the GBA during 1979–2018; Sliding t-test for (C) precipitation and (D) temperature during
1979–2018.
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to both climate change and LUCC. The decrease of precipitation
and the increase of temperature in the GBA could lead to the
increase of the ET and then affect the SF. Meanwhile, LUCC
would affect not only the ET, but also the SF and SM. Different
land use types have different ET rates due to different vegetation
cover, leaf area index, root depth and albedo. Moreover, soil
properties are one of the most important factors affecting
infiltration capacity, and LUCC can indirectly affect
infiltration and then the SM through changing the soil
properties (Wan and Yang, 2007).

3.5 Quantifying the Contributions of Climate
Change and Land Use/Cover Change
Based on the differences of hydrological variables between S1 and
other three scenarios, the contributions of climate change and LUCC
to hydrological cycle can be evaluated. Figure 6 shows the spatial
distributions of these three hydrological variables (i.e., SF, SM, and
ET) under four scenarios. These changes were not only the result of
climate change, but also the direct human activities including LUCC.

Known from Figure 7, during 1979–2018, the SF in these eight
estuaries all showed decreasing trends due to climate change and
LUCC. Except for Hongqimen, which had the contribution of
climate change to the SF slightly larger than that of LUCC, the
contributions of LUCC to the SF in the other seven estuaries were
all greater than those of climate change to the SF. This may be
related to the changes of climatic variables in the interference
period. Compared with the baseline period, precipitation in the

interference period decreased by 39.44 mm/10a, and temperature
in the interference period increased by 0.33°C/10a, which could
synthetically lead to the decrease in the SF. However, the variation
amplitudes of climatic variables were still smaller than that of
LUCC, indicating that other land use/cover types were mostly
converted to urban areas and the area of urban areas increased by
256.74% from 1992 to 2018 (Figure 3B). Therefore, the overall
contribution of climate change to the SF was a little smaller than
that of LUCC (Figure 7). For the two estuaries with the relatively
large SF differences (i.e., Humen and Modaomen), the impacts of
climate change and LUCC on the SF were similar. The relative
contributions of climate change and LUCC to the decrease in the
SF were −47% and −48.6% in Humen, and −47% and −48.3% in
Maodaomen. It is worth noting that the sum of the contributions
of climate change and LUCC to the SF was less than 100%, which
may be due to the interaction between climate change and LUCC
(Jiang et al., 2007; Li et al., 2009).

Due to the absence of the observed ET and SM data, this study
only quantitatively analyzed the simulated ET and SM. We
calculated the relative contributions of climate change and
LUCC to the simulated ET and SM by using Eqs 4, 5, and the
relevant results are listed in Table 4. Known from Figure 6, the
changes in the SM and ET mainly occurred in the eastern and
western parts of the GBA. Limited by the length of the article, this
study only showed the detailed analyses of Humen andModaomen,
and other estuaries basically had similar characteristics.

Under the impact of climate change, ET showed increasing
trends in both Humen and Modaomen, with the percentage

FIGURE 5 | Spatial distribution characteristics of precipitation and temperature in the GBA during 1979–2018.
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changes of 1.7 and 1.0%, respectively. In contrast, SM showed
opposite trends in both Humen and Modaomen, with the
percentage changes of −1.5% and −3.8%, respectively. As
shown in Table 4, climate change is the main driver of SM
changes, with precipitation as the main source of SM (Li, 2014;
Luo et al., 2021). Generally, SM increases rapidly after the
occurrence of precipitation and then gradually decreases due
to plant transpiration and ET (Holsten et al., 2009). Temperature
can indirectly affect SM through controlling ET. In the context of
global warming, the increase in ET caused by higher temperature
is universally accepted (Holsten et al., 2009; Wang et al., 2017). In
general, SM can be regarded as the balance between precipitation

and ET (He et al., 2012; O’Gorman, 2012). Under the impact of
LUCC, ET showed decreasing trends in both Humen and
Modaomen, with the percentage changes of −3.6% and −1.5%,
respectively. The variation amplitudes were larger than those
under the impact of climate change. SM also showed increasing
trends in both Humen and Modaomen, with the percentage
changes of 10.5 and 2.3%, respectively. Under the combined
impacts of climate change and LUCC, ET showed decreasing
trends in both Humen and Modaomen, with the percentage
changes of −2.0% and −0.7%, respectively, while SM showed
increasing trends in both Humen and Modaomen, with the
percentage changes of 8.3 and 3.6%, respectively. The changes

FIGURE 6 | Spatial distributions of the SF, ET, and SM under four scenarios.

FIGURE 7 | Relative contributions of climate change and LUCC to the SF decline in the eight estuaries.
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in ET and SMwere closely related to climate change and LUCC in
the study area. Influenced by urbanization, part of precipitation is
retained by impervious surfaces and directly returned to the
atmosphere as ET; part of precipitation infiltrates into the
underground, which is absorbed by plant roots and then
transpires to the atmosphere. On the one hand, urbanization
may lead to a decrease in the amount of ET and infiltration by
reducing permeable surfaces, plant transpiration, and canopy
retention (Chen et al., 2011; Zhang and Liang, 2018). On the other
hand, conversion from herbaceous to cropland may result in an
increase in the SM for vegetation growth (Atchley and Maxwell,
2011; Chang et al., 2014).

4 DISCUSSION

4.1 Uncertainties in the Simulation
The SWAT model was to quantify the impacts of climate change
and LUCC on regional hydrological processes under four
scenarios during 1979–2018. The simulation results were
calibrated and validated based on the observed SF data of the

East River Basin, which were consistent with those in the previous
results (Wu and Chen, 2013). As mentioned before, the overlap
area between the GBA and the East River Basin accounts for
20.74% of the GBA and 38% of the East River Basin, which may
affect the representativeness of the results to some extent.
Moreover, although the SWAT model could well simulate the
three hydrologic variables in the GBA, there were still some
uncertainties in the model simulations. First, the SWAT-CUP
used the SUFI-2 algorithm to evaluate the inherent uncertainties
in the SWAT model, which might be due to the uncertainties in
model calibration, forcing data, model structure, and model
parameter estimation (Rouholahnejad et al., 2012; Ashraf
Vaghefi et al., 2014; Abbaspour et al., 2017). Due to the
complexity of hydrological processes, errors in hydrological
data and imperfections in the model structure can bring
uncertainties in the parameter calibration of the SWAT model,
which may further affect the accuracy of the simulation results.
Second, human activities such as reservoir operation and crop
management were not considered in this study, resulting in the
differences between the simulated and observed SF (Baker and
Miller, 2013; Guo et al., 2016; Wu et al., 2019). Third, the

TABLE 4 | ET and SM of eight entrances under climate change and LUCC.

Pearl river
estuary

Scenario ET SM

Simulation,
mm

Change,
mm

Percent,
%

Relative
contribution, %

Simulation,
mm

Change,
mm

Percent,
%

Relative
contribution, %

Humen S1 765.9 — — — 87.0 — — —

S2 779.2 13.3 1.7 87.7 85.7 −1.3 −1.5 −18.0
S3 738.4 −27.5 −3.6 −181.9 96.1 9.1 10.5 127.0
S4 750.8 −15.1 −2.0 −100.0 94.2 7.2 8.3 100.0

Jiaomen S1 786.0 — — — 94.2 — — —

S2 795.1 9.0 1.1 168.9 93.8 −0.4 −0.4 −18.4
S3 772.9 −13.2 −1.7 −246.2 109.1 14.9 15.9 703.4
S4 780.7 −5.3 −0.7 −100.0 96.3 2.1 2.3 100.0

Hongqimen S1 786.0 — — — 104.4 — — —

S2 795.1 9.0 1.1 30.3 100.5 −3.9 −3.8 −37.2
S3 765.2 −20.8 −2.7 −70.0 112.0 7.6 7.3 72.1
S4 756.3 −29.8 −3.8 −100.0 114.9 10.5 10.1 100.0

Hengmen S1 888.3 — — — 105.3 — — —

S2 889.5 1.2 0.1 1.0 96.0 −9.3 −8.8 −104.0
S3 767.4 −121.0 −13.6 −103.4 114.3 9.0 8.5 100.7
S4 771.3 −117.0 −13.2 −100.0 114.2 8.9 8.5 100.0

Modaomen S1 770.7 — — — 94.9 — — —

S2 778.5 7.8 1.0 155.5 91.3 −3.6 −3.8 −106.0
S3 759.0 −11.7 −1.5 −233.1 97.0 2.2 2.3 63.3
S4 765.7 −5.0 −0.7 −100.0 98.3 3.4 3.6 100.0

Jitimen S1 808.8 — — — 96.9 — — —

S2 827.9 19.1 2.4 64.4 95.4 −1.5 −1.6 −25.0
S3 788.5 −20.2 −2.5 −68.2 98.0 1.1 1.1 18.5
S4 779.1 −29.7 −3.7 −100.0 102.9 6.0 6.2 100.0

Hutiaomen S1 783.0 — — — 91.3 — — —

S2 803.8 20.8 2.7 193.3 90.4 −0.9 −1.0 −14.5
S3 771.5 −11.5 −1.5 −107.2 98.7 7.4 8.1 115.7
S4 793.8 10.8 1.4 100.0 85.0 −6.4 −7.0 −100.0

Yamen S1 696.9 — — — 71.6 — — —

S2 715.9 19.0 2.7 150.9 70.5 −1.1 −1.5 −11.9
S3 682.0 −14.9 −2.1 −117.8 84.0 12.4 17.3 138.5
S4 709.5 12.6 1.8 100.0 80.5 8.9 12.5 100.0
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simulation results were only based on two land use/cover maps in
1992 and 2018, which might cause underestimations or
overestimations of LUCC in certain years and then the
uncertainties in ET and SM (Li et al., 2009). Fourth, this study
used the sliding t-test approach to determine the baseline period
and the interference period; however, different assumptions and
methods may lead to different change points, further affecting the
follow-up analysis. Finally, our model was calibrated and
validated based on only SF data, and thus, ET and SM
simulations need further validation if the observed ET and SM
data were available.

4.2 Impacts of Land Use/Cover Change
The results in this study indicated that the contribution of LUCC
to regional hydrological process was greater than that of climate
change. Unprecedented urban expansion has occurred in the
GBA during the past decades, which may surely increase the area
of impervious surface in this region. Land use/cover types in the
GBA have mainly changed from cropland, herbaceous, tree or
shrub cover, bare areas, water bodies to urban areas, and such
results are consistent with those in the previous studies (Yang
et al., 2020; Zhang J et al., 2020; Wang et al., 2021).

In addition, the conversions among different land use/cover
types can affect the hydrological variables. In general, tree or
shrub cover can produce less SF and SM than other land use/
cover types, but more ET (Li et al., 2009). Since the biomass per
unit area of tree or shrub cover and herbaceous is much lower
than that of cropland, the water storage capacity, transpiration
capacity, and thermal capacity of tree or shrub cover and
herbaceous are all lower than that of cropland (Li Z et al.,
2020). Therefore, the conversions from tree or shrub cover
and herbaceous to cropland led to the changes in the SF, ET,
and SM in this study. Normally, urbanization may lead to an
increase in the SF. Although most of other land use/cover types in
the GBA were converted to urban areas, the proportion of
urbanization area in the GBA was still relatively small
(i.e., about 13%). Therefore, the increase in the SF caused by
urbanization may be smaller than the decrease in the SF caused by
the transformation processes of other land use/cover types,
leading to the overall decreasing SF in the GBA. Moreover,
with the development of urbanization, a large number of
natural surfaces have been transformed into impervious
surfaces, which may largely affect the ecological environment
of cities and generate a series of ecological and environmental
problems, such as urban heat island effect and urban flooding
disasters (Shi et al., 2020). Therefore, the proportion of
impervious surfaces should be controlled, and green space
should be increased in the future development of cities in
the GBA.

4.3 Impacts of Climate Change
This study evaluated the temporal and spatial variation
characteristics of climate variables from 1979 to 2018, showing
that precipitation has decreased and temperature has increased
during the past 40 years. The hydrological simulation results
showed the decrease in the SF, increase in the ET, and
decrease in the SM due to climate change. Such results were

consistent with those in the previous studies (Ji and Duan, 2019;
Liu Z et al., 2020). Precipitation is an important component of
hydrological cycle, which can supply water and control the ET to
some extent. During precipitation, the water vapor content near
the surface is close to the saturated water vapor, so the
evaporation from the soil surface can be ignored. Moreover,
according to the Clausius-Clapeyron equation, saturated water
vapor increases along with increasing temperature, which
increases the water vapor pressure difference between the
surface and air, and further enhances the ET (Guo et al., 2016;
Li Q et al., 2017; Shrestha et al., 2019; Yang et al., 2017). As a
result, the decrease in precipitation and the increase in
temperature directly led to the decrease in the SF and SM but
increase in the ET (Figure 7 and Table 4). Previous studies have
shown that the impacts of climate change on the regional SF
mainly originates from the changes in precipitation, while
precipitation is an important source of the ET and SM. With
the gradually worsening trend of global warming, the effect of
high temperature on the regional hydrological cycle aggravates
rapidly (Wang et al., 2017; Liu et al., 2019). Such changes to the
regional hydrological cycle caused by climate change have caused
a redistribution of water resources in time and space, which has
important implications for the rational utilization and planning
management of water resources.

4.4 Combined Impacts of Climate Change
and Land Use/Cover Change
This study also quantified the combined impacts of climate
change and LUCC on regional hydrological cycle. The results
indicated that the impact of LUCC on the SF was greater than that
of climate change in the GBA. Such results were inconsistent with
those in the previous studies on adjacent regions, which may be
due to the different change points, lengths of data, and
hydrological models (Wu et al., 2017; Mendoza-Ponce et al.,
2018; Wang and Stephenson, 2018). For example, reported that
the earlier the change point, the smaller the relative contribution
of climate change and the larger the relative contribution of
human activities.

However, there is an interaction between climate change and
LUCC. Climatic variables affect LUCC, and in turn LUCC affects
regional climate (Li G et al., 2017). The coupled climatic variables,
land use/cover types, and hydrological models are complex and
complicated by the interactions and feedbacks between
subsystems through physical processes that separate the
individual impacts of climate change and LUCC on
hydrological processes from their combined impacts. In this
study, urbanization-induced LUCC has direct and indirect
effects on regional climate. For other land use/cover types, in
the vertical direction, tree or shrub cover can reshape the regional
surface roughness, increase atmospheric dynamic turbulence,
transport water vapor to a higher position, and make the
atmospheric water saturation in the clouds higher. However,
the reduction of tree or shrub cover will reduce the
atmospheric water vapor and absorbed heat, which may
further hinder cloud condensation in wet and cool atmosphere
(Li Z et al., 2020).

Frontiers in Environmental Science | www.frontiersin.org January 2022 | Volume 9 | Article 78332412

Tan et al. Climate Change and LUCC

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


In addition, the spatial distributions of hydrological variables
under climate change and LUCC showed that, unlike the SM,
there was spatial heterogeneity in the ET changes caused by
climate change and LUCC in the GBA (Figure 6). There was a
strong regional pattern, e.g., climate change increases the ET in
northeastern, northwestern, and southwestern regions, while
LUCC decreases the ET in northeastern and southwestern
regions.

4.5 Limitations
We need to fully aware of the following limitations, which are
mainly related to three aspects. First, our assessment is only on an
annual scale, which does not reflect peak SF within a year, and
runoff on an interannual scale is averaged to include runoff
during both abundant and dry periods. Second, due to
limitations of the SWAT model and available data, other
human activities (e.g., reservoir operations) were not
considered in this study. Reservoirs, such as the Xinfengjiang
Reservoir in the East River Basin, would most likely affect the
streamflow simulation. For example, storage change in reservoirs
may increase the streamflow in dry season but decrease the
streamflow in rainy season. Finally, this study ignores the
interactions between climate change and LUCC by separating
their individual impacts from their combined impacts. Therefore,
the impacts of other human activities and the interactions
between climate change and LUCC remain unresolved issues.
Nevertheless, aware of the above limitations, other findings can be
explored for quantifying the impact of climate change and LUCC
on regional hydrological processes in the GBA based on this
study, which has important implications for sustainable water
resources management in developed regions.

5 CONCLUSION

This study analyzed the temporal and spatial distribution
characteristics of climatic variables (i.e., precipitation and
temperature) and simulated the three selected hydrological
variables (i.e., SF, ET, and SM) in the GBA during 1979–2018.
Based on these results, the individual and combined impacts of
climate change and LUCC were thoroughly discussed. The main
findings are summarized as follows:

1) Characteristics of climate change and LUCC. The GBA has
experienced rapid urbanization during the study period with
most of other land use/cover types turning into urban areas. In
the GBA, the dramatic human activities have changed the land
use/cover types, and the interconversion of different land use/
cover types can have an impact on the hydrological cycle of
the study area. In addition, in the GBA, precipitation
decreased, and temperature increased, with the decrease in
precipitation particularly in the northwestern, northeastern,
and east-central parts of the GBA, while the significant change
in temperature in the northeastern part of the GBA.
Therefore, in the context of complex climate change and
LUCC, it is necessary to consider the coupling relationship
between human activities and natural factors in the GBA,

where a more effective ecological land protection mechanism
should be established.

2) Attribution analysis of climate change and LUCC based on the
SWAT model and scenario combinations. The SWAT model
could perform well in simulating the hydrological processes in
the GBA, with all values of R2 and NSE above 0.85 during the
calibration and validation periods. Then, the individual and
combined impacts of climate change and LUCC on regional
hydrological processes in the GBA were quantified. The
results showed that both climate change and LUCC
reduced the SF in all the eight estuaries, and the impact of
LUCC was slightly larger than that of climate change.
Therefore, the protection of major natural systems and the
rational allocation of land resources in the GBA should be
realized.

It is known that The GBA is one of the world’s four largest bay
areas. Quantifying the regional hydrological responses to climate
change and LUCC is critical for water resources management and
economic development in this area. The outcomes of this study
will provide useful information for stakeholders in ecological
planning andmanagement of land and water resources within the
GBA. Moreover, stakeholders should focus on mitigating the
negative impacts of LUCC from both hydrological and ecological
perspectives, such as formulating relevant development plans or
management programs. It is suggested that decision makers also
need to give special consideration to the interactions between
LUCC and climate change when addressing ecological
conservation issues for sustainable development.
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