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Soil organic carbon (SOC) is a vital component for sustainable agricultural

production. This research investigates the transfer learning-based neural

network model to improve classical machine learning estimation of SOC

values from other geochemical and physical soil parameters. The results on

datasets based on LUCAS data from 2015 showed that the Instance-based

transfer learningmodel captured the valuable information contained in different

source domains (cropland and grassland) of soil samples when estimating the

SOC values in arable cropland areas. The effects of using transfer learning are

more pronounced in the case of different source (grassland) and target

(cropland) domains. Obtained results indicate that the transfer learning (TL)

approach provides better or at least equal output results compared to the

classical machine learning procedure. The proposed TL methodology could be

used to generate a pedotransfer function (PTF) for target domains with

described samples and unknown related PTF outputs if the described

samples with known related PTF outputs from a different geographic or

similar land class source domain are available.
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1 Introduction

Soil organic carbon (SOC) is an essential part of the global carbon cycle (Bruhwiler

et al., 2018) and one of the most significant soil parameters. It is the main element present

in the soil organic matter (SOM), the significant nutrient source for crop yields, which is

crucial to agricultural production (Obalum et al., 2017). SOC is a major source of

terrestrial carbon and a pivotal element for soil quality and fertility, representing an

important element of terrestrial ecosystems due to its great potential to affect the climate,

food security, and agricultural sustainability. Soils contain approximately double of the

world’s organic carbon compared to the amount present in the atmosphere (Schmidt

et al., 2011). However, SOC has been found to sink in many regions, whereas atmospheric

CO2 permanently increases. It is well known that there is an obvious linkage between SOC

and climate (Horwath and Kuzyakov, 2018). New studies have shown that changes in land

use and landmanagement practice can affect SOC stocks more than climatic changes (Niu

et al., 2021).
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Measuring and assessment of the soil components and

properties is generally a time-consuming and costly

procedure. The absence of measured data can be reimbursed

by results of predictions or modeling (Kovačević et al., 2010). A

commonly used approach to the estimation of not-supplied soil

parameters is more conducted on their indirect assessment based

on measures of the values of some other already available

parameters.

The spatial distribution of soil variables is usually realized by

predictive soil mapping that presents a numerical or statistical

model of the relationship among environmental variables and

soil properties, which is then applied to a geographic database to

create a predictive map (Scull et al., 2003). Most of those models

are based on geostatistical or regression methods (McBratney

et al., 2003). The increasing richness and accessibility of different

data sources led to attempts to enrich the soil information

through the use of ancillary data (McBratney et al., 2000). In

the early age of digital soil mapping, the co-kriging geostatistical

method was developed for predicting a target soil variable based

on subsidiary variables that are cheaper or quicker to measure

and well correlated with the target one (McBratney andWebster,

1983).

The other approach to the estimation of soil properties is

based on a pedotransfer function (PTF) that presents a

mathematical model used to convert direct soil measurements

into known and unknown soil properties (Bouma, 1989). Since

most soil properties are interdependent, PTF is widely used for

modeling relationships in soil research, hydrology,

environmental science, etc. Most PTFs are developed to

predict soil properties for a geographical area with limited

information available (McBratney et al., 2002).

In the last decades, machine learning (ML) techniques have

taken a very important role in the Spatio-temporal modeling of

geochemical variables, especially in their stock assessment and

dynamic changes (Wadoux et al., 2020; Heuvelink et al., 2021).

Most of those studies are primarily focused on mapping soil

properties or classes from local to regional and even worldwide

scales by using different ML algorithms (Taghizadeh-Mehrjardi

et al., 2016; Hengl et al., 2017; Estévez et al., 2022). The final

outputs are mainly digital soil maps (DSM) produced by different

ML algorithms. As a consequence, the main goals of researchers

were to model soil properties in space and time by reaching

satisfactory prediction accuracy without obtaining new

knowledge on the core soil structure and process (Wadoux

et al., 2020).

In recent years, ML was also applied for developing PTFs in

different environmental studies: Benke et al. (2020) developed

generalized PTF to predict soil electrical conductivity and SOC

content for regional locations in the state of Victoria, Australia;

Ramcharan et al. (2017) developed PTF using the Random Forest

algorithm to fill in data gaps for SOC stock volumetric

assessments across the US; Gunarathna et al. (2019) use

different ML algorithms to develop PTF for available water

content in tropical regions. All these studies mainly deal with

the estimation of soil properties within the same geographical

space, which implies similar or the same environmental

conditions.

Traditional SOC measurements are time-consuming and

laborious. Therefore, using ML to obtain SOC values based on

other geochemical parameters could be the direction of future

development. SOC concentration depends on various factors

such as soil type, climate, topography, and soil management

practices. SOC is greatly influenced by vegetation through the

organic matter input and consequently, land use change is one of

the most important factors which impacts SOC stock increase/

decrease. Padarian et al. (2020) found that studies related to SOC

cycles and dynamics and the estimation of SOC stocks in

different ecosystems, with particular importance on grasslands

and topsoil, were one of the main topics that preoccupied

researchers who used ML techniques in soil science. Other

recent geosciences studies indicate that the application of ML

techniques was boosted with the increasing implementation of

remote sensing techniques that enabled a significant extension of

attribute space in the modeling process (Kovačević et al., 2009;

Bouasria et al., 2022). Recently published studies indicate the

efficient application of ML in combination with remote sensing

and open access data in precision and smart agriculture

management (Benos et al., 2021; Mahmood et al., 2022a,b).

Despite the increased number of predictors, there is still a

lack of in situ collected data in geosciences disciplines that are

essential for model building. As a possible solution to resolve this

problem, the concept of transfer learning was suggested. Transfer

learning (TL), as a sub-field of ML, adjusts a model developed for

one learning task to be used as the starting point for building a

model in another learning task (Tan et al., 2018). This technique

is already used in environmental studies. Xiong et al. (2021) used

TL on different satellite data for identifying pre-earthquake

ionospheric perturbation before earthquakes to improve the

performance of earthquake prediction. The application of TL

has already been investigated in soil science. So far, researchers

were focused on its application in soil spectroscopy. Liu et al.

(2018) used neural network-based TL for soil spectroscopy and

its performance on soil clay content estimation using

hyperspectral data. Padarian et al. (2019) applied TL to

improve a localized general soil spectral calibration model

generated with a continental LUCAS dataset. TL aims to use

the knowledge learned from previous tasks, or from large

datasets, to solve new related tasks with limited data (Pan and

Yang, 2010). Mallavan et al. (2010) introduced a procedure for

identifying areas with similar soil forming factors seeking the

smallest taxonomic distance between the factors of the region of

interest (lacking in soil data) and other reference areas (with soil

data) to export soil-landscape rules between those regions. A

similar concept was used to detect Areas of Applicability

estimated by the dissimilarity index. This index is based on

the minimum multivariate distance calculation to the training
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data in the multidimensional predictor space (Meyer and

Pebesma, 2021; Ludwig et al., 2022). Malone et al. (2016)

elaborated a similar approach to extrapolate data across a

large mapping area with sparsely measured points, called

recipient site, from a nearby donor site (usually of a smaller

spatial extent) with very detailed soil mapping.

The goal of this research is to investigate how an ML model,

which estimates SOC values (output) in arable cropland by using

geochemical and physical characteristics of the cropland soil

samples (inputs), can be improved with a TL approach.

Commonly, an ML model is built using the inputs and

associated outputs in one (source) domain, and then applied

in the other (target) domain where only the inputs are available.

As opposed to this procedure, we propose to build the model not

only on the inputs and outputs of the source domain but also to

utilize the available inputs from the target domain. The instance-

based TL approach assumes the difference between the

underlying probability distributions of source and target

domain samples described with geochemical and physical

inputs. In this paper, two types of different but related source

domains were examined: transfer from a global cropland domain

to a local cropland domain and from a global grassland domain

to a local cropland domain.

In the first part of section two, a description of the soil

samples dataset is given. Basic theoretical foundations of the

instance-based TL and Bhattacharyya distance are presented in

FIGURE 1
Spatial distribution of LUCAS samples and SOC values in [g/kg] for the year 2015.
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the second part of section two. In section three, the model

training process, the experimental setup, and the discussion of

the results are given. Concluding remarks about the contribution

and future research are presented in section four.

2 Materials and methods

2.1 LUCAS-based twelve countries soil
organic carbon dataset

Following a decision of the European Parliament, the

European Statistical Office (EUROSTAT), in close cooperation

with the Directorate General responsible for Agriculture and the

technical support of the Joint Research Centre (JRC), organizes

regular, harmonized surveys across all EU Member States to

gather information on land cover and land use. This survey is

known as LUCAS - Land Use/Cover Area frame statistical Survey

(Jones et al., 2020). In this paper, a data set from the year

2015 was used (the latest available release during the

research). The 2015 LUCAS data set consists of

21,857 samples, with SOC measured following the ISO 10694:

1995 protocol (Orgiazzi et al., 2018), and ranging from 0.10 to

560.20 g/kg, as shown in Figure 1 (in the original LUCAS data set,

SOC is labeled as organic carbon (OC) content). The samples

originate from 28 countries (EU member states) and are divided

into eight land cover classes: grassland, shrubland, woodland,

cropland, bareland, artificial land, wetlands, and water.

The spatial variability of SOC depends on the climate and the

share of land cover (i.e., vegetation type) across the EU. Organic

carbon was the highest in the boreal zone, most of the Atlantic

zone, and the temperate mountainous zone. It was intermediate

in the sub-oceanic zone and lowest in the Mediterranean and

sub-continental zones. Wetland, woodland, shrubland, and

grassland were the main land cover (LC) classes in zones with

the highest SOC values. On the contrary, cropland and bareland

were the more common LC class in zones with the lowest SOC

values (Jones et al., 2020). The lowest SOC values under arable

land could be due to reduced inputs of organic matter and

frequent tillage.

The proposed TL approach was evaluated on the subset of the

LUCAS data set which consists of samples that 1) belong to the

soil classes with similar geochemical characteristics and

dissimilar SOC - cropland (relatively low), and grassland

(relatively high); 2) come from the countries with at least

100 samples in each land class (12 countries). The cropland

land cover class includes fields of cereal, root crops, industrial

crops, dry pulses and vegetables, fodder crops, fruit trees, olive

groves, and vineyards, while the grassland land cover class

includes fields of grass with and without sparse trees below

1,000 m altitude (Jones et al., 2020). The subset is named

LUCAS-12 and its statistical summary is presented in Table 1

and Figure 2.

2.1.1 Explanatory variables for soil organic
carbon estimation

The analysis of chemical and physical properties represents

the core of the LUCAS Soil survey. According to Jones et al.

(2020), a composite sample of approximately 500 g was taken

from five subsamples collected with a spade at each LUCAS

point. The first subsample was collected at the geo-referenced

point location; the other four subsamples were collected at a

distance of 2 m following the cardinal directions (North, East,

South, and West).

TABLE 1 LUCAS-12 dataset: summary statistics of SOC values per country and LC class.

SOC (grassland) SOC (cropland)

No.samp Mean
(g/kg)

Min
(g/kg)

Max
(g/kg)

Std
(g/kg)

CV
(%)

No.
samp

Mean
(g/kg)

Min
(g/kg)

Max
(g/kg)

Std
(g/kg)

CV
(%)

Austria 167 46.13 6.40 291.30 36.97 80.15 118 21.45 4.00 168.40 16.16 75.34

Bulgaria 125 20.31 1.10 55.70 11.16 54.93 256 15.52 3.70 35.40 5.13 33.08

Czech Rep 110 25.80 8.60 81.10 11.10 43.02 223 17.70 4.30 54.50 6.23 35.20

France 784 42.84 2.20 472.60 36.28 84.69 1,581 17.09 0.90 171.30 9.88 57.82

Germany 411 52.34 5.10 534.80 70.20 134.14 837 17.68 4.70 293.40 14.51 82.11

Greece 119 20.75 0.80 156.90 22.97 110.68 284 15.57 0.70 97.10 12.21 78.41

Italy 362 31.48 1.40 374.50 30.53 96.98 794 17.96 0.10 126.20 14.03 78.12

Poland 332 37.51 2.50 490.50 70.04 186.74 699 12.14 3.20 107.80 8.18 67.38

Romania 438 23.73 1.40 354.70 21.01 88.56 452 17.46 3.50 42.40 5.96 34.12

Spain 605 25.15 1.00 209.70 22.40 89.08 1918 13.18 0.10 119.20 10.85 82.34

Sweden 109 61.80 8.30 455.60 79.20 128.15 154 32.62 6.00 371.30 45.81 140.45

United
Kingdom

350 65.84 8.40 513.80 73.42 111.51 277 24.24 2.70 193.40 15.02 61.97
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In this research, five chemical and physical properties,

measured at identical locations, were used as explanatory

variables for SOC estimation: Nitrogen (Total Nitrogen

concentration in g/kg for < 2 mm soil fraction - labeled on

figures as n_tot), pH - H2O (1:1 Soil-Water Suspension for <
2 mm soil fraction - ph_h20), pH - CaCl2 (pH, CaCl2 Suspension

for < 2 mm soil fraction - ph_cacl2), Potassium (Extractable in

mg/kg for < 2 mm soil fraction - k_ext), and Electrical

Conductivity (Saturation Extract in dS/m for < 2 mm soil

fraction - ex_satp). All explanatory variables represent

interconnected elements or indicators related to plant

nutrition. The spatial distribution of explanatory variables is

shown in Figure 3.

Pearson correlation coefficient, calculated between

explanatory variables and SOC for the LUCAS-12 data set

(Figure 4), showed that SOC values are highly correlated with

Nitrogen values in both LC classes (≥ 0.89). This finding is in

accordance with (Jones et al., 2020). Moreover, the SOC-to-

Nitrogen ratio is relatively stable across different soil types.

Overall, mineral soils generally have a SOC-to-Nitrogen ratio

close to 12:1, while organic-rich soils have a SOC-to-Nitrogen

ratio close to 30:1 (Jones et al., 2020). There is a significant

correlation between Electrical Conductivity and SOC in the

grassland class.

2.2 Methodology

2.2.1 Instance-based non-inductive transfer
learning

The proposed model for estimating SOC is designed to

use the instance-based non-inductive transfer learning (Yang

et al., 2020). We first define the basic concepts of transfer

learning. A domain D � D(X , PX) consists of two

components: a feature space X from which samples x ∈ X
come from, and a marginal probability distribution PX that

FIGURE 2
Spatial distribution of mean SOC values [g/kg], and number of samples aggregated per country in LUCAS-12 data set.
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produces each sample x (in ML terminology, explanatory

variables are denoted as features). All samples are or can be

transformed to vectors of real numbers x ∈ Rn. Given a

domain of interest, one can perform a task T which

consists of two components: a label space Y, and an

unknown predictive function f: X → Y for which y = f(x).

In a regression task, y ∈ Y is a real number, while in a

classification task it takes one of several discrete values

(classification labels). Estimating SOC values from

geochemical and physical characteristics of soil samples is

a regression task. In a regression task, the real f remains

unknown, but we can learn y = g(x) from the available data

(xi, yi � f(xi))i�1/N, hoping that g will approximate f outside

of the training set well. Function g is selected from a

predefined family of functions and is completely

determined with its parameter vector θ (i.e., if g(x) � w0 +∑n
i�1wixi then θ = (w0, w1, . . ., wn)). To learn g from the

available data, one needs to find θ which minimizes the

prediction error ∑N
i�1l(xi, yi, θ), where the loss function l(x,

y, θ) estimates the error for each sample. In a regression task,

commonly used loss function is l(x, y, θ) � (gθ(x) − y)2.

Mathematically, the learning process on a training set can

be described as:

θp � argmin
θ

∑N
i�1

l xi, yi, θ( ) (1)

Due to the noisy nature of measurements, a training set often

contains different values of y for the same x. Therefore, an

unknown f can be interpreted as an expectation E(y|x) defined

over the probability distribution P(y|x). Hence, a taskT is defined

to be T � T(Y, PY|X).
In the context of transfer learning, there are two domains of

interest, source domain Ds and target domain Dt. They are

represented with source-labeled and destination-labeled

datasets where the labelling process is the outcome of two

tasks Ts and Tt: (xsi, ysi)i�1/N, where xsi∈ X s, ysi∈ Ys, and

(xti, yti)i�1/M, where xti∈ X t, yti∈ Yt. According to Pan and

Yang (2010), transfer learning can be defined as follows:

Definition 1: Given Ds,Ts,Dt, and Tt, transfer learning aims

to imporve the learning of the predictive function ft from the

target domain, using the knowledge in Ds and Ts, where Ds ≠ Dt

or Ts ≠ Tt.

FIGURE 3
Spatial distribution of explanatory variables in a LUCAS-12 data set.
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From Definition 1 follows that a traditional machine

learning setting arises when Ds � Dt and Ts � Tt. However,

the nature of the difference between the domains or between

the tasks can be used to categorize different transfer learning

settings. We now define the instance-based non-inductive

transfer learning:

Definition 2: Let Ys� Yt and Ps
Y|X � Pt

Y|X (i.e., Ts � Tt). If

X s� X t and Ps
X ≠ Pt

X (i.e., Ds ≠ Dt), the learning setting

becomes instance-based and non-inductive.

An instance-based non-inductive setting assumes the same

feature and label spaces as well as the same underlying process

that maps inputs to outputs in both domains. However, the

marginal probability distributions of instances (samples) are

different across domains. In this paper, we assume the

marginal probability distributions of the observed samples are

different across various land cover types. Therefore, this setting

can be applied when one tries to predict cropland SOC values

using both geochemical + physical and SOC values from

grassland samples (source domain), and only geochemical +

physical values from cropland samples (target domain). Now,

we explain how one can find the optimal parameters of the target

prediction model gt ≈ ft.

Suppose that Ds, Ts, and Dt are represented with

(xsi, ysi)i�1/N, and (xti)i�1/M. We would like to find the

optimal parameters θt′ of the target task prediction model

under the assumption of the instance-based non-inductive

setting. Using the empirical risk minimization framework

(Vapnik, 1998), we minimize the following expectation:

θpt � argmin
θt

E x,y( )~Pt
X,Y

l x, y, θt( )[ ] (2)

where l(x, y, θt) is a loss function defined for the target task.

Using the definition of mathematical expectation, Eq. 2 becomes:

θpt � argmin
θt

∫
x∈ X t

∫
y∈ Yt

l x, y, θt( )Pt x, y( )dxdy (3)

From Definition 2 follows Ps
Y|X � Pt

Y|X, and after using the

Bayes’ rule, we obtain Pt(y|x) � Pt(x,y)
Pt(x) � Ps(y|x) � Ps(x,y)

Ps(x) , and
hence Pt(x, y) � Pt(x)

Ps(x)Ps(x, y). Since X s� X t and Ys� Yt

(Definition 2), Eq. 3 becomes:

θpt � argmin
θt

∫
x∈ X s

∫
y∈ Ys

l x, y, θt( )Pt x( )
Ps x( )Ps x, y( )dxdy

� argmin
θt

E x,y( )~Ps
X,Y

Pt x( )
Ps x( ) l x, y, θt( )[ ] (4)

Optimal parameters of the target model cannot be found by

Eq. 4 since the expectation of the joint distribution in the source

population is impossible to compute. The best we can do is to

apply the empirical approximation to the training data by

modifying Eq. 1:

θpt � argmin
θt

∑N
i�1

Pt xsi( )
Ps xsi( ) l xsi, ysi, θt( )[ ] (5)

Equation 5 suggests why this method is called “instance-

based”. Each source domain instance is weighted in the loss

function with the ratio Pt(x)
Ps(x), meaning that if an instance is more

probable to occur in the target domain, then the optimization

process pays more attention to it. If the probability ratio is 1 for

all source instances, then the loss function takes its standard form

described with Eq. 1 – the target prediction model is equal to the

model created only on source domain data (classical machine

learning setting without transfer of knowledge). The probability

ratio can be estimated using the rejection sampling-based

method for correcting sample selection bias (Zadrozny, 2004).

This method introduces a new binary random variable δ ∈ {0, 1},

FIGURE 4
Correlation matrix as a heatmap between explanatory variables and soil organic carbon per land cover class.
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which selects whether a sample will be accepted by the source

domain or not: Ps(x) = P(x|δ = 1), and Pt(x) = P(x|δ = 0). The

ratio can be calculated as follows:

Pt x( )
Ps x( ) �

P x|δ � 0( )
P x|δ � 1( ) �

P x( )P δ � 0|x( )P δ � 1( )
P x( )P δ � 1|x( )P δ � 0( )

� 1 − P δ � 1|x( )( )P δ � 1( )
P δ � 1|x( )P δ � 0( )

� P δ � 1( )
P δ � 0( )

1
P δ � 1|x( ) − 1( )

(6)

Equation 6 suggests that the probability ratio is

proportional to 1
P(δ�1|x). Hence, one can treat the evaluation

of the ratio as a binary classification problem in which a

classifier is trained to predict the probability of a sample

being from the source domain (P(δ = 1|x)), or the target

domain (P(δ = 0|x)).

2.2.2 Bhattacharyya distance
In this research, Bhattacharyya Distance (Bhattacharyya,

1946) is used to estimate the amount of overlap between the

source and target domains (distributions Ps
X and Pt

X). Let P and

Q are two discrete probability distributions over the same

domain X . The Bhattacharyya distance B(P, Q) measures the

similarity between P and Q using the following equation:

B P,Q( ) � −ln ∑
x∈X


P x( )Q x( )√

(7)

Since ∑x∈XP(x) � 1 and ∑x∈XQ(x) � 1, if P = Q then B(P,

Q) = − ln 1 = 0. If P and Q are orthogonal (i.e. there exists no x

for which both distributions assign non-zero probability) then

B(P, Q) = − ln 0 = +∞. Distributions with lower overlap

produce bigger values for B(P, Q). However, Bhattacharyya

distance (BD) is not a metric since it does not obey the triangle

inequality.

In our problem setting, (xsi)i�1/N and (xti)i�1/M are n-

dimensional continuous random variables (geochemical and

physical soil properties). Hence, to apply Eq. 7 one needs to

discretize the input space as described in Figure 5. The estimated

BD between probability distributions depends on the choice of

discretization steps: too few rectangles (hypercubes in n-

dimensional space) would overestimate BD while too many

would underestimate.

Apart from BD, there are other popular methods to

calculate the statistical distance (or similarity between

distributions) such as Mahalanobis distance (Mahalanobis,

1936), Kolmogorov-Smirnov test (Simard and L’Ecuyer,

2011), or Jensen-Shannon divergence (Lin, 1991). However,

Mahalanobis distance calculates the distance between a point

and a distribution, the Kolmogorov-Smirnov test works with

one-dimensional random variables, and Jensen-Shannon

divergence requires that, after discretizing the input space,

the same hyper-cubes from both distributions cannot be

both empty (ps
i � pt

i � 0).

2.3 Programming environment

In this research, two programming environments were used:

data preprocessing and analyses were conducted using the R

software environment (RCoreTeam, 2013); models were built

using the Python PyTorch (Paszke et al., 2019) and ScikitLearn

(Pedregosa et al., 2011) libraries. The code and the datasets used

for the experiments can be downloaded from the GitHub

repository [SocTransferLearning].

3 Experiments and results

The evaluation of the proposed TL-based arable cropland

SOC estimation model has been conducted in a leave-one-

country-out procedure on a LUCAS-12 data set. For cropland

samples in each country (12 target domains), we built two

estimation models: classical ML, and TL. Both models were

trained on soil samples obtained by merging data from the

remaining 11 countries in two different experimental settings:

1) source domain contained soil samples only from cropland

class areas, and 2) source domain contained samples only from

grassland class areas.

3.1 Training the proposed transfer learning
model

The proposed TL model is trained in two phases. In the first

phase, a neural network classifier (Aggarwal, 2018) is trained to

distinguish between the source and the target domain samples. A

two-layer feed-forward network uses a Rectified Linear Unit

(ReLU) activation function in each of the five neurons in the

hidden layer. The number of hidden neurons is equal to the

number of inputs which is a common choice for models with few

inputs. The output neuron performs the Sigmoid function. The

network is trained to minimize the binary cross-entropy loss in a

standard backpropagation procedure (Aggarwal, 2018). When

trained, the network assigns the probabilities of each source

sample belonging to the source class (P(δ = 1|x)). The assigned

probabilities will be used in the next phase to modify the mean

squared error loss of the regression model defined in Eq. 5 – note

that the ratio 1
P(δ�1|x), according to Eq. 6, estimates the probability

ratio Pt(x)
Ps(x).

In the second phase, the regression model is trained only with

the samples from the source domain, using both geochemical and

physical variables as the inputs and related SOC values as the

outputs. The model uses a two-layer, feed-forward neural

network with five hidden neurons and one linear output. The

network is trained in a standard backpropagation procedure

using the modified, previously explained, loss function.

Optimal hyperparameters (learning rate, momentum, and the

number of training epochs) for the classification and regression
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networks are found in a standard 5-fold cross-validation

procedure (Aggarwal, 2018).

When performing the experiments, classical ML models are

trained using only the second phase of TL training in which the

ratio Pt(x)
Ps(x) is set to one. The schematic display of the training

process is shown in Figure 6.

3.2 Model evaluation and discussion

The instance-based TL and classical models were compared

using the normalized versions of Root Mean Squared Error

(NRMSE) and Mean Absolute Error (NMAE), and Coefficient

of Determination (R2):

NRMSE � 1
�y


1
n
∑n
i�1

yi − ŷi( )2√
,

NMAE � 1
�yn

∑n
i�1

|yi − ŷi|,

R2 � 1 − ∑n

i�1 yi − ŷi( )2∑n

i�1 yi − �y( )2
(8)

Due to the quadratic term in the sum, Root Mean Squared

Error is more sensitive to outliers (samples in which the

difference between the real and the predicted value is large)

than Mean Absolute Error. Both measures are normalized over

the average value of the target variable (real SOC values in the

target domain). Hence, different models trained for the same

target domain can be relatively compared. The Coefficient of

Determination shows how the trained model improves over the

one that always predicts the average value of the target variable. If

the trained model is perfect, then R2 = 1; if the model always

predicts the average value, like one would optimally do without

learning, then R2 = 0; for values of R2 less than zero, the model is

worse than one would achieve by always predicting the average

value.

3.2.1 Experimental setting cropland-to-cropland
In this experimental setting, a source domain for each

country consisted of the soil samples from the other

11 countries, covering only the cropland LC class. The target

domain for each country consisted of the soil samples from its

cropland LC class. In this manner, we tested the capability of TL

to transfer knowledge from the global to the local geographical

scale. The experimental results are shown in Table 2. In most of

the considered countries, the TL model provides little better

results in at least one performance measure. In the case of

Austria, Germany, Greece, and Italy, there is no improvement

in any of those measures, while in the United Kingdom and

Poland all measures are slightly improved. The only measure

that is slightly worse is R2 for the Czech Republic, indicating

that the proposed approach is at least as good as the

classical one.

3.2.2 Experimental setting grassland-to-
cropland

In this experimental setting, a source domain for each

country consisted of the soil samples from the other

11 countries, covering only the grassland LC class. As in the

previous experimental setting, the target domain for each country

consisted of the soil samples from its cropland LC class. Hence,

we tested the capability of TL to transfer knowledge from both

global-to-local geographical scales and different, but related LC

classes at the same time. The experimental results are shown in

Table 3. The improvement in at least one of the measures was

present in all the countries except for Sweden. In the case of

Bulgaria, France, Germany, Italy, Poland, Romania, and Spain,

all measures are improved. These improvements are

FIGURE 5
Discretization of a two dimensional random variable x= (x1, x2). The values of discretization steps d1 and d2 determine the size of each rectangle.
Now, B(Ps,Pt) � −ln∑9

i�1

ps
i p

t
i

√
, where pi is a probability of x belonging to rectangle i (i.e. pt

3 � 1/6).
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significantly bigger than in the cropland-to-cropland

experimental setting. For Spain the improvement is higher

than 10% for each measure.

3.2.3 Discussion
As can be seen from Tables 2 and 3, the average

improvements of the proposed cropland SOC estimation

model depend on the type of the source domain. While the

improvement of a global-to-local geographical transfer of

knowledge is negligible for the Cropland-to-Cropland case, a

global-to-local transfer across land cover classes yields significant

improvement for the Grassland-to-Cropland case. In all cases,

NRMSE is higher than NMAE since NMAE is more robust to the

outliers in the estimation process. All error measures are lower

when the regression models are trained on the labeled cropland

samples, which are naturally expected. However, when trained on

the labeled grassland samples using a TL approach, the model can

get close to the more natural model trained on the labeled

cropland samples—classic Cropland-to-Cropland vs TL

Grassland-to-Cropland: 0.30 vs 0.30 for average NRMSE;

0.17 vs 0.19 for average NMAE; 0.77 vs 0.79 for average R2.

FIGURE 6
Two training phases for the TLmodel: In phase 1-a, a classifier is trained to distinguish between the source and the destination domain inputs; in
phase 1-b, probabilities of source domain samples belonging to the source domain were calculated (pi); in phase 2, a final regressionmodel is trained
only on the source domain labeled data, using the modified error function.

TABLE 2 Comparing classical (C), and transfer learning (T) approach in
a Cropland-to-Cropland setting: normalized RMSE and MAE
(lower is better), and R2 (higher is better).

NRMSE
(g/kg)

NMAE
(g/kg)

R2

C T C T C T

Austria 0.20 0.20 0.14 0.14 0.93 0.93

Bulgaria 0.17 0.16 0.13 0.13 0.75 0.75

Czech Republic 0.15 0.15 0.10 0.10 0.82 0.81

France 0.28 0.28 0.20 0.18 0.76 0.76

Germany 0.30 0.30 0.17 0.17 0.87 0.87

Greece 0.37 0.37 0.21 0.21 0.77 0.77

Italy 0.44 0.44 0.23 0.23 0.68 0.68

Poland 0.32 0.31 0.17 0.16 0.77 0.78

Romania 0.15 0.14 0.11 0.11 0.82 0.82

Spain 0.51 0.51 0.30 0.29 0.61 0.62

Sweden 0.42 0.40 0.15 0.15 0.91 0.92

United Kingdom 0.24 0.23 0.15 0.14 0.85 0.86

AVERAGE 0.30 0.29 0.17 0.17 0.79 0.80
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To explain the improved performance of the TL model

compared to its classical counterpart for most target countries,

we calculated the Bhattacharyya distance (BD) between the

source and the target domain distributions in both

experimental settings. How the distance (overlap) between the

distributions affects the achieved improvement can be seen in

Table 4. The benefits of TL over the classical approach for a

particular country are more expressed if the distance between the

source and the target domain distribution is greater. The transfer

of SOC-related knowledge from the grassland to the cropland LC

class achieves much better results (the central part of Table 4)

than the transfer from the global to the local cropland LC class

(the left part of Table 4). This result is expected since the

instance-based TL model can benefit if the source and the

destination input distributions are different enough so that

there will be something to transfer—see Definition 2 in

Section 2.2.1. If the distributions are almost identical, as in

the case with the Cropland-to-Cropland setting, then the

transferred knowledge is minimal.

In the right part of Table 4, a relationship between the

increase in distance for a particular country (ΔBD = BDgrass −

BDcrop) and the increase in performance M improvement of a TL

model over the associated classical model (ΔM � Mgrass
T−C −Mcrop

T−C)
is shown. One can see that the higher values ofΔBD correspond to

higher values of ΔM. This conclusion is confirmed by a calculated

Pearson correlation coefficient between those two values: for

ΔNRMSE - 0.67 (p-value 0.02); for ΔNMAE - 0.65 (p-value 0.02); for

ΔR2 - 0.65 (p-value 0.02).

TABLE 3 Comparing classical (C), and transfer learning (T) approach in
a Grassland-to-Cropland setting: normalized RMSE and MAE
(lower is better), and R2 (higher is better), indicate the benefits of the
proposed TL approach.

NRMSE
(g/kg)

NMAE
(g/kg)

R2

C T C T C T

Austria 0.20 0.20 0.15 0.14 0.93 0.93

Bulgaria 0.21 0.18 0.16 0.14 0.61 0.69

Czech Republic 0.18 0.17 0.14 0.14 0.75 0.77

France 0.31 0.29 0.22 0.20 0.71 0.76

Germany 0.34 0.32 0.21 0.19 0.83 0.85

Greece 0.48 0.48 0.37 0.34 0.62 0.62

Italy 0.54 0.48 0.32 0.28 0.52 0.62

Poland 0.31 0.27 0.20 0.15 0.79 0.84

Romania 0.21 0.16 0.16 0.13 0.63 0.77

Spain 0.61 0.50 0.38 0.28 0.45 0.63

Sweden 0.35 0.35 0.15 0.15 0.94 0.94

United Kingdom 0.26 0.25 0.17 0.17 0.83 0.83

AVERAGE 0.33 0.30 0.22 0.19 0.72 0.77

T
A
B
LE

4
C
o
m
p
ar
in
g
th
e
d
is
ta
n
ce

b
e
tw

e
e
n
so

u
rc
e
an

d
ta
rg
e
t
in
p
u
t
d
is
tr
ib
u
ti
o
n
s
p
e
r
e
ac

h
co

u
n
tr
y
an

d
th
e
im

p
ro

ve
m
e
n
t
o
f
th
e
T
L
m
o
d
e
l
o
ve

r
th
e
cl
as
si
ca

l
m
o
d
e
l:
B
D
s
-
B
D

b
e
tw

e
e
n
a
so

u
rc
e
d
o
m
ai
n

s
∈{
cr
o
p
,g

ra
ss
}
an

d
a
cr
o
p
la
n
d
ta
rg
e
t
d
o
m
ai
n
d
is
tr
ib
u
ti
o
n
s
p
e
r
e
ac

h
co

u
n
tr
y;

M
s T
−C

-
th
e
p
e
rc
e
n
tu
al

im
p
ro

ve
m
e
n
t
o
fp

e
rf
o
rm

an
c
e
m
e
tr
ic
M

w
h
e
n
a
T
L
m
o
d
e
li
s
b
u
ilt

o
n
a
so

u
rc
e
d
o
m
ai
n
s;
Δ
B
D
-
in
cr
e
as
e

in
B
D
d
is
ta
n
ce

(B
D
g
ra
ss
−
B
D
c
ro
p
);
Δ
M
-
th
e
im

p
ro

ve
m
e
n
t
in

M
o
f
th
e
T
L
m
o
d
e
lo

ve
r
th
e
cl
as
si
ca

lm
o
d
e
lw

h
e
n
th
e
tr
an

sf
e
r
is
co

n
d
u
ct
e
d
fr
o
m

th
e
g
ra
ss
la
n
d
so

u
rc
e
d
o
m
ai
n
,c

o
m
p
ar
e
d
to

th
e
cr
o
p
la
n
d
so

u
rc
e

d
o
m
ai
n
(M

g
ra
ss

T
−C

−M
cr
o
p

T
−C

). B
D

cr
op

N
R
M
SE

cr
op

T
−C

N
M
A
E

cr
op

T
−C

R
2

cr
op

T
−C

B
D

gr
a
ss

N
R
M
SE

g
ra
ss

T
−C

N
M
A
E

g
ra
ss

T
−C

R
2

g
ra
ss

T
−C

Δ
B
D

Δ
N
R
M
S
E

Δ
N
M
A
E

Δ R
2

It
al
y

0.
70

0
0

0
1.
47

6
4

10
0.
77

6
4

10

G
er
m
an

y
0.
79

0
0

0
1.
31

2
2

2
0.
52

2
2

2

Sp
ai
n

0.
82

0
1

1
1.
44

11
10

18
0.
62

11
9

17

G
re
ec
e

0.
92

0
0

0
1.
53

0
3

0
0.
61

0
3

0

R
om

an
ia

0.
81

1
0

0
1.
42

5
3

14
0.
61

4
3

14

B
ul
ga
ri
a

0.
94

1
0

0
1.
44

3
2

8
0.
50

2
2

8

Fr
an

ce
0.
55

0
2

0
0.
96

2
2

5
0.
41

2
0

5

A
us
tr
ia

1.
26

0
0

0
1.
66

0
1

0
0.
40

0
1

0

P
ol
an

d
0.
88

1
1

1
1.
26

4
5

5
0.
38

3
4

4

U
n
it
ed

K
in
gd

om
1.
34

1
1

1
1.
70

1
0

0
0.
36

0
-1

-1

C
ze
ch

R
ep
ub

li
c

1.
14

0
0

-1
1.
48

1
0

2
0.
34

1
0

3

Sw
ee
de
n

1.
66

2
0

1
1.
85

0
0

0
0.
19

-2
0

-1

Frontiers in Environmental Science frontiersin.org11

Bursać et al. 10.3389/fenvs.2022.1003918

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1003918


Despite the same range for corresponding variables values

and discretization steps used when calculating distances between

different domains, distances placed in different rows of Table 4

could not be simply compared due to a different number of

cropland soil samples in a particular country.

4 Conclusion

Considering the importance of SOC in the overall terrestrial

ecosystem, its estimation is a topic that occupied many

researchers from the field of soil science. SOC estimation

from geochemical and physical soil parameters in arable land

is significant because of its permanent reduction due to tillage

activities and climate changes and as a vital element for soil

quality and fertility. In this study, we did not consider the

classical ML models by themselves, which is the most often

topic of recently published works in this area of research, but the

possibility of upgrading these models using a transfer learning

approach. The proposed TL methodology could be used to

generate PTFs for target domains with described samples and

unknown related PTF outputs if the described samples with

known related PTF outputs from a different geographic or

similar land class source domain are available. The

assumption for the proposed methodology is that the source

and the target distributions of samples are overlapping. In the

case of equal distributions, a TL and a classical ML approach

would be the same. If the distributions are totally different, then

both classical ML and TL approaches would be inappropriate.

The proposed instance-based TL method improved SOC

estimation in cropland areas of different target countries by

transferring SOC-related knowledge from two global source

domains: European cropland and European grassland (both

data sets derived from the LUCAS 2015 survey). In both

cases, an improvement over the classical ML-based model was

evident. However, the benefit of applying TL was more

significant when transferring from a different but related land

cover class (grassland to cropland), which is in accordance with

the starting assumption that the source and the target domain

data come from different, but overlapping probability

distributions. The effects of TL per particular country were

different and could be further analyzed. The analysis should

include expert knowledge about specific pedological patterns,

climatic factors, and commonly applied agrotechnical practices.

Nevertheless, the application of instance-based TL almost always

outperformed its classical counterpart, and it could be

recommended whenever additional soil data are available.

Instead of transferring knowledge from the global to the local

domain, future research will investigate the efficiency of the

proposed TL methodology in the inverse direction.

Continuation of the study will be to examine the

extrapolation of the information from detailed measured small

to sparsely sampled larger areas (see Malone et al. (2016)). The

other future research will include the additional covariates like

climatic and remote sensing data from Sentinel satellite missions.

Data availability statement

The code and the datasets used for the experiments in this

study can be downloaded from the GitHub repository

[SocTransferLearning].

Author contributions

All coauthors PB, MK, and BB contributed to the

conception and design of the study. PB organized the

database. All coauthors PB, MK, and BB equally

contributed to all aspects of the research and manuscript

preparation and approved it for publication.

Funding

This research was funded by the Science Fund of the Republic

of Serbia - Program for Development of Projects in the Field of

Artificial Intelligence, grant number 6527073 (project acronym

CERES).

Acknowledgments

The LUCAS topsoil dataset used in this work was made

available by the European Commission through the

European Soil Data Centre managed by the Joint Research

Centre (JRC).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Frontiers in Environmental Science frontiersin.org12

Bursać et al. 10.3389/fenvs.2022.1003918

https://github.com/miloskovacevic68/SocTransferLearning
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1003918


References

Aggarwal, C. (2018). Neural networks and deep learning: A textbook. Springer.

Benke, K., Norng, S., Robinson, N., Chia, K., Rees, D., and Hopley, J. (2020).
Development of pedotransfer functions by machine learning for prediction of soil
electrical conductivity and organic carbon content. Geoderma 366, 114210. doi:10.
1016/j.geoderma.2020.114210

Benos, L., Tagarakis, A. C., Dolias, G., Berruto, R., Kateris, D., and Bochtis, D.
(2021). Machine learning in agriculture: A comprehensive updated review. Sensors
21, 3758. doi:10.3390/s21113758

Bhattacharyya, A. K. (1946). On a measure of divergence between two
multinomial populations. Sankhya�Indian J. Statistics 7, 401–406.

Bouasria, A., Ibno, N. K., Rahimi, A., Ettachfini, E. M., and Rerhou, B. (2022).
Evaluation of landsat 8 image pansharpening in estimating soil organic matter using
multiple linear regression and artificial neural networks. Geo-spatial Inf. Sci., 1–12.
doi:10.1080/10095020.2022.2026743

Bouma, J. (1989). “Using soil survey data for quantitative land evaluation,” in
Advances in soil science (Springer), 177–213.

Bruhwiler, L., Michalak, A., Birdsey, R., Fisher, J., Houghton, R., Huntzinger, D.,
et al. (2018). “Overview of the global carbon cycle” in Second state of the carbon cycle
report (SOCCR2): A sustained assessment report global change research program, 42–70.

Estévez, V., Beucher, A., Mattbäck, S., Boman, A., Auri, J., Björk, K.-M., et al.
(2022). Machine learning techniques for acid sulfate soil mapping in southeastern
Finland. Geoderma 406, 115446. doi:10.1016/j.geoderma.2021.115446

Gunarathna, M., Sakai, K., Nakandakari, T., Momii, K., and Kumari, M. (2019).
Machine learning approaches to develop pedotransfer functions for tropical sri
lankan soils. Water 11, 1940. doi:10.3390/w11091940

Hengl, T., de Jesus, J. M., Heuvelink, G., Gonzalez, M. R., Kilibarda, M., Blagotić,
A., et al. (2017). Soilgrids250m: Global gridded soil information based on machine
learning. PLoS One 12, e0169748. doi:10.1371/journal.pone.0169748

Heuvelink, G., Angelini, M., Poggio, L., Bai, Z., Batjes, N., van den Bosch, R., et al.
(2021). Machine learning in space and time for modelling soil organic carbon
change. Eur. J. Soil Sci. 72, 1607–1623. doi:10.1111/ejss.12998

Horwath, W. R., and Kuzyakov, Y. (2018). The potential for soils to mitigate
climate change through carbon sequestration. Dev. Soil Sci. 35, 61–92. doi:10.1016/
B978-0-444-63865-6.00003-X

Jones, A., Fernandez-Ugalde, O., and Scarpa, S. (2020). Lucas 2015 topsoil survey:
Presentation of dataset and results. doi:10.2760/616084

Kovačević, M., Bajat, B., and Gajić, B. (2010). Soil type classification and
estimation of soil properties using support vector machines. Geoderma 154,
340–347. doi:10.1016/j.geoderma.2009.11.005

Kovačević, M., Bajat, B., Trivić, B., and Pavlović, R. (2009). “Geological units classification
ofmultispectral images by using support vectormachines”, in 2009 international conference
on intelligent networking and collaborative systems (ieee), 267–272.

Lin, J. (1991). Divergence measures based on the shannon entropy. IEEE Trans.
Inf. Theory 37, 145–151. doi:10.1109/18.61115

Liu, L., Ji, M., and Buchroithner, M. (2018). Transfer learning for soil spectroscopy
based on convolutional neural networks and its application in soil clay content
mapping using hyperspectral imagery. Sensors 18, 3169. doi:10.3390/s18093169

Ludwig, M., Bahlmann, J., Pebesma, E., and Meyer, H. (2022). Developing
transferable spatial prediction models: a case study of satellite based landcover
mapping. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 43, 135–141. doi:10.
5194/isprs-archives-xliii-b3-2022-135-2022

Mahalanobis, P. C. (1936). On the generalised distance in statistics. Proc. Natl.
Inst. Sci. India 2, 49–55.

Mahmood, A., Singh, S. K., and Tiwari, A. K. (2022a). Pre-trained deep learning-
based classification of jujube fruits according to their maturity level.Neural comput.
Appl. 34, 13925–13935. doi:10.1007/s00521-022-07213-5

Mahmood, A., Tiwari, A. K., Singh, S. K., and Udmale, S. S. (2022b).
Contemporary machine learning applications in agriculture: Quo vadis?
Concurrency Comput. 34, e6940. doi:10.1002/cpe.6940

Mallavan, B., Minasny, B., and McBratney, A. (2010). “Homosoil, a methodology
for quantitative extrapolation of soil information across the globe,” in Digital soil
mapping (Dordrecht: Springer), 137–150.

Malone, B. P., Jha, S. K., Minasny, B., and McBratney, A. B. (2016). Comparing
regression-based digital soil mapping and multiple-point geostatistics for the spatial
extrapolation of soil data. Geoderma 262, 243–253. doi:10.1016/j.geoderma.2015.08.037

McBratney, A. B., Minasny, B., Cattle, S. R., and Vervoort, W. R. (2002). From
pedotransfer functions to soil inference systems.Geoderma 109, 41–73. doi:10.1016/
s0016-7061(02)00139-8

McBratney, A., Odeh, I., Bishop, T., Dunbar, M., and Shatar, T. (2000). An
overview of pedometric techniques for use in soil survey. Geoderma 97, 293–327.
doi:10.1016/s0016-7061(00)00043-4

McBratney, A., Santos, M., and Minasny, B. (2003). On digital soil mapping.
Geoderma 117, 3–52. doi:10.1016/s0016-7061(03)00223-4

McBratney, A., and Webster, R. (1983). Optimal interpolation and isarithmic
mapping of soil properties: V. co-regionalization and multiple sampling strategy.
J. Soil Sci. 34, 137–162. doi:10.1111/j.1365-2389.1983.tb00820.x

Meyer, H., and Pebesma, E. (2021). Predicting into unknown space? estimating
the area of applicability of spatial prediction models. Methods Ecol. Evol. 12,
1620–1633. doi:10.1111/2041-210x.13650

Niu, X., Liu, C., Jia, X., and Zhu, J. (2021). Changing soil organic carbon with land
use and management practices in a thousand-year cultivation region. Agric. Ecosyst.
Environ. 322, 107639. doi:10.1016/j.agee.2021.107639

Obalum, S., Chibuike, G., Peth, S., and Ouyang, Y. (2017). Soil organic matter as
sole indicator of soil degradation. Environ. Monit. Assess. 189, 1–19. doi:10.1007/
s10661-017-5881-y

Orgiazzi, A., Ballabio, C., Panagos, P., Jones, A., and Fernández-Ugalde, O.
(2018). Lucas soil, the largest expandable soil dataset for Europe: a review. Eur.
J. Soil Sci. 69, 140–153. doi:10.1111/ejss.12499

Padarian, J., Minasny, B., and McBratney, A. (2020). Machine learning and soil
sciences: A review aided by machine learning tools. Soil 6, 35–52. doi:10.5194/soil-
6-35-2020

Padarian, J., Minasny, B., and McBratney, A. (2019). Transfer learning to localise
a continental soil vis-nir calibration model. Geoderma 340, 279–288. doi:10.1016/j.
geoderma.2019.01.009

Pan, S. J., and Yang, Q. (2010). A survey on transfer learning. IEEE Trans. Knowl.
Data Eng. 22, 1345–1359. doi:10.1109/tkde.2009.191

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., et al. (2019).
“Pytorch: An imperative style, high-performance deep learning library,” in
Advances in neural information processing systems 32. Editors H. Wallach,
H. Larochelle, A. Beygelzimer, E. Fox, and R. Garnett (Red Hook, New York,
US: Curran Associates, Inc.), 8024–8035.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
et al. (2011). Scikit-learn: Machine learning in python. J. Mach. Learn. Res. 12,
2825–2830.

Ramcharan, A., Hengl, T., Beaudette, D., and Wills, S. (2017). A soil bulk density
pedotransfer function based on machine learning: A case study with the ncss soil
characterization database. Soil Sci. Soc. Am. J. 81, 1279–1287. doi:10.2136/sssaj2016.
12.0421

RCoreTeam (2013). R: A language and environment for statistical computing.

Schmidt, M. W., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens,
I. A., et al. (2011). Persistence of soil organic matter as an ecosystem property.
Nature 478, 49–56. doi:10.1038/nature10386

Scull, P., Franklin, J., Chadwick, O., and McArthur, D. (2003). Predictive soil
mapping: a review. Prog. Phys. Geogr. Earth Environ. 27, 171–197. doi:10.1191/
0309133303pp366ra

Simard, R., and L’Ecuyer, P. (2011). Computing the two-sided kolmogorov-
smirnov distribution. J. Stat. Softw. 39, 1–18. doi:10.18637/jss.v039.i11

Taghizadeh-Mehrjardi, R., Nabiollahi, K., and Kerry, R. (2016). Digital
mapping of soil organic carbon at multiple depths using different data
mining techniques in baneh region, iran. Geoderma 266, 98–110. doi:10.1016/
j.geoderma.2015.12.003

Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., and Liu, C. (2018). “A survey on
deep transfer learning,” in International conference on artificial neural networks
(Springer), 270–279.

Vapnik, V. (1998). Statistical learning theory. Wiley-Interscience.

Wadoux, A. M.-C., Minasny, B., and McBratney, A. (2020). Machine learning for
digital soil mapping: Applications, challenges and suggested solutions. Earth-
Science Rev. 210, 103359. doi:10.1016/j.earscirev.2020.103359

Xiong, P., Long, C., Zhou, H., Battiston, R., Santis, A. D., Ouzounov, D., et al.
(2021). Pre-earthquake ionospheric perturbation identification using cses data via
transfer learning. Front. Environ. Sci. 514. doi:10.3389/fenvs.2021.779255

Yang, Q., Zhang, Y., Dai, W., and Pan, S. J. (2020). Transfer learning. Cambridge:
Cambridge University Press.

Zadrozny, B. (2004). “Learning and evaluating classifiers under sample selection
bias,” in Proceedings of the twenty-first international conference on machine
learning.

Frontiers in Environmental Science frontiersin.org13

Bursać et al. 10.3389/fenvs.2022.1003918

https://doi.org/10.1016/j.geoderma.2020.114210
https://doi.org/10.1016/j.geoderma.2020.114210
https://doi.org/10.3390/s21113758
https://doi.org/10.1080/10095020.2022.2026743
https://doi.org/10.1016/j.geoderma.2021.115446
https://doi.org/10.3390/w11091940
https://doi.org/10.1371/journal.pone.0169748
https://doi.org/10.1111/ejss.12998
https://doi.org/10.1016/B978-0-444-63865-6.00003-X
https://doi.org/10.1016/B978-0-444-63865-6.00003-X
https://doi.org/10.2760/616084
https://doi.org/10.1016/j.geoderma.2009.11.005
https://doi.org/10.1109/18.61115
https://doi.org/10.3390/s18093169
https://doi.org/10.5194/isprs-archives-xliii-b3-2022-135-2022
https://doi.org/10.5194/isprs-archives-xliii-b3-2022-135-2022
https://doi.org/10.1007/s00521-022-07213-5
https://doi.org/10.1002/cpe.6940
https://doi.org/10.1016/j.geoderma.2015.08.037
https://doi.org/10.1016/s0016-7061(02)00139-8
https://doi.org/10.1016/s0016-7061(02)00139-8
https://doi.org/10.1016/s0016-7061(00)00043-4
https://doi.org/10.1016/s0016-7061(03)00223-4
https://doi.org/10.1111/j.1365-2389.1983.tb00820.x
https://doi.org/10.1111/2041-210x.13650
https://doi.org/10.1016/j.agee.2021.107639
https://doi.org/10.1007/s10661-017-5881-y
https://doi.org/10.1007/s10661-017-5881-y
https://doi.org/10.1111/ejss.12499
https://doi.org/10.5194/soil-6-35-2020
https://doi.org/10.5194/soil-6-35-2020
https://doi.org/10.1016/j.geoderma.2019.01.009
https://doi.org/10.1016/j.geoderma.2019.01.009
https://doi.org/10.1109/tkde.2009.191
https://doi.org/10.2136/sssaj2016.12.0421
https://doi.org/10.2136/sssaj2016.12.0421
https://doi.org/10.1038/nature10386
https://doi.org/10.1191/0309133303pp366ra
https://doi.org/10.1191/0309133303pp366ra
https://doi.org/10.18637/jss.v039.i11
https://doi.org/10.1016/j.geoderma.2015.12.003
https://doi.org/10.1016/j.geoderma.2015.12.003
https://doi.org/10.1016/j.earscirev.2020.103359
https://doi.org/10.3389/fenvs.2021.779255
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1003918

	Instance-based transfer learning for soil organic carbon estimation
	1 Introduction
	2 Materials and methods
	2.1 LUCAS-based twelve countries soil organic carbon dataset
	2.1.1 Explanatory variables for soil organic carbon estimation

	2.2 Methodology
	2.2.1 Instance-based non-inductive transfer learning
	2.2.2 Bhattacharyya distance

	2.3 Programming environment

	3 Experiments and results
	3.1 Training the proposed transfer learning model
	3.2 Model evaluation and discussion
	3.2.1 Experimental setting cropland-to-cropland
	3.2.2 Experimental setting grassland-to-cropland
	3.2.3 Discussion


	4 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References


