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Different global events such as industrial development and the population increment have
triggered the presence and persistence of several organic and inorganic contaminants,
representing a risk for the environment and human health. Consequently, the search and
application of novel technologies for alleviating the challenge of environmental pollution are
urgent. Nanotechnology is an emerging science that could be employed in different fields.
In particular, Nanoremediation is a promising strategy defined as the engineered materials
employed to clean up the environment, is an effective, rapid, and efficient technology to
deal with persistent compounds such as pesticides, chlorinated solvents, halogenated
chemicals, or heavy metals. Furthermore, nanoremediation is a sustainable alternative to
eliminate emerging pollutants such as pharmaceutics or personal care products. Due to
the variety of nanomaterials and their versatility, they could be employed in water, soil, or air
media. This review provides an overview of the application of nanomaterials for media
remediation. It analyzes the state of the art of different nanomaterials such as metal,
carbon, polymer, and silica employed for water, soil, and air remediation.
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INTRODUCTION

Contaminated water, soil, and air represent a critical world problem involving extreme
environmental and human health risks. Several developed techniques for remediation include
conventional methods such as thermal treatment, pump-and-treat, chemical oxidation, and
emerging technologies such as “nanoremediation” (Ganie et al., 2021; Mukhopadhyay et al.,
2021). Nanoremediation uses engineered nanomaterials to clean up polluted media, and this
technique is less costly and more effective than most typical methods.

In addition to its cost-effectiveness, the interest in applying nanomaterials for environmental
remediation relies on the nanostructure’s characteristics. Nanoparticles (NPs) present sensitivity,
high surface-area to mass ratio, exceptional electronic properties, and catalytic behavior (Corsi et al.,
2018). Catalysis and chemical reduction can be regarded as the primary mechanisms for remediation
by NPs. Moreover, NPs have been employed in the removal process based on adsorption because
NPs present a random distribution of active sites in their high surface area and a wide possibility of
coating modifications (Guerra et al., 2018). In addition, NPs can diffuse in small spaces, enhancing
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their application in soil and water remediation. Also, membranes
based on nanomaterials have been used in water nanofiltration
(NF) since the membrane pores potentially retain big
components in water effluents. Moreover, the interaction with
the membrane selectively separates the more minor compounds.
Nanomaterials employed for water, soil, and air remediation
include metal oxides, carbon nanotubes, quantum dots, and
biopolymers.

This review aims to discuss the applications of different types
of nanomaterials in the context of water, soil, and air treatment,
presenting current studies and approaches related to
nanotechnology application for environmental remediation.

NANOREMEDIATION OF WATER

Over the last decade, the study of nanomaterials for application in
water and wastewater treatment has been widely spread
(Figure 1). As clean water is fundamental for living organisms
to sustain life, contaminated groundwater is a problem that

concerns environmental researchers due to the extreme risks
that it represents to different ecosystems (Schweitzer and Noblet
2018). Water sources are susceptible to pollution by many ions,
heavy metals, petroleum hydrocarbons, pesticides, radioactive
materials, as well as emerging pollutants such as pharmaceutics
and personal care products (Jadhav et al., 2015; Zamora-Ledezma
et al., 2021).

In this context, research and development of efficient
methods for water remediation are imperative. In recent
years, different technologies based on nanomaterials have
been employed in the remediation of water due to their
properties, including the selectivity to certain pollutants and
their absorption capacity (Table 1). The predominant
nanomaterials employed in water remediation are metallic
nanoparticles, biopolymeric membranes, and carbon-derived
materials (Saikia et al., 2019).

Metal and Metal-Based Nanomaterials
Several types of metal oxide nanoparticles such as iron oxide
(Fe2O3/Fe3O4), zinc oxide (ZnO), and titanium dioxide (TiO2)

FIGURE 1 | Different types of nanomaterials are employed for nanoremediation.
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are utilized for water purification due to their high reactivity,
photolytic characteristics as well as adsorbent properties derived
from their massive surface area and affinity to different chemical
groups (Aragaw et al., 2021). For instance, iron nanoparticles
have been employed to treat dyes in wastewater from textile,
paint, and paper industries due to their stability in suspension
medium and high adsorption capacity. In recent years, these NPs
have been highly efficient in the adsorption of dyes such as methyl
orange and methylene blue, two of the most utilized dyes in
industry, which present the most inharmonious effects on the
environment and human health (Mashkoor and Nasar 2020). In
this context, the methyl orange and phenol removal efficiency of
magnetic iron oxide NPs in combination with carbon has been
examined, revealing that the nanocomposites present stronger
interactions with the dye, being the carbon concentration a
decisive parameter in the NPs adsorbent behavior (Istratie
et al., 2019). Besides dyes, heavy metals like chromium (VI)
are another critical type of pollutants in water. Current researches
suggested that the environmental risk by chromium (VI) could be
lessened by the presence of iron oxide or zero-valent iron NPs and
organic acids (such as citric acid) (Yang et al., 2017; Zhou et al.,
2018). Titanium dioxide NPs are widely employed as
photocatalyst for micropollutants removal in water, and it is
an effective alternative for emerging contaminants such as
pharmaceutics (Mahmoud et al., 2017).

Carbon-Based Nanomaterials
Nanoporous carbon-based materials such as activated carbons,
carbon nanotubes (CNTs), including multi-walled nanotubes
(MWCNTs) and single-walled nanotubes (SWCNTs), and
graphene and its oxide, present physicochemical characteristics
that make them suitable for water treatment operations to remove
contaminants like heavy metals, fluorides, textile dyes or

pharmaceutical products. For instance, a study evaluated the
adsorption of hexavalent chromium by MWCNTs in
contaminated groundwater (Mpouras et al., 2021). The
authors analyzed the adsorption efficiency effect of parameters
such as pH and adsorbent concentration. Their results suggested
that at pH values higher than 7, the adsorption decreased.
MWCNTs have also been applied in water gasoline removal
projects (Lico et al., 2019). Due to the great environmental
concern that represents fluoride, different alternatives based on
carbon have been employed to achieve deflouridation of
wastewater. In this context, there are reports of the fluoride
removal capacity of chemical and bio-reduced graphene oxide,
exposing that the first one presented an 87% of reduction;
meanwhile, the bio-reduced presented 94% of capacity (Roy
et al., 2017). Similarly, activated carbon has been widely
explored in removing pharmaceutical products due to their
low cost, large pore size, and high porosity. For instance, the
comparison of carbamazepine and sildenafil citrate adsorption
onto powdered activated carbon and granular activated carbon
was reported in 2019 (Delgado et al., 2019). The results revealed
that approximately 90% of the compounds were removed in 10 h
using powdered activated carbon, whereas the granular activated
carbon achieved just 40% of removal after 70 h, which is related to
the greater surface area of the powdered. Likewise, the evaluation
of caffeine, ibuprofen, and triclosan adsorption employing
powdered activated carbon was reported, observing an
important effect of pH (Kaur et al., 2018).

Polymer-Based Nanomaterials
Different alternatives based on polymer nanotechnology could be
employed in water treatment, such as nanoparticles,
nanocomposites, or NF membranes (Abdelbasir and Shalan
2019; Bassyouni et al., 2019). Particularly, polymeric

TABLE 1 | Advantages of Nanomaterials employed in media remediation.

Type of
nanomaterial

Remediation mechanism Media Advantages Limitations/Risks

Metal-based Adsorption; oxidation; reduction;
photodegradation, photocatalysis

Soil,
water

• High specific surface area • NPs can have adverse effects on pure
cultures of bacteria

• Removal of diverse pollutants (chlorinated
organic solvents, polychlorinated biphenyls,
organochlorine pesticides)

• Research of the risks in human and
environmental health is missing

• Compatibility with other treatments —

Carbon-based Adsorption Soil,
water, air

• High surface area • Different cell toxicity effects (Reactive
oxygen species production, lysosomal and
DNA damage)

• Microporosity • Rapid saturation
• Sorption properties • High cost
• Eco-friendly nature —

• Compatibility with other treatments —

Polymer-based Nanofiltration Water • Employment of polymer derived from waste
materials

• Denaturation by extreme temperature

• Compatibility with other treatments • Performance depends on pH
Silica-based Catalysis; adsorption Air, water • Versatility on surface modification • Scattered size distribution

• Adaptable pore size —

• Compatibility with other treatments —
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nanomembranes are employed to eliminate unwanted
nanoparticles in the aqueous phase by detouring particles in
the membrane pores and by the chemical interaction between the
pollutants and the membranes, provoking the pollutant’s
immobilization. In this context, chitosan is a widely employed
polymer for NF membranes elaboration based on facile
manufacturing techniques such as solvent casting. These
membranes are a strategy to clean textile wastewater (Long
et al., 2020), revealing a lower rejection to electroneutral and
negatively charged dyes than the positively charged. However, the
dyes’ physical size also plays a key role in NF efficiency (Weng
et al., 2017). The stability and effectiveness of these nanofiltration
membranes could be enhanced using the membranes as matrix or
support to other types of materials, constituting a composite.
Recently, synthetic and natural polymers such as polyamide,
cellulose, and chitosan have been employed as membrane
matrices and modified by different components such as
triethanolamine, metal oxide nanoparticles, and carbon
nanotubes (Yan et al., 2016; Lakhotia et al., 2018). For
example, it has been reported that by employing carboxylated
MWCNTs in polyamide membranes, an increment in salt
rejection rate can be observed, which is very useful to remove
the industrial salts from textile effluents (Al-Hobaib et al., 2017).
In addition, polyethersulfone membranes functionalized with
MWCNTs, graphene, or other polymers exhibited excellent
heavy metals and dyes rejection in aqueous media (Vatsha
et al., 2014; Ma et al., 2017; Peydayesh et al., 2020).

NANOREMEDIATION OF SOIL

The settlement of Homo sapiens during the transition from
hunter-gatherer to farmer resulted in an irreversible impact on
nature. The dominance of the wheat business, first as a form of
subsistence, later as a style of economic exchange, had
consequences in the disappearance of animal species, plants,
diversion of river courses, and soil erosion and contamination.
Subsequently, the appearance and increase of industrialization
and excessive urbanization have accelerated the deterioration and
contamination of soil (Kumar et al., 2021). Recently, the use of
nanomaterials for the remediation of soil has been attractive due
to its high reactivity, high surface-to-volume ratio, surface
functionalization, and modification of physical properties such
as size, morphology, porosity, and chemical composition. The set
of these properties allows the selectivity and efficiency in the
capture of pollutants. The intercalation of nanoparticles in the
soil allows the cleaning of extensive areas and reduces costs and
time due to the application in situ. Nanoremediation for soil
contamination has predominated with metallic and magnetic
nanoparticles, carbon nanotubes, and nanoscale zero-valent
iron (Mukhopadhyay et al., 2021).

Metal and Metal-Based Nanomaterials
Nanoscale zero-valent iron (nZVI) is an electron donor with a
negative reduction potential. The use of nZVI is one of the most
frequent in pilot trials (Cheng et al., 2021) because it allows the
removal of chlorinated organic solvents, polychlorinated

biphenyls, and organochlorine pesticides through oxidation-
reduction transformation strategies sequestration (Stefaniuk
et al., 2016). nZVI has also been shown to be effective in the
remediation of trichloroethene, hexavalent chromium, nitrate,
lead, cadmium, and DDT with high cleaning percentages (Guerra
et al., 2018). There are different nZVI synthesis methods such as
carbothermal reduction, ultrasound-assisted, electrochemical,
and green synthesis. Although nZVI possesses reactivity as a
reducing agent, it lacks agglomeration dispersion stability,
difficulty separating it from the remediated soil, and limited
mobility. Modifications to the surface are a technological
option to preserve its function, and the most frequent
strategies include mixing with other noble metals in the form
of an alloy such as Pd, Pt, Ag, Cu, and Ni. Other strategies include
coating the surface with biopolymers like starch, carboxymethyl
cellulose, guar gum, or synthetic polymers like poly (ethylene
glycol). While the incorporation of nZVI on the surface of
supports such as silica, activated carbon, zeolites, or polymer
membranes facilitates the separation of the nanomaterial from
the purified soil. Additionally, nZVI can be immobilized utilizing
a “trapping” strategy in emulsions or dispersions of particles in
biopolymers such as calcium alginate, chitosan, and gum arabic.
Other metal-based nanomaterials include applying SiO2, Al2O3,
TiO2, iron phosphate, goethite, and magnetic nanoparticles
(Stefaniuk et al., 2016).

Carbon-Based Nanomaterials
Carbonaceous nanomaterials exhibit unique characteristics such
as large surface area, high microporosity, excellent sorption
capacities, and eco-friendly nature. Some architectures
embrace fullerene C60, fullerene C540, SWCNTs, MWCNTs,
graphene, and activated carbon nanoparticles (Matos et al.,
2017; Marcon et al., 2021). Moreover, activation or
functionalization of carbon-based nanomaterials represents
additional advantages as in other environmental remediation
applications. Recently, there has been a greater preference for
CNTs because they offer greater adsorption capacity than
graphene, graphene oxides, biochar, and granular activated
carbon. The adsorption is determined by the exposure area
and functional groups on the surface, such as -COOH and
-OH. The adsorption capacity can be increased by coupling
functional groups such as -NH2, -SH, oxidation processes,
nonmagnetic metal oxide coating, and grafting of magnetic
iron oxides. The increase in surface area, high surface-to-
volume ratio, and therefore its high reactivity favor
flocculation and decrease its properties for nanoremediation.
The use of the surfactant poloxamer 407 has allowed an
adequate stabilization of multi-walls carbon nanotubes (Matos
et al., 2017). CNTs can remove heavy metal ions such as Pb2+,
Cu2+, Ni2+, and ZN2+; however, the immobilization of heavy
metals depends on pH, organic matter content, and the presence
of silt and clay particles. CNTs can also remediate the soil of total
petroleum hydrocarbons, crude oil, Cr (VI), Cd, DDT,
hexachlorocyclohexane, increasing the microbial population
and plant growth (Shan et al., 2015). CNTs application
techniques comprise their incorporation into membrane
filtration, separation columns, and an aqueous dispersion.
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NANOREMEDIATION OF GAS PHASE

Air pollution is one of the most significant problems that the
world is facing this century since it impacts climate change and
public health. The six most common and harmful outdoor air
pollutants include particle matter (PM10 and PM2.5), nitrogen
oxides (NOx), sulfur dioxide (SO2), carbon monoxide (CO), lead,
and ground-level ozone, which is formed by chemical reactions
between NOx and volatile organic compounds (VOCs)
(Manisalidis et al., 2020). NOx, SOx, VOCs, and ammonia
(NH3) are considered secondary particulate matter precursors.
Carbon dioxide (CO2) is not a pollutant; however, it is the most
important greenhouse gas emitted through human activities. In
order to overcome this problem, several options have been
investigated, including the use of graphene oxides (GOs),
graphite oxides and CNTs with highly reactive surface sites,
and mesoporous silica materials with ordered and tunable
porous structure, high surface area, large pore volume and
thermal stability (Guerra et al., 2018).

Carbon-Based Materials
The benefits of nanotechnology in air pollution control are
remediation and treatment, pollution prevention, and
detection and sensing. The surface of graphite oxide is rich in
oxygen-containing functional groups, which can be controlled by
changing the reaction temperature with the addition of water
(Luo et al., 2018). This material has been used for ammonia gas
sensors operating at different temperatures (Bannov et al., 2017;
Luo et al., 2018). Carbon-based nanomaterials also offer the
possibility of combining other types of nanomaterials to form
nanocomposites, merging different properties in a single new
material (Scida et al., 2011). GO, and zirconium hydroxide/
graphene composites (Seredych and Bandosz 2010; Babu et al.,
2016) have been applied as an environmental remediation tool
through the adsorption of SO2. GO was also partially reduced via
photoreduction under ultraviolet light irradiation and used as a
photocatalyst to degrade VOCs (Tai et al., 2019). Furthermore, a
GOmembrane with a large specific surface area and a continuous
pore structure was used to capture PM2.5 (Jung et al., 2018; Zou
et al., 2019). There have been numerous studies on CNTs in order
to enhance their adsorption properties. CNTs typically must be
modified or coated with other reactive materials having
appropriate functional groups or charges (Guerra et al., 2018).
ModifiedMWCNTs or SWCNTs have been utilized to detect H2S
and SO2 (Zhang et al., 2012), CO and NH3 (Dong et al., 2013),
NO2 and NH3 (Kim et al., 2016), NO2 (Park et al., 2019), VOCs
(Amade et al., 2014), NOx and CO2 (Su et al., 2009).

Silica-Based Materials
Silica-based nanomaterials exhibit high versatility because of
their numerous advantageous properties, including wide
surface area, adjustable pore size, and easily adaptable surfaces
(Shukla et al., 2020). Furthermore, the ability of these
nanomaterials for catalysis and adsorption has led to a
growing interest in recent years for the remediation of
polluted air and the elimination of contaminants in the gas
phase (Guerra et al., 2018). The superficial modification of

silica nanomaterials may enhance their physicochemical
properties. For example, incorporating hydroxyl groups on the
surface of the silica nanomaterials may facilitate some surface
phenomena, including gas adsorption and wetting. This approach
is effective in designing novel catalysts and adsorbents. One of the
first studies analyzing the adsorbent capability of modified
mesoporous silica demonstrated that the existence of amine
groups on its surface promotes the effective capture of H2S
and CO2 from natural gas (Huang et al., 2003). According to
the authors, the material quickly removed up to 80% of the total
H2S (35 min) and CO2 (30 min); thus, that material is highly
efficient in removing those gases. Similarly, another report
revealed that aminosilicates have the potential to eliminate
CO2 from ambient air, which suggests that these materials
may help mitigate climate changes (Choi et al., 2011). In
addition to CO2, these amine-modified silicates also effectively
eliminate other organic contaminants such as aldehydes and
ketones (Nomura and Jones 2013, 2014). Thus, they could be
applicable for removing pollutants in an industrial environment.
On the other hand, atmospheric contamination by lead (Pb) is an
emerging environmental and health problem worldwide, and
eliminating Pb from the air represents a challenging question.
Concerning this, Yang et al. (Yang et al., 2013) developed silica
nanoparticles to tackle this environmental problem. The results
demonstrated that their silica nanoparticles could remove
atmospheric Pb in polluted air. Therefore, silica-based
nanoparticles might represent attractive environmental agents
against industrial pollution by Pb and other heavy metals.

CONCLUSION

The high surface-to-volume ratio is the basic strategy offered by
nanomaterials to adsorb contaminants. However, the increase in
surface area is one of the main disadvantages of nanomaterials,
and therefore, the appearance of the flocculation phenomenon
and possible particle coalescence. Therefore, a challenge is to find
the balance between physical stability and adequate surface
activity that favors interaction with pollutants. While
stabilization with non-ionic surfactants allows a decrease in
flocculation, possibly the addition of functional groups to
increase the removal of pollutants such as -COOH and -NH2

can prevent the agglomeration of nanoparticles under specific pH
conditions through a simultaneous mechanism of repulsion of
electrical charges. With this proposal, the use of non-ionic
surfactants would not be necessary. In addition, another
challenge is the complexity of the different media. The
formation of a corona can overshadow sophisticated
nanomaterials on the nanoparticle’s surface with ligands from
the contaminated medium; therefore, nanoremediation may be
favored with previous cleaning steps.
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