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Freshwater resources present in the Upper Indus Basin (UIB) supply water to

Pakistan’s irrigation. Half of the annual water discharge in the UIB is contributed

from the glacier and snow-fed basins in the Hindu Kush, Karakoram, and

Himalaya (HKH) region, and it is currently under the threat of climate

change. Therefore, it is very necessary to study and monitor the

spatiotemporal changes in the snow cover area (SCA) and its response to

climate variables to efficiently manage water reservoirs. Thus, keeping this

problem in mind, we conducted this study using the Google Earth Engine

Application Programming Interface (GEE API) for Astore and Shigar. We used

mean annual Landsat data between 1991 and 2021 to derive the SCA using the

normalized difference snow index (NDSI). ASTER GDEM data was used to

extract the elevation and analyze the distribution of SCA on different

elevation zones. Eventually, we used the climate research unit (CRU) data

(rainfall and temperature) to analyze them with SCA. The results revealed

that SCA in Astore and Shigar has an increasing trend with a rate of

11.16 km2/year and 4.27 km2/year, respectively. Mean annual precipitation

and temperature also confirmed the increasing trend of SCA because mean

annual precipitation is increasing and temperature is decreasing in both regions.

SCA and elevation analysis revealed that SCA is decreasing on foothills while

increasing at the valley top. This is because temperature is increasing and

precipitation is decreasing from zone 1 to zone 3 and vice versa for zone 4. It is

found that Astore and Shigar in UIB have an increasing trend of SCA and are not

affected by global warming. Therefore, it is necessary to conduct studies on

large scale to efficiently evaluate the impact of climate change on SCA.
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Introduction

Hindu Kush, Karakoram, and Himalaya (HKH) regions are

the longest mountainous regions and are spread over various

countries including Afghanistan, Bhutan, China, India,

Myanmar, Nepal, and Pakistan. The HKH region stores a

huge amount of freshwater resources outside the polar region;

therefore, it is also known as the Third Pole or Water Tower of

Asia (Kehrwald et al., 2008). Many largest rivers in these

countries originate from the HKH region and are fed through

snow and glacier meltwater (Banerjee et al., 2021). Therefore, this

region supports the livelihood of people living downstream

through water supply (Sharma et al., 2013, Sahu and Gupta,

2020) and fulfills their essential needs in terms of agriculture

production, hydropower generation, drinking, and

industrialization (Jain et al., 2009; Hori et al., 2017). However,

due to climate change, glaciers and snow-covered areas are under

serious threat and consistently change with time (Wester et al.,

2019). Pakistan is an agro-economic country and largely

dependent on water supply from the Indus River System

(IRS) (SIHP, 1990), and the inflow of water in the Indus

River is mostly contributed by glaciers and snow meltwater

(Bookhagen and Burbank, 2010; Immerzeel et al., 2012).

Snow-covered mountains are not directly influenced by the

human population, but they are vulnerable to climate change,

and subsequently, the rising trend of temperature, decreasing

trend of snow cover duration, and changing pattern of snowfall

result in early melting of snow cover and influence river runoff in

the summer season (Krishnan et al., 2019; Notarnicola, 2020; Yi

et al., 2021). Eventually, it will result in scarcity of water,

landslide, drought, floods, and glacial lake outburst flood

(GLOF) (Tahir et al., 2019). Snow cover research on this

region usually revealed a decreasing trend of SCA; however,

Tahir et al. (2016), Shafiq et al. (2019), and Azizi and Akhtar,

2021) reported an increasing trend of SCA due to an increasing

trend of winter precipitation and decreasing trend of summer

temperature. Another study also projected an increasing trend of

precipitation in the HKH region during 1901–2099, while

temperature indices show an inter-annual decreasing trend

(Panday et al., 2015). Moazzam et al. (2022) recently studied

the precipitation projection of Gilgit-Baltistan for the 21st

century and revealed a significant increasing trend in the

midcentury (2021–2060) under representative concentration

pathway (RCP) 4.5 and RCP 8.5. Negi and Kanda, (2020) also

reported an increasing trend of SCA in the Northwest Himalayan

region due to the slowdown warming trend. Therefore, these

climate variabilities imply differences in SCA. Hence, it is

necessary to monitor the changing phenomena of snow cover.

However, a large area is at risk in the HKH region, and

knowledge of spatial variability of SCA is limited on a large scale.

In the past, it was very difficult to map the SCA because of

high altitude and tough terrains (Aniya et al., 1996; Jacobsen and

Theakstone, 1997), but, since the early 1960s, remote sensing

sensors have been designed to easily map the SCA with various

techniques and methodologies (Abid and Zia, 2019). Now

researchers are using various indices and methods for SCA

mapping, i.e., normalized difference snow index (NDSI),

normalized difference snow thermal index (NDSTI),

normalized difference water index (NDWI), normalized

difference principal component index (NDPSCI), normalized

difference debris index (NDDI), machine learning algorithms

[support vector machine (SVM), artificial neural network

(ANN), and random forest (RF)], and image classification

techniques. In this study, we used NDSI, which is one of the

widely used indices globally because of its satisfactory results in

mountain shadows.

It is a very challenging task to study the large snow-covered

area and manually filter the images with less amount of clouds,

download, make composite, and stitch the image which

consumes immense time. Therefore, we used a cloud

computing (Google Earth Engine) platform, which makes it

easy to perform all these tasks using JavaScript or Python

APIs. This study aimed to investigate the snow cover area of

Astore and Shigar using the normalized difference snow index

(NDSI) between 1991 and 2021. The snow cover area was

correlated with climate variables (temperature and

precipitation) and topographic parameters (elevation). The

significance of this study was to understand the SCA

relationship with the temperature and rainfall which is useful

for mountainous and low-lying glacier-dependent communities.

We chose Astore and Shigar in this study because previous

studies have been conducted on the comparison of Astore with

Hunza and Gilgit (Tahir et al., 2016); hence, there is a need for a

comparative study between other sub-basins of UIB. Therefore,

in this study, we evaluated Astore (West Himalayas; snow-fed)

and Shigar (Karakoram; glacier-fed) based onmeteorological and

topographical indicators. Astore and Shigar have distinct

geographical locations due to some basic features, i.e., both

districts are influenced by the same climate (westerlies) but in

a different way. Astore is largely dependent on winter rainfall at

low elevation, while Shigar depends on westerly circulated solid

precipitation. Shigar is located in the rain shadow of the Western

Himalayan region; therefore, it receives a very small amount of

monsoon precipitation (Ali et al., 2009), while Astore is located

on a north-facing slope in lower latitude and mid-altitude.

Therefore, we conducted this study based on these contrasting

features.

Study area

The Upper Indus Basin is located between 72o 03′–77 o 44′E
and 34o 16′–37 o 06′N. It splits the Karakoram from the Greater

Himalayan region (Bishop et al., 2010). The Indus River starts

from the Tibetan Plateau and flows toward the northern region of

Pakistan and supplies inflow to the Tarbela Dam (Farhan et al.,
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2015; Farhan et al., 2020). For this study we have chosen two

districts, namely, Astore and Shigar that lie in the Western

Himalayas and Karakoram region, respectively.

Astore is located in the extreme Western Himalayan region

of Northern Pakistan (Figure 1A). Astore covers an area of

5,233 km2 with 4.8% area covered with glaciers from

Randolph Glacier Inventory version 6.0 (RGI, 2017). The

elevation of Astore ranges from the valley floor to the highest

peaks, i.e., Nanga Parbat (1,150–8,056 m) (Figure 1B). The mean

annual temperature of Astore ranges between −2.9 and 9.9, while

precipitation ranges between 500–870 mm from higher to lower

altitude met stations (Farhan et al., 2015). Almost 75% of the

precipitation falls in winter and spring seasons due to westerly

circulation, while 25% falls in summer and autumn seasons from

monsoon and local jet streams (Farhan et al., 2020). The Astore

River discharge is influenced by winter rainfall together with

solid precipitation forced by westerlies (Tahir et al., 2015).

Shigar is located in the Karakoram region of Northern

Pakistan (Figure 1C). Shigar covers an area of 8,913. The

elevation of Shigar ranges between 1,967 and 8,611 m from

valley to high mountains (Figure 1D). According to

FIGURE 1
(A) Location map of Astore, (B) elevation zones of Astore, (C) location map of Shigar, and (D) elevation zones of Shigar.

FIGURE 2
Mosaiced image with 10 scenes in Google Earth Engine (GEE)
with false color composite and less than 10% cloud cover over the
study area.
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Koppen–Geiger’s climate classification, Shigar falls under the

cold desert region, and Shigar receives a little amount of

precipitation. Large glacier mountains make a barrier for

monsoon storms and enforce a modest impact of the storm

on the region (Khan et al., 2014). A considerable amount of

winter precipitation and temperature increased; however, the

summer season revealed a cooling pattern for the Skardu region

(Fowler and Archer, 2005; Hakeem et al., 2014). The Shigar River

discharge is dependent on solid precipitation forced by westerlies

that melts in the summer season and generates high discharge

(ICIMOD, 2005; Fowler and Archer, 2006; Hakeem et al., 2014).

Materials and methods

In this section, we discussed the detailed methodology of the

research. The methodological framework of this study was

designed following the objective of the study. The study is

based on a cloud computing platform (Google Earth Engine)

because it provides easy access to global remote sensing datasets

in a matter of no time using JavaScript or Python APIs (Gorelick

et al., 2017). The Landsat images used in this study were

atmospherically corrected, orthorectified, top of atmospheric

reflectance (TOA) calibrated, and georeferenced scenes with

an accuracy of 0.4 pixels (Zanter, 2016), available in the

dataset catalog of GEE. We acquired the Landsat data using

the Google Earth Engine (GEE) platform with JavaScript. A total

of 5 paths/rows and around 10 scenes were required to cover the

study area (Figure 2). We filtered the Landsat Tier-1 data by

applying themultiple queries [e.g., date (”2021-01-01”, “2021-12-

31”), cloud cover (<10%), and region of interest (Astore, Shigar)]

using the GEE image collection catalog.

The images selected in this study do not have a cloud

above the region of interest (ROI). We selected the mean

annual images to evaluate the yearly SCA variations. Next, we

pulled the shapefile of Astore and Shigar which was used to

mask the satellite images. Eventually, using the JavaScript

code in GEE, we performed NDSI analysis on the masked

images from 1991 to 2021, to extract the snow cover area for

Astore and Shigar. To evaluate the spatiotemporal variation in

SCA, snow and non-snow pixels were segregated using NDSI;

usually, a threshold of 0.4 was used which is suitable for

classifying the snow and non-snow pixels even in mountain-

shadowed areas (Burns and Nolin, 2014). Then, we reclassified

the satellite image into the snow and non-snow pixels, and

eventually the year-wise SCA was calculated using snow pixels

as follows:

NDSI � Green0.53 − SWIR1.65

Green0.53 + SWIR1.65
.

We acquired the rainfall and temperature data from the

climate research unit (CRU) for the study area with a spatial

resolution of 0.5o for the period of 1991–2021. We correlated the

SCA with rainfall and temperature on an annual basis to evaluate

the impact of climate change on SCA.

We also utilized the Advanced Spaceborne Thermal

Emission and Reflection Radiometer (ASTER) GDEM (30 m)

to extract the topographic parameters, i.e., elevation in GEE.

NDSI classified images, and the topographical parameter was

exported for the region of interest (Astore and Shigar) for further

analysis in ArcGIS software. In ArcGIS software, we reclassified

the NDSI-classified images and calculated the area covered by

snow for the study.

Afterward, the elevation was compared with NDSI-

reclassified images of Astore and Shigar to calculate the area

covered by snow on each elevation zone. Eventually, we prepared

the tables, maps, and graphs. The detailed methodological

framework of this study is presented in Figure 3.

Landsat data

In this study, Landsat data were acquired from 1991 to 2021

(mean annual images) for the study area because Landsat data are

freely available (Patel et al., 2019). Landsat has the longest time

series data with a multi-spectral and spatial resolution to evaluate

the snow cover (Rastner et al., 2019). All Landsat satellites

complete the circle around the Earth in 16 days; however,

their characteristics vary (Table 1). In this study, we used

Landsat 5 TM, Landsat 7 ETM, and Landsat 8 OLI data.

ASTER data

To evaluate the SCA with topographic parameters, it is

necessary to use the digital elevation model (DEM) because

elevation, slope, and aspect can be calculated from DEM.

Therefore, we used ASTER GDEM v3 data to calculate the

elevation and slope for further evaluation of SCA in this

study. ASTER DEM has a 30-m spatial resolution. The

version 3 data of ASTER has 1.8 million stereo pairs with

improved horizontal and vertical accuracy in comparison with

the previous version (Meetei et al., 2022). The elevation of Astore

and Shigar was divided into four zones (Table 2) to calculate the

elevation-wise SCA using the zonal statistics tool in the model

builder of ArcGIS.

Climate research unit data (rainfall and
temperature)

In this study, we also used climatic data (rainfall and

temperature). Due to the scarcity of meteorological station

data in this region, therefore, alternatively, we used the CRU

v4.05 dataset which was released on 17th March 2021 (Harris

et al., 2021) because the CRU dataset achieved better accuracy in
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the HKH region and it can accurately acquire the data in this

region (Kanda et al., 2020). Another study also suggested that

CRU and ERA-I datasets perform better, and both datasets

precisely capture the spatial distribution of temperature and

precipitation in the Greater Himalayas, Northwest Himalayas,

and Karakoram region (Negi and Kanda, 2020). CRU data was

developed by the climate research unit of the University of East

Anglia at the NERC collaborative center using the angular

distance weighting method at 0.5o resolution. In this study, we

acquired the CRU data [(https://crudata.uea.ac.uk/cru/data/hrg/

FIGURE 3
Research methodology.

TABLE 1 Details of satellite images.

Satellite mission Sensor Band Resolution (m)

Landsat 5 TM (1984–2013) 7 30/60 Optical/thermal

Landsat 7 ETM (1999–2016) 9 30/60

Landsat 8 OLI TIRS (2013–Present) 11 30/100

TABLE 2 Statistical details of topographic parameters for Astore and Shigar.

Astore Shigar

Elevation zone Elevation (m) Area [km2

(%)]
Elevation zone Elevation (m) Area [km2

(%)]

1 <2,500 410 (7.83%) 1 <3,500 1,105 (12.39%)

2 2,501–3,600 1,465 (28%) 2 3,501–4,600 2,611 (29.29%)

3 3,601–4,500 2,257 (43.13%) 3 4,601–5,500 3,663 (41.1%)

4 >4,501 1,102 (21.06%) 4 >5,501 1,535 (17.23%)

Total 5,233 (100%) 8,913 (100%)
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cru_ts_4.05/ge/) (accessed on 15 May 2022)] between 1991 and

2021 (Harris et al., 2020; Harris et al., 2021). The climatic data

were used to estimate the influence of changing climate on SCA.

Results and discussion

Annual snow cover area

In this study, the SCA for Astore and Shigar was computed

through Landsat data between 1991 and 2021 in GEE. The

mean annual SCA was calculated for both regions as presented

in Figures 4A,B. It was observed that SCA varies greatly in

both regions due to high variability in precipitation and

temperature (Khan et al., 2014; Tahir et al., 2015). Astore

SCA varies between 36.7% (1998) and 92.7% (1991)

(Supplementary Figures S1,S2), while in Shigar it varies

between 47.4% (1997) and 89.18% (2019) (Supplementary

Figures S3,S4). A huge variation of SCA can be reflected

through the high discharge of Astore River and Shigar

River basins. Hakeem et al. (2014) revealed that Shigar

River basin runoff is mainly contributed by seasonal and

annual SCA. It was observed that Astore and Shigar have

an increasing trend of SCA with a rate of 11.16 km2/year and

4.27 km2/year, respectively. Tahir et al. (2015) and Tahir et al.

(2016) also revealed an increasing/stable trend of SCA in the

Western Himalayas and Central Karakoram region. River

basins in the UIB are highly dependent on SCA and

glaciers; therefore, this increasing trend of SCA can highly

contribute to the Astore River and Shigar River in the future.

The increasing trend of precipitation and decreasing trend of

temperature feed the mountainous region and reduce the

snow melt resulting in a stable/increasing trend of SCA.

The results of this study are similar to Gilgit River and

Hunza River basins.

It was also observed that the annual SCA was decreasing

during 1991–2005 (−38.04 km2/year) in Astore because the

temperature was increasing and precipitation was decreasing,

while, in the latter part of the study (2006–2021), the results

revealed that SCA was increasing (25.76 km2/year) because the

temperature was decreasing and precipitation was increasing. It

was observed in Shigar that in both periods annual SCA was

increasing because the precipitation has an increasing trend and

the temperature has a decreasing trend. A similar increasing

trend in precipitation and decreasing trend in temperature was

observed by Tahir et al. (2015) and Tahir et al. (2016).

FIGURE 4
Inter-annual SCA variability for (A) Astore and (B) Shigar.

FIGURE 5
Elevation-zone wise mean SCA (1991–2021) of (A) Astore, (B)
Shigar, (C) Astore elevation zones, (D) Shigar elevation zones.
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Topographic parameter and snow cover
area

Topographic parameters, i.e., elevation, slope, and aspect

play a significant role in snow cover changes (Li and Li, 2014;

Bhambri et al., 2017) because the process of accumulation and

melting can be controlled by topography and atmospheric

conditions. The air and surface temperatures are increasing at

higher altitudes which can significantly affect the SCA (Huang

et al., 2017). Many researchers studied elevation-dependent

warming and concluded that it will have a significant impact

on hydrological cycles due to the huge and early snow melt

process (Pepin et al., 2015; Thakuri et al., 2019). Therefore, in this

study, we correlated elevation and SCA. It was observed that

elevation zone 1 covers 7.83% of the total area of Astore, and

usually, in this zone, the precipitation falls in the form of rainfall;

hence, on average, this zone covers 0.9% of SCA. The

temperature of this zone varies from −8.07 C in January to

12.50 C in August. The snow accumulation period of this

zone is comparatively shorter; consequently, this zone

occupies only a small portion of SCA (Figure 5A); on

contrary, zone 4 of the elevation class covers 21.06% of the

total area which is mainly covered with glaciers above the

5,000 mean sea level (m.s.l) (Figure 5C). The areal extent of

permanent SCA is mostly situated at zone 4 because at higher

altitudes the precipitation falls in the form of snowfall and the

temperature of this zone varies from −10.70 C in January to

11.50 C in August. In this zone, the below-freezing temperature

remains until April, and the snow melt period becomes shorter.

Therefore, zone 4 has weaker snow cover variations (S = 0.03%/

year, tau’s = 0.97) (Figure 6A) (Tahir et al., 2015; Misra et al.,

2020). Zone 4 of the elevation class covered 27.4% of SCA

(Figure 5A). Zone 2 and zone 3 of the elevation class cover a

large portion in Astore; similarly, they cover 21% and 50.7% of

SCA, but we observed high year-to-year variation in these zones

because these zones receive a large amount of precipitation in the

form of snow during the accumulation season, but in the melt

season the precipitation falls in the form of rain and heavy

rainfall in the monsoon season (rain on snow), leading to rapid

melting of snow cover. Another reason for the decreasing trend

of SCA is that SCA is highly exposed to high temperatures

(S = −0.83 and -0.71%/year; tau’s = 0.86 and 0.77).

Particularly, in this study, we observed that zone 2 and zone

3 have an increasing trend of temperature and decreasing trend

of rainfall, which is the reason for decreasing trend of SCA

(Supplementary Table S4). Annual SCA at mid-altitude zones

decreases but insignificantly which is closely related to the

elevation-dependent temperature change as compared to

precipitation (Misra et al., 2020; Shen et al., 2021)

(Supplementary Table S4).

Many previous research studies suggested that snow

accumulation and snow melt were significantly based on the

topography, latitude, and weather conditions of the area (Woo

and Thorne, 2006; Jain et al., 2009; Kour et al., 2016). Therefore,

FIGURE 6
Mann–Kendall trend of annual SCA derived from Landsat data in four elevation zones of (A) Astore and (B) Shigar over a 31-year period
(1991–2021). Kendall tau, “tau’s”; Sen’s slope, “S.”
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the elevation of Shigar was correlated with SCA in this research to

examine its impact. The valley floor (zone 1) and high altitude

(zone 4) of Shigar cover an area of 12.39% and 17.23%,

respectively. At high altitudes, snow is the main form of

precipitation and represents a glaciated area, while the valley

floor receives precipitation in the form of rainfall. The

temperature of zone 1 remains below the freezing point for

5 months in Shigar, while at high-altitude zone 4 the freezing

temperature remains for 7 months, which represents the snow

accumulation and snow melting period and variations of SCA in

zone 1 and zone 4. At high altitudes, less temperature can be

examined with a high amount of precipitation which can turn it

into snow accumulation (Supplementary Table S4).

Subsequently, elevation with climate variables greatly affects

the snow cover distribution (Jain et al., 2009). The mid-

altitude zones cover 70% of the total area and occupy 75.2%

of SCA. This huge portion of SCA at mid-altitude is sensitive and

exposed to high temperature in the melt season resulting in high

discharge in the river and also presents high SCA variations

(Hasson et al., 2014a; Hakeem et al., 2014) (S = −0.09 and 0.03%/

year; tau’s 0.54 and 0.38) (Figure 6B).

Trends in annual SCA were computed for a period of

31 years in four elevation zones of Astore and Shigar (Table 2;

Figure 6). Low-altitude zones of both regions revealed a

decreasing trend, but the trend was insignificant, while, at

high-altitude zones of Astore and Shigar, the trend was

insignificantly positive (Figure 6; Supplementary Tables S4,S5).

The tau values at high elevation for Astore and Shigar were

0.97 and 0.17, while S-values were 0.03% and 0.01%/year,

respectively (Figures 6A,B). On contrary, the tau values for

mid-altitude zones of Astore were 0.86 and 0.77, while

S-values were −0.83% and −0.71%/year (Figure 6A;

Supplementary Table S4). Similarly, the tau values of Shigar at

mid-altitude were 0.54 and 0.38, while S-values were −0.09% and

0.03%/year. (Figure 6B; Supplementary Table S5).

Climate variables and snow cover area

For a better interpretation of the snow cover area, we

compared SCA with climate variables (temperature and

precipitation) for the period of 1991–2021. The rainfall and

temperature patterns were examined to see the response of

SCA to the changing climate. The mean annual temperature

and rainfall of Astore and Shigar were computed, and it was

revealed that the mean annual temperature of Astore and

Shigar was decreasing, while precipitation was increasing in

both regions (Figures 7, 8). A linear trend value for Astore

(Shigar) was 0.025 mm/year (0.028 mm/year) for

precipitation and −0.003 °C/year (−0.017 °C/year) for

temperature was found over the studied period

(1991–2021) (Figures 7, 8). The increasing and decreasing

trends of precipitation and temperature indicate the reason

for the stable/increasing trend of SCA because the increasing

trend of precipitation feeds the mountainous area and

influences the SCA.

In this study, we analyzed the seasonal trend of temperature

and precipitation to understand which climatic variable led to an

increasing or stable trend of SCA in Astore and Shigar. Long-

term (1991–2021) precipitation and temperature data were used

to compute the trend. The results revealed that winter

precipitation in Astore have an insignificant positive trend

(tau’s = 0.84; S = 0.04 mm/year); however, the summer season

has an insignificant negative trend of precipitation (tau’s = 0.61;

−0.097 mm/year) (Table 3). While it was noticed that the

summer season temperature has an insignificant decreasing

FIGURE 7
Annual SCA, rainfall, and temperature of Astore.

Frontiers in Environmental Science frontiersin.org08

Moazzam et al. 10.3389/fenvs.2022.1006399

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1006399


trend, the winter season temperature has an increasing trend.

The increasing and decreasing trends of precipitation and

temperature in both seasons can be a possible reason for the

stable/increasing trend of SCA in Astore because winter

precipitation is increasing which can bring more snowfall in

the region and summer season temperature is decreasing which

restricts snow melt (Archer and Fowler, 2004; Hewitt, 2007). The

increasing trend of precipitation in Asia was also reported by

Hartmann et al. (2013). Recently, Moazzam et al. (2022) also

revealed that precipitation will increase in the northern region of

Pakistan (Gilgit-Baltistan) under representative concentration

pathway (RCP) 4.5 and RCP 8.5 (Moazzam et al., 2022).

In contrast, it was observed that, in Shigar, precipitation is

increasing in winter (tau’s = 0.86; S = 0.034 mm/year) and

summer seasons (tau’s = 0.66; S = 0.019 mm/year), while

temperature is also increasing in both seasons (Table 4). The

increasing trend of SCA in Shigar may be influenced by the

increased winter precipitation due to the western disturbance

(Ahmad et al., 2019). A recent book published by ICIMOD also

reported an increasing trend in winter precipitation (Krishnan

FIGURE 8
Annual SCA, rainfall, and temperature of Shigar.

TABLE 3 MK trend analysis of climate variables of Astore for summer and winter seasons for the period of 1991–2021.

Trend Precipitation Temperature

Winter (DJF) Summer (JAS) Winter (DJF) Summer (JAS)

Linear regression y = 0.04x + 38.3 y = −0.02x + 40.4 y = 0.034x–11.9 y = −0.007x + 7.6

Tau’s 0.84 (p > 0.05) 0.61 (p > 0.05) 0.44 (p > 0.05) 0.79 (p > 0.05)

Sen’s Slope 0.04 mm/year −0.097 mm/year 0.009 (oC/year) −0.033 (oC/year)

TABLE 4 MK trend analysis of climate variables of Shigar for summer and winter seasons for the period of 1991–2021.

Trend Precipitation Temperature

Winter (DJF) Summer (JAS) Winter (DJF) Summer (JAS)

Linear regression y = 0.03x + 27.4 y = 0.07x + 9.5 y = 0.015x–12.7 y = 0.03x + 7.6

Tau’s 0.86 (p > 0.05) 0.66 (p > 0.05) 0.34 (p > 0.05) 0.81 (p > 0.05)

Sen’s Slope 0.034 mm/year 0.019 mm/year 0.013 (oC/year) 0.037 (oC/year)
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et al., 2019). The increasing probability of western disturbance-

induced rainfall and snowfall in the winter season will impact an

increase in SCA (Midhuna et al., 2020).

Discussion

In this study, we analyzed the snow cover changes of

Astore and Shigar using Landsat data in the Google Earth

Engine (GEE) platform for the period of 1991–2021. The

normalized difference snow index (NDSI) was used in this

study for the extraction of snow cover because in previous

studies (Burns and Nolin, 2014; Shafique et al., 2018; Tong

et al., 2020) NDSI revealed a better accuracy in shadowed and

mountainous regions. In this study, it was found that the snow

cover area is increasing in Astore and Shigar which is in line

with some previous studies (Tahir et al., 2015; Tahir et al.,

2016; Anjum et al., 2019; Shafiq et al., 2019). The increasing

trend of SCA nourishes the glaciers and makes a positive

contribution to the mass balance of glaciers in the Karakoram

region which was reported previously (Scherler et al., 2011;

Nüsser and Schmidt, 2021; Bhambri et al., 2022), not like

other mountainous regions around the globe because the

temperature is decreasing and precipitation is increasing in

this region. Similarly, IPCC Fifth Assessment Report

indicated an increase in SCA due to a positive trend of

precipitation (Hartmann et al., 2013) which is also

supported by another study that the frequency and

occurrence of westerlies-induced precipitation will increase

up to 2,100 (Ridley et al., 2013). Moazzam et al. (2022) also

revealed an increasing trend of precipitation until mid of this

century. The cooling phenomena of the summer season are

also a reason for the increasing trend of SCA (Fowler and

Archer, 2006). The increasing trend of SCA in the Astore

region is unexpected because previous studies reported a

decreasing trend of glacier mass balance in the Himalayan

region (Ali et al., 2015; Bajracharya et al., 2015; Hayat et al.,

2019). Astore is located in the extreme Western Himalayan

region and has a different climate from the Eastern Himalayan

region and receives westerlies-induced precipitation due to

the vicinity of the southern Karakoram region; hence, the

winter precipitation of Astore is somewhat similar to Shigar

precipitation (Tables 3, 4). Therefore, the climate variability

trend plays a significant role in the increasing or decreasing

trend of SCA in the Central Karakoram and Western

Himalayas region (Tahir et al., 2015). A seasonal analysis

was performed for the winter and summer seasons’

precipitation and temperature of Astore and Shigar

(Figure 7). The precipitation and temperature (winter) of

Astore have an increasing trend but not significantly, while

in the summer season both temperature and precipitation

have a decreasing trend. The results of this study support a

study conducted by Archer and Fowler, (2004) who explained

an insignificant decreasing trend in the summer season, while

in Shigar it was noted that precipitation and temperature in

winter and summer seasons have an insignificant increasing

trend. The increasing trend of winter temperature still persists

negatively in high-elevation zones (Tahir et al., 2016). Archer

and Fowler, (2004) stated an increasing trend of summer and

winter precipitation in the Upper Indus Basin. The increasing

trend of SCA in Astore is clearer than that in Shigar (Tables 3,

4) because summer temperature in Astore has a decreasing

trend [ tau’s = 0.79; S = −0.033 (oC/year)]. Fowler and Archer,

(2006) stated that the summer season’s temperature plays a

key role in SCA and glacier melt; another study also stated that

the pre-monsoon and monsoon temperature of the high

mountain area is decreasing (Hussain et al., 2005). The

elevation and SCA were also analyzed, and it was found

that zone 1 of both regions has a decreasing trend (Qureshi

et al., 2017; Ali et al., 2021), while zone 4 has a slightly

increasing trend of SCA because the high-altitude region is

less exposed to solar radiation as compared to foothills (Saydi

and Ding, 2020). The higher altitude regions have consistently

below-freezing temperatures throughout the year; therefore,

increasing precipitation can possibly feed the high-altitude

region, and hence SCA expands (Tahir et al., 2011; Hasson

et al., 2014b). Worldwide glaciers are decreasing due to an

ongoing climate change prognosis, whereas in some valleys of

Karakoram and Himalayan regions its increase is a good sign

which has been previously noted in a number of studies under

the title of the Karakoram anomaly (Hewitt, 2005; Farinotti

et al., 2020; Dimri, 2021). The glacier of the study region feeds

the flow in the Indus River, which is a resource and sometimes

becomes a hazard for 220 million people in low-lying areas.

The increase in glacial mass has also increased river flow in

Shigar and Astore rivers (Khalida et al., 2015) which is also a

positive sign for the low-lying agricultural land.

Conclusion

Spatial and temporal SCA changes have been calculated

using Landsat data with the GEE platform and analyzed with

climate variables (rainfall and temperature) and elevation for the

Astore and Shigar regions. The results of this study have been

evaluated, and it is concluded that SCA in both regions has an

increasing trend due to the increasing trend of precipitation and

decreasing trend of temperature in the studied period. The results

also indicated that the SCA was decreasing (−38.04 km2/year)

during 1991–2005 in the Astore region, while in the same period

Shigar had an increasing trend. In the latter part of the study

(2006–2021), the results revealed an increasing trend of SCA in

both regions. The annual SCA varies greatly due to the influence

of rainfall and temperature. The minimum annual SCA was

observed in the years 1998 (36.7%) and 1997 (47.4%) in Astore

and Shigar, while maximum SCA was observed in the years 1991
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(92.7%) and 2019 (89.18%) in Astore and Shigar, respectively. A

thorough investigation of SCA and elevation revealed that the

lowest and highest altitudes have insignificant decreasing and

increasing trends of SCA in both regions. SCA and climate

variables indicated that precipitation is increasing and

temperature is decreasing with time which is a possible reason

for the increasing trend of SCA in both regions. The increasing

SCA is a positive sign of water resources for the future and

agricultural activities in the study region as well as the region

relying on water resources from Astore and Shigar rivers. The

increasing precipitation, especially decreasing temperature in the

study region is in contrast to the current global climate warming,

and this needs to be further investigated at the microlevel. This

study can help improve the knowledge and understanding of

water resource management.
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