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A clear understanding of the spatiotemporal evolution and driving factors of

ecosystem service value (ESV) and the landscape ecological risk index (ERI) can

effectively link human well-being and ecosystem security, which is essential for

sustainable ecosystem management. Based on multitemporal land use data

(1990, 2000, 2010, and 2018), the spatiotemporal evolution of ESV and the ERI

in the Ulan BuhDesert was evaluated. The driving forces of ESV and the ERI were

quantitatively evaluated by the Geodetector model. The results show that 1)

from 1990 to 2018, total ESV in the Ulan Buh Desert increased from 7.00×108

yuan to 11.09×108 yuan. Low-ESV areas accounted for approximately 72.28% of

the study area. High-ESV andmoderate-high-ESV areas weremainly distributed

along the Yellow River and the northeastern region. 2) During the study period,

the ecological risk of the Ulan Buh Desert generally decreased; only the

ecological risk of the northeastern region improved significantly, and high-

risk areas weremainly distributed across sand dunes located in themiddle of the

desert. 3) There was a negative correlation between ESV and the ERI in the study

area, and the main relationship was low value-high risk. 4) Driving force analysis

results show that natural and human impact factors jointly affected the

spatiotemporal differentiation of ESV and the ERI in the Ulan Buh Desert.

Among the influencing factors, the interaction between the distance to a

highway and annual precipitation had the strongest impact. The

implementation of relevant policies in the study area should be guided by

ESV and the ERI, and the protection and restoration of various ecosystems in the

study area must be strengthened.
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1 Introduction

Ecosystem services represent the benefits that human

populations derive from ecosystems (Costanza et al., 1997;

Daily, 1997; Millennium Ecosystem Assessment, 2005). While

providing services, ecosystems also face various ecological risks

themselves (Xie et al., 2015; Cao et al., 2019). Ecological risk

refers to the likelihood of adverse effects of disturbances on

ecosystems (Mann et al., 2021). However, with the development

of the social economy, landscape patterns and ecological

processes have changed profoundly, which has impacted

ecosystem services and ecological risks to different degrees,

seriously threatening human well-being (Li et al., 2016).

Ecosystem service value (ESV) and the ecological risk index

(ERI) quantify the capacity of an ecosystem to provide

services and the extent to which a region is exposed to

ecological risks, respectively. Therefore, comprehensive

consideration of ESV and the ERI provides a basis for the

prevention of regional ecological risk and the improvement of

ecosystem functions and plays an important role in the

construction of regional ecological security patterns (Zhu and

Chen., 2022).

In recent years, there has been increasing interest in introducing

ESV and the ERI into environmental policies and governance (Gong

et al., 2021). Scholars have conducted a series of scientific studies on

the quantitative assessment, spatiotemporal evolution and

influencing factors of ESV and ecological risk. At present,

research on ESV has mainly concentrated on river basins

(Woldeyohannes et al., 2020; Pan et al., 2021), cities (Wang

et al., 2019; Hou et al., 2020; Rahman and Szabo, 2021), natural

reserves (Sannigrahi et al., 2019; Yan et al., 2022) and so on. The

main research methods used include the equivalent factor method

(Xie et al., 2003; Jia et al., 2021; Liu et al., 2021) and material

conversion method (Goldstein et al., 2012; Fadaei et al., 2020; Wang

J et al., 2020). The obtained results contribute to the construction of

regional ecological civilizations. Studies on landscape ecological risk

have mostly focused on cities (Wang D et al., 2021; Al-Hameedi

et al., 2022), river basins (Tian et al., 2019; Zhang et al., 2021),

mining areas (Wu et al., 2021; Xu et al., 2021) and so on. The

spatiotemporal distribution of regional ecological risk is explored by

constructing a relative ecological risk assessment model (Bartolo

et al., 2012; Heenkenda and Bartolo, 2016) to provide a basis for

landscape ecological risk management. However, the

abovementioned studies fail to consider the link between ESV

and ecological risk. Most studies on ESV consider the benefits

brought only by ecosystems while neglecting the potential risks

faced by ecosystems under the disturbances of human activities. In

contrast, special assessments of ecological risk have considered only

the loss degree of an ecosystem when it is disturbed and have

neglected the benefits ecosystems provide for human beings. At the

same time, there is currently a lack of comprehensive consideration

of ESV and the ERI together (Jr et al., 2009; Forbes and Calow, 2013;

Xu et al., 2016; Wang, 2021; Karimian et al., 2022), especially for

desert ecosystems. Due to the natural conditions of drought and a

lack of rain, desert ecosystems are extremely fragile and face

ecological risks such as sandstorms and landslides. The

comprehensive evaluation of the ESV and ERI of desert

ecosystems and the exploration of their driving forces can

provide a theoretical basis for the protection and restoration of

desert ecosystems.

The Ulan Buh Desert is among the eight largest deserts in

China. It is located in the core area of the northern wind-sand

belt of the national ecological restoration security pattern (Jin,

2022). The ecological security of this desert is related to people’s

well-being, to the socioeconomic development of the Yellow

River Basin and even to that of the Beijing-Tianjin region.

This paper aims to solve the following scientific problems

through analysis and research: 1) to evaluate the spatial and

temporal evolution of ESV and ERI values in the Ulan BuhDesert

and 2) analyze the driving factors affecting the spatiotemporal

distribution of ESV and ERI values. This study provides a

scientific basis for formulating scientific risk prevention and

ecological remediation countermeasures for the Ulan BuhDesert.

2 Study area and methods

2.1 Study area

The Ulan Buh Desert (39° 17′-40° 46′N, 105° 24′-107° 01′E)
straddles the Alxa League and the Bayan Nur of Inner Mongolia,

covering a total area of 1.3×108 hm2. It is bounded by Langshan

Mountain in the northwest, the Hetao Plain in the northeast, the

Yellow River in the east and Helan Mountain in the south (Wang

X et al., 2020). The region has a temperate arid climate with an

annual precipitation level of 151 mm, an annual average

temperature of 7.8°C and a large difference in temperature

between the daytime and nighttime (Cao et al., 2022). The

plant community is dominated by xerophytes. The

topography of the study area is low in the middle and high in

the surrounding regions. Soil types mainly include gray desert

soil, cumulated irrigated soil, aeolian sand soil, solonchak and

light brown calcic soil (Ji and Guo., 1995). The main land use

types are sand dunes (Figure 1).

2.2 Data sources and preprocessing

Land use data collected from July to September in 1990, 2000,

2010 and 2018 were taken from Landsat five Thermal Mapper

(TM) and Landsat eight Operational Land Imager (OLI) images

of the United States Geological Survey (USGS; https://www.usgs.

gov/). With the support of ENVI 5.3, radiometric calibration,

atmospheric correction and mosaic processing were carried out

successively. Land use maps of the study area from 1990 to

2018 were obtained using the object-oriented classification
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method and visual interpretation. The overall classification

accuracy level was 85.13% (Song et al., 2021). According to

the interpretation results, land use types were divided into

grasslands, cultivated land, water bodies, building land, forests,

mobile dunes, fixed dunes, semifixed dunes, saline-alkali land

and other land. Mobile, fixed and semifixed dunes were merged

into dunes during the ESV calculation process. Socioeconomic

data were selected from the 1990–2018 statistical yearbooks of

Inner Mongolia and the China grain yearbook (Inner Mongolia

Bureau of Statistics, 2022).

Annual precipitation, digital elevation model (DEM), soil

type and distance to highway data were provided by the Data

Center for Resources and Environmental Sciences, Chinese

Academy of Sciences (https://www.resdc.cn/) with spatial

resolutions of 1 km, 30 m, 1 km and 1 km, respectively. The

median normalized difference vegetation index (NDVI) with

masked clouds and cloud shadows based on the red and near

infrared bands of the surface reflectance collections for Landsat

five and 8 (USGS Landsat Surface Reflectance Tier 1) for July to

September in 1990, 2000, 2010 and 2018 were derived from the

Google Earth Engine (GEE; https://code.earthengine.google.

com/), a cloud-based computing platform. Slope and aspect

data were calculated from DEM data with a spatial resolution

of 30 m.

FIGURE 1
Location of the study area (land use type data are from 2018).
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2.3 Calculation of ESV and ecological risk

The study area was divided into 1716 3-km × 3-km square

grids with the support of ArcMap 10.2. First, ESV and the ERI

were calculated based on the grid units and assigned to the

central points of each grid cell. Then, ordinary kriging

interpolation was performed based on the central points to

obtain the spatial distributions of ESV and the ERI in the

study area.

2.3.1 Evaluation of ESV
Based on the value equivalent factor method proposed by Xie

(Xie et al., 2015) and the actual willingness to pay of Inner

Mongolia, the equivalent factor of the ESV of the Ulan Buh

Desert was found to be 253.31 yuan·hm−2 (Song et al., 2021) after

adjusting the coefficient and removing the effect of inflation. The

ESV per unit area of the Ulan Buh Desert is shown in

Supplementary Table S1.

Based on the geometric interval classification method of

ArcGIS, the ecosystem value of the study area was divided

into five grades: low (0, .0026], moderate-low (.0026, .0055],

moderate (.0055, .0085], moderate-high (.0085, .0180] and high

(.0180, ∞) (× 108 yuan).

2.3.2 Calculation of the ERI
Based on the research of Zeng (Zeng and Liu., 1999), the ERI

model was constructed by using the landscape disturbance index

and landscape fragility index:

ERIk � ∑n
i�1

Aik

Ak
× Ri

Ri � Ei × Fi

Ei � aCi + bDi + cNi

where ERIk is the ERI value in the kth area of the study area,

Aik is the area of the ith landscape type in the kth area, and Ak is

the area of the kth area. N is the total number of grid units in

the study area, Rk is the landscape loss index in the kth area, Ek

is the landscape disturbance index in the kth area, and Fk is the

landscape fragility index. Ci, Di and Ni represent the

landscape fragmentation index, landscape isolation index

and fractal dimension index of the kth area, respectively,

while a, b and c are the weights of the above indices, which

are set to .5, .3 and .2, respectively, in this work according to

previous research (Li et al., 2020; Zhang et al., 2020; Ran et al.,

2022). The landscape fragility index, which indicates the

degree to which different landscape types are affected by

external disturbance, is set as follows (Zhang et al., 2018):

other land types are set to 8, dunes are set to 7, saline-alkali

land are set to 6, water bodies are set to 5, cultivated land are

set to 4, grasslands are set to 3, forests are set to 2, and building

land is set to 1; after normalization, these landscape fragility

index values are found to be .222, .194, .167, .139, .111, .083,

.056, and .028, respectively. The calculation formulas of these

indices are provided in Table 1.

Based on the geometric interval classification method of

ArcGIS and the actual conditions of the Ulan Buh Desert,

the ERI values of the study area were divided into five

grades: low (0, .0650), moderate-low (.0650, .0710),

moderate (.0710, .0760), moderate-high (.0760, .0840)

and high (.0840, ∞).

2.4 Bivariate spatial autocorrelation model

In this paper, a bivariate local autocorrelation model is used

to reflect the degree of correlation between local ESV and the ERI

by using Moran’s I index. The formula for calculating Moran’s I

index is as follows (Qiao et al., 2020; Jin et al., 2021; Li C et al.,

2022):

Isr �
n∑n

i�1∑n
j�1Wij

yi,s−�ys
σs

( ) yi,r−�yr
σr

( )
n − 1( )∑n

i�1∑n
j�1Wij

where Isr is the bivariate local autocorrelation coefficient of ESV s

and ERI r; n is the total number of grid units in the study area; yi,s
and yi,r are the ESV and ERI in the ith area, respectively; both σs
and σr are variances; and Wij is the weight matrix.

2.5 Geodetector

Geodetector is a set of statistical methods that test the spatial

heterogeneity of variables and reveal the driving force behind

variations (Wang and Xu., 2017).

The factor detector uses the q value to express the

explanation degree of an independent variable to the spatial

heterogeneity of the dependent variable. The formula is as

follows:

q � 1 − ∑L
h�1Nhσ2h
Nσ2

� 1 − SSW

SST

SSW � ∑L
h�1

Nhσ
2
h, SST � Nσ2

where h is the number of layers of variables x or y, Nh and N

indicate the number of samples in the hth layer and the whole

area, respectively, and σ2h and σ2 indicate the variance of variable

y in the hth layer and the whole area. SSW and SST represent the

sum of variance in the hth layer and whole area, respectively. The

range of the q value is [0,1], and the higher the q value is, the

stronger the explanation degree of independent variable x to

dependent variable y is.

The interaction detector is applied to analyze interactions

between the independent variables X1 and X2. The detection is

performed as follows: first, the q values of independent

variables X1 and X2 are calculated; then, the interaction
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between X1 and X2 is calculated as q (X1∩X2), and q (X1), q

(X2) and q (X1∩X2) are compared to analyze their interactive

behaviors (Table 2).

In this study, human influence factors, such as the distance to

a highway, and natural factors, such as the NDVI, precipitation,

slope, aspect and soil type, are selected as independent variables,

while ESV and the ERI are selected as dependent variables.

According to the data distribution characteristics,

precipitation, slope, aspect and soil type data were classified

into 6, 6, 6 and 7 categories, respectively, using the natural breaks

method, and the NDVI and distance to a highway data were

divided into 6 and 9 categories, respectively, using the geometric

interval classification method. Based on the 3 km × 3 km grid, the

variables were extracted to represent the center of each grid cell

and were input into the Geodetector for the driving force analyses

of ESV and the ERI.

3 Results

3.1 Land use dynamics

From 1990 to 2018, dunes were the main land use type in the

Ulan Buh Desert, accounting for more than 70% of the area

(Figure 2). The area of mobile dunes decreased significantly over

this period, while the areas of fixed dunes, semifixed dunes and

cultivated land increased gradually during the study period. The

shifting areas of mobile dunes to semifixed dunes were

11.70×104 hm2, 13.99×104 hm2 and 19.63 ×104 hm2 from

1990–2000, 2000–2010 and 2010–2018, respectively. The

shifting areas of grasslands to cultivated land were

1.57×104 hm2 and .63×104 hm2 from 1990–2000 and

2000–2010, respectively. The change rates of building land,

water bodies and forest areas were small during the study

period. In general, the main form of land use type transfer in

the study area was flow between dune types.

3.2 Spatiotemporal dynamic analysis
of ESV

The total ESV in the Ulan Buh Desert showed a

fluctuating and increasing trend from 7.00 × 108 yuan in

1990 to 6.17 × 108 yuan in 2000 and then continued to

increase to 11.09 × 108 yuan by 2018, exhibiting a change rate

of 58.41%, indicating that the ESV of the study area

improved from 1990–2018 (Table 3). According to the

results obtained for the four periods, the ESVs provided

TABLE 1 Calculation formulas of each subindex in the landscape disturbance matrix.

Name Computing
method

Parameter meaning Ecological meaning

Landscape
fragmentation index Ci

Ci � ni/Ai Where ni is the number of patches of the ith landscape type
and Ai is the total area of the ith landscape type.

Reflects the degree of landscape fragmentation; the higher
the value is, the greater the degree of human disturbance
to the landscape is and the lower the internal stability of

the landscape is Wang H et al. (2021).

Landscape isolation
index Di

Di � A
2Ai

��
ni
A

√
Where A is the total area of landscape, Ai is the total area of
the ith landscape type and ni is the number of patches of the

ith landscape type.

Reflects the separation degree of patch spatial distribution
in landscape types; the higher the value is, the more

complex the landscape distribution is and the lower the
internal stability of the landscape is.

Landscape fractal
dimension index Ni

2 ln(TEi /4)
lnAi

Where TEi is the perimeter of the ith landscape type and Ai

is the total area of the ith landscape.
Reflects the complexity and stability of the landscape

shape. The values usually range from [1, 2]. The higher
the value is, the more complex the landscape distribution
is and the higher the internal stability of the landscape is

Peng et al. (2010).

TABLE 2 Interaction detection types.

Criterion Interaction type

q (X1 ∩ X2) < min [q (X1), q (X2)] Non-linear weakening

min [q (X1), q (X2)]<q (X1 ∩ X2)<max [q (X1),q (X2)] Single-factor non-linear weakening

q (X1 ∩ X2)>max [q (X1), q (X2)] Two-factor enhancement

q (X1 ∩ X2) = q (X1) + q (X2) Independence from each other

q (X1 ∩ X2) > q (X1) + q (X2) Non-linear enhancement
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by different land use types could be ranked as follows:

dunes > water bodies > cultivated land > other land >
grasslands > forests > saline-alkali land > building land.

Among them, the ESV of dunes first decreased and then

increased with a change rate of -2.88% before further

decreasing with a change rate of -4.46% between 2010 and

2018, while the values of water bodies and grassland first

decreased and then increased. The change rate of water

FIGURE 2
Land use dynamics of the Ulan Buh Desert in 1990–2018.

TABLE 3 ESVs of different land-use types in the Ulan Buh Desert from 1990–2018.

Land use type ESV (×106 yuan) Δ ESV (×106 yuan)/change ratio (%)

1990 2000 2010 2018 1990–2000 2000–2010 2010–2018

Cultivated land 35.20 67.86 81.81 107.57 32.66/92.78 13.95/20.56 25.76/31.49

Water body 257.60 163.60 230.12 625.26 -94.00/-36.49 66.52/40.66 395.14/171.71

Building land .11 .20 .24 .43 .09/81.82 .04/20 .19/79.17

Grassland 39.40 19.38 19.74 24.66 -20.02/-50.81 .36/1.86 4.92/24.92

Forest 1.40 6.19 7.39 8.73 4.79/342.14 1.20/19.39 1.34/18.13

Other land 64.30 66.95 63.03 61.51 2.65/4.12 -3.92/-5.86 -1.52/-2.41

Saline-alkali land 2.00 2.38 2.10 2.43 .38/19.00 -.28/-11.76 .33/15.71

Dune 300.09 290.76 291.44 278.44 -9.33/-3.11 .68/0.23 -13.00/-4.46

Total 700.10 617.32 695.87 1109.03 -82.78/-11.82 78.55/12.72 413.16/59.37
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bodies was 142.73% from 1990 to 2018. In addition, the ESVs

of cultivated land, forests and building land increased

gradually.

In terms of its spatial distribution, the ESV of the Ulan Buh

Desert was high in the northeast and low in the southwest

(Figure 3). The study area mainly consisted of moderate-low-

value areas and low-value areas. Portions of the moderate-high

and high-value areas were intensively distributed in clusters in

the northeastern part of the study area, while the other portions

were located along the Yellow River in the eastern region. The

area of moderate-high and high-value areas first decreased and

then increased from 1990–2018. The areas of cultivated land and

water bodies were relatively large, so the ESVs they provided were

high. Low-value and moderate-low-value areas were mainly

distributed in dune regions in the middle of the study area.

The moderate-value area was distributed in the shape of a circle

around the moderate-high-value area, and this area decreased

gradually, potentially because the transfer of grasslands to

cultivated land led to a continuous change from the

moderate-value area to the moderate-high-value area.

3.3 Spatiotemporal dynamic analysis of
the ERI

In general, the ERI of the study area was low in the northeast

and high in the southwest (Figure 4). The study area was

dominated by a moderate-high-risk area, which was mainly

FIGURE 3
Spatial distribution of ESV in the Ulan Buh Desert in 1990–2018.
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distributed in the dune area. However, the area of moderate-high

risk decreased from 99.83 × 104 hm2 to 90.88 × 104 hm2 from

1990 to 2018. The ecological risk status of the northeast plain

region gradually improved, and moderate-risk and moderate-

high-risk areas gradually changed to low-risk and moderate-low-

risk areas.

3.4 Spatial correlations of ESV and the ERI

Based on the bivariate local spatial autocorrelation

method of GeoDa software, the correlation between the

ESV and ERI of the Ulan Buh Desert was analyzed. The

results show that the Moran’s I index values for

1990–2018 ranged from -.103, -.209, and -.217 to -.136,

indicating that there was a certain negative correlation

between ESV and the ERI in the Ulan Buh Desert. As

shown in Figure 5, the areas where ESV and the ERI were

significantly correlated were mainly distributed in other land

areas in the western Ulan Buh Desert and along the

northeastern border with the Hetao Plain. The areas were

divided into five patterns with regard to correlation behavior:

high value-high risk, low value-low risk, low value-high risk,

high value-low risk and non-significant correlation (Figure 5).

FIGURE 4
Spatial distribution of the ERI in the Ulan Buh Desert in 1990–2018.
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Low value-high risk areas refer to areas with low ESVs per

unit area but high ERIs; these areas were mainly distributed in the

town of Jilantai and the eastern area of the town of Aolunbulage

and accounted for 19.64%, 20.22%, 19.99%, and 19.35% of the

overall area in 1990, 2000, 2010 and 2018, respectively. High

value-low risk areas refer to areas with high ESVs per unit area

but low ERIs; these regions were mainly distributed in the

northeastern part of the study area. Their areal proportion

showed a fluctuating growth trend, increasing from 8.10% in

1990 to 9.97% in 2018. High value-high risk areas refer to areas

with high ESVs and ERIs. These regions were distributed along

the Yellow River in the eastern part of the study area, accounting

for approximately .52% of the study area in 1990. There was no

clustered distribution of high value-high risk areas from

2000–2018. Low value-low risk areas refer to areas with low

ESVs and ERIs. These regions were scattered in the northeastern

part of the study area but concentrated in the building land area.

The non-significant correlation area accounted for 64.39–67.54%

FIGURE 5
Spatial correlation distributions of ESV and ERI in the Ulan Buh Desert in 1990–2018.
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of the total study area and was dominated by various types of

sand dunes that were continuously distributed over a large area.

3.5 Analysis of driving forces of ESV and
the ERI

A factor detector can detect the explanatory degree of

different driving factors to dependent variables, and the

higher the q value is, the greater the explanatory degree is.

Figures 6A, B show the contributions of different factors to

the spatial differentiation of ESV and the ERI. In terms of the

q mean, the explanatory power of each ESV driver could be

ranked in descending order as follows: the NDVI (.233) >
distance to a highway (.200) > soil type (.197) > precipitation

(.082) > slope (.014) > aspect (.005). The NDVI, distance to a

highway and soil type were the main driving factors of ESV

spatial differentiation, while precipitation, slope and aspect were

secondary factors. The explanatory powers of the ERI drivers, in

descending order, were as follows: the NDVI (.347) > distance to

a highway (.292) > soil type (.283) > precipitation (.075). The

NDVI, distance to a highway and soil type were the main driving

factors of the spatial distribution of ERI, while precipitation,

slope and aspect were secondary factors. On the whole, the

influence of natural factors on the spatial differentiation of

ESV and the ERI was greater than that of human impact factors.

The interaction results of various ESV-influencing factors

show that the interaction between any two factors was stronger

than that of any single factor, indicating that ESV in the study

area was affected by the interactions among multiple factors

(Figure 7A). The interaction between the distance to a highway

and precipitation was the strongest (41.6%). The interactions

between the distance to a highway and other factors were

significantly stronger than the interactions among other

factors, further proving the important effect of the distance to

a highway on the spatial differentiation of ESV. This result also

shows that natural and human impact factors affected spatial

patterns of ESV in the study area. Among the ERI-influencing

factors, the interaction of any two factors had a greater influence

on ERI than any single factor itself (Figure 7B). Among them, the

interactive interpretation of the distance to a highway and

precipitation was the strongest, reaching 60.9%. The

interaction of any two factors significantly enhanced the

influence of each factor on the ERI, indicating that the spatial

differentiation of the ERI in the study area was jointly affected by

multiple factors.

4 Discussion

4.1 Influencing factors and strategies
based on spatial correlation

ESV showed a trend of first decreasing and then increasing,

while the ERI decreased year by year from 1990 to 2018. The

driving force results show that the distance to a highway and

NDVI are the main factors affecting the spatiotemporal

differentiation of ESV and the ERI in the study area, while

the interaction of distance to a highway and annual

precipitation has the strongest effect on these variables in the

study area (Yu et al., 2020; Sun, et al., 2021). ESV showed a trend

of first decreasing and then increasing from 1990–2018.

Coincidentally, the annual change in precipitation in the Ulan

Buh Desert is similar to that of ESV, which also indirectly

indicates the strong influence of precipitation on ESV

(Sánchez-Canales et al., 2012). ESV in the study area reached

its peak in 2018. This may be attributed to the increase in

precipitation, which provided sufficient water for the growth

of vegetation and crops (Long et al., 2022). At the same time, the

construction of new roads also enabled the transmission of

FIGURE 6
Factor detection of the spatial differentiation of ESV (A) and ERI (B). Note: DTH, distance to highway; AP, annual precipitation; ST, soil type.
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human and material resources, which was also conducive to the

growth of vegetation (Klarenberg et al., 2018; Carvalho and

Szlafsztein, 2019). This will further lead to the improvement

of ecological functions such as food production and raw material

supply. The ERI decreased year by year from 1990 to 2018. As the

main factor affecting the distribution of the ERI, the NDVI

showed an increasing trend during the study period. The

increase in vegetation coverage plays an important role in

suppressing sand dust storms and soil wind erosion (Yu,

2018), reducing ecological risks faced in the study area. After

2010, the construction of highways increased ecological risk in

the study area to a certain extent. However, in general, the

increase in precipitation and NDVI has offset the negative

impact of highway construction on ecological risk, so

ecological risk in the study area is decreasing year by year.

Spatially, previous studies (Wang, 2019) and this study found

that higher ESV was mainly distributed across the northeast plain

andYellowRiver shorewith lower risk levels. The areas of lower ESV

weremainly concentrated in dunes inmiddle and other land areas in

the west with higher risk. Forests, grassland and cultivated land are

widely distributed in the northeast plain and along the Yellow River

with relatively high vegetation coverage. The types of ecosystem

services provided are complex and diverse, and ecosystem functions

are relatively stable. Meanwhile, the transportation of human and

material resources is very convenient due to the short distance to a

highway, which is conducive to expanding the planting range of

crops and the degree of water use. This will lead to the improvement

of food production, raw material supply and other functions. The

high vegetation coverage in the northeast plain helps suppress sand

dust storms, thus reducing the possibility of ecological risks. Various

sand dunes are widely distributed in the middle of the study area

with relatively low vegetation coverage. The ESV provided is low due

to the presence of relatively simple ecosystem functions. At the same

time, the bare surface is also vulnerable to natural disasters such as

sandstorms and landslides. The interaction of distance to a highway

and precipitation had the strongest effect on the ERI, meaning that

the closer an area is to a highway, the higher the degree of ecological

risk faced by the arid region is. The northwestern part of the town of

Jilantai and the townAolunbulage are located close to a highway and

experience relatively little annual precipitation, so they face high

levels of ecological risk (Li L et al., 2022). In addition, the

distributions of ESV and the ERI were related to annual

precipitation. However, the overall difference in precipitation in

this study area was not significant, so it had a limited influence.

In general, the total ESV in the Ulan Buh Desert increased

from 1990 to 2018 but still presented high landscape ecological

risk. To prevent the spread and transfer of high-ecological-risk

areas, corresponding governance measures should be taken based

on the zoning results of the spatial correlation between ESV and

the ERI: the study area was dominated by low value-high risk

areas, accounting for approximately 19.8% of the entire study

area. Landscape types in these regions mainly include the Gobi

Desert, mountainous regions and other land types. While the

ESVs were low in these regions, they faced high levels of

ecological risk. The protection and restoration of such land

use types should be strengthened, and attention should be

given to reducing damage to the ecological environments in

these areas. Landscape types in the high value-low risk areas

mainly included grasslands and cultivated land, and the

ecosystem services provided by these land types were

relatively significant. It is necessary to strengthen the

protection and restoration of cultivated land ecosystems in

this area and at the same time reduce human disturbances to

the grassland ecosystems. Resources should be rationally used to

maintain normal ecosystem functions; in addition, the Yellow

River shore was identified as the main center of high value-high

risk areas. While serving as the main supply area for ecosystem

services in the study area, it also faced risks of drying up and

FIGURE 7
Factor interaction detection for the spatial differentiation of ESV (A) and ERI (B). Note: DTH, distance to highway; AP, annual precipitation; ST,
soil type.
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being converted by other land types. Therefore, supplemental

ecological water projects should be reasonably carried out to

improve the utilization efficiency of water resources, optimize the

use of Yellow River water resources and alleviate the discrepancy

between the supply and demand of local water resources. Low

value-low risk areas were scattered in the northeastern plain

region, and landscape types in these areas mainly included dunes

and cultivated land. All kinds of dunes present are very likely to

expand to surrounding areas, resulting in enlarged land

desertification areas. The “Three North Shelter Forest” project

should be continued to prevent the transfer and expansion of

these dunes. Meanwhile, ecological agriculture and deserticulture

should be carried out in a concentrated manner to increase

vegetation coverage and achieve the effects of windbreaks and

sand fixation, thereby reducing ecological risk and improving

ecosystem functions.

4.2 Limitations and further research

The purpose of this study was to explore the spatiotemporal

variation characteristics of ESV and the ERI, along with their driving

mechanisms, in the Ulan Buh Desert to provide a theoretical basis

for the scientific management and optimization of land use patterns.

However, this work has some limitations. First, the basic data used

are insufficient. Only four-phase remote sensing image data for

1990, 2000, 2010 and 2018 are used, and these data cannot

accurately express specific spatiotemporal changes in ESV and

the ERI from 1990–2018. Second, there is an obvious scale effect

in the spatiotemporal distribution characteristics of the ESV and

landscape ERI results (Yang et al., 2021). This paper analyzes driving

factors only for the entire study area and cannot fully explain

differences or influencing factors in local areas. Therefore, further

identifications should be made in the future, priority areas for

ecological security should be further identified in the future, and

the influencing factors of these priority areas should be explored in a

more targeted way to provide more detailed scientific guidance for

local ecological security governance.

5 Conclusion

Based on four-phase land use data of the Ulan Buh Desert for

1990 to 2018 and with the technical support of ArcGIS 10.2 and

Geodetector, in this paper, we evaluated spatiotemporal

differences in ESV and the ERI for the Ulan Buh Desert. The

driving mechanism behinds these variations were revealed using

the Geodetector model, and the following results were obtained:

1) The ESV of the Ulan Buh Desert showed a fluctuating growth

trend, ranging from 7.00 × 108 yuan in 1990 to 6.17 ×

108 yuan in 2000 and then increasing to 11.09 × 108 yuan

in 2018; the change rate was approximately 58.41%. The study

area was dominated by high-risk areas, which were mainly

distributed in dune regions. The high-risk area decreased year

by year from 1990–2018.

2) There was a certain negative correlation between the ESV and

ERI of the Ulan Buh Desert from 1990–2018.

3) The Geodetector results show that the interaction between the

distance to a highway and precipitation was the main factor

affecting the spatiotemporal differentiation of ESV and the

ERI in the Ulan Buh Desert.
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