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Rainfall events have become more frequent and more serious, leading to

rampant floods. Floods in urban areas greatly impair the serviceability of the

transport system and cause disruption to commuting. However, little is known

about the commute response under various rainfall scenarios in developing

country cities despite the uncertainty of climate change. A high-resolution

flood modeling module and a commute simulation module were integrated to

examine the impact on commuting under floods. Flood maps under three

rainfall scenarios with increasing rainfall intensity and duration were obtained,

and road vulnerability was assessed considering the speed drop. We

innovatively employed location-based service big data to perform commute

simulation under floods based on the shortest time cost principle. The results

show that a large amount of passable but affected commuters become

disconnected commuters as the rainfall intensity increases. Also, commute

loss of each traffic zone would not increase linearly, which means that the

emphasis and strategy of disaster prevention andmitigation are not the same in

different rainfall scenarios. We integrated hot spots of flood exposure, road

vulnerability, and commuting loss and found that there was inconsistent spatial

distribution between the three indicators. This indicates that areas need to take

different measures according to the local damage characteristics. This work

studied the relationship between severe weather conditions and commuting

activity performance at the city level and has important practical guiding

significance for building resilient cities.
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1 Introduction

Under the backdrop of climate change and its uncertainty, studies predict that future

rainfall intensity and frequency would continue to increase (Kendon et al., 2012; Birch,

2014). With dense population and economic activities, cities have high land-use density

and high proportion of impervious cover area. Moreover, due to the promotion of
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intensive and economical land use, increasing underground

space mining and other construction activities have further

greatly changed the urban built environment (Zhang et al.,

2019). These changes, coupled with inadequate response by

drainage facilities, eventually led to floods. Due to the high-

intensity utilization of urban space, road and drainage systems

have become two highly overlapped systems related to surface

floods. When the drainage system is insufficient or poorly

managed to accommodate the runoff caused by high-intensity

rainwater, the road system would be the first to be directly

affected (Singh et al., 2018; Yang et al., 2019). Flood damage

to road systems will hinder urban traffic and greatly weaken the

service capacity of urban transport systems (Fu et al., 2014;

Borowska-Stefańska and Wiśniewski, 2018). To mitigate the

impact of flood disruptions, it is necessary to obtain

knowledge of traffic response in flood scenarios. Flood

response is often passive and lacks proactive preventive

research in many cities of developing countries. Also, many

researchers have studied coastal cities to explore the impact of

floods on urban commuting (Keeler et al., 2018; Kasmalkar et al.,

2020a). However, there are few case studies exploring traffic

response under floods in inland cities. Therefore, it is very urgent

to evaluate urban road vulnerability and traffic response of inland

cities in developing countries under floods caused by bad

weather.

A recent literature suggests that road vulnerability in bad

weather is receiving increasing attention. A more commonly

accepted definition of road network vulnerability is the

“susceptibility” or “sensitivity” of road networks to disruptions

(Berdica, 2002). According to different research interests of the

research field, the value dimensions of performance indicators to

reveal road vulnerability are different (Jenelius et al., 2006;

Balijepalli and Oppong, 2014; El-Rashidy and Grant-Muller,

2014; Mattsson and Jenelius, 2015). Many scholars in the field

of transportation networks focused on measuring the impact of

local road failure on the overall road network system from a

global perspective (Demirel et al., 2015; Casali and Heinimann,

2019). Scholars who focus on spatial justice tend to reveal local

road damage in spatial units or at the scale of road sections (Liu

et al., 2021). Many researchers often use critical thresholds based

on the work of Shah et al. (2021) to determine whether a road

section can work. Roads that flooded deep below the threshold

are considered normal, while roads that flooded above the

threshold are removed during road network modeling (Chen

et al., 2015; Jie et al., 2016; Coles et al., 2017). This binary

assumption means that the impact on the specific service

performance of roads is ignored. Because flooded roads do

not necessarily mean complete failure, it is possible for them

to travel at a lower speed. Liu et al. (2021) used the actual

monitoring data to distinguish between smooth or congested or

severely congested roads and to measure road vulnerability in

floods, which also means that road damage within the same

threshold is seen as homogenized. Speed, as an important service

performance of road infrastructure, is an important measure

under disturbance, but has not been given sufficient attention in

the current road vulnerability research. Pregnolato et al. (2017)

simulated the relationship between flood depth and the vehicle

speed and plotted the relationship. The characterization of this

relationship opens up the space for discussion of the speed

impact details of flooded roads. Using this equation, the

reduction of network speed during floods can be calculated.

This study will also use the depth speed curve to further modify

the speed of flooded roads to simulate residents’ routes based on

the shortest travel time rule to explore commuting responses in

flood scenarios.

So far, traffic response, especially the commuting theme

under floods, has attracted the attention of many scholars and

accumulated a large amount of contributions. Popular topics for

commuting exposure in floods mainly include the accessibility

assessment between regions, prediction of the amount of

impassable commuters, and the estimation of increased

commuting time costs and their economic costs (Aghababaei

et al., 2021; Borowska-Stefańska and Wiśniewski, 2018;

Debionne et al., 2016; Hauer et al., 2021a; Liu et al., 2021).

Some studies have found knowledge of local commuting

disruption and road performance under flood events by

analyzing the actual traffic data during floods (Chung, 2012;

Liu et al., 2021). The advantage of this data-driven method is that

the results are credible. However, due to the limited financial and

monitoring resources, it is difficult for most cities to collect

spatiotemporal commuting behavior data in real disasters.

Therefore, it is necessary to grasp the knowledge of

commuting response in flood events in advance through

simulation methods. In addition, the uncertainty of climate

change also makes it necessary to know in advance under

various rainfall scenarios. The development of hydrological

models makes it possible to simulate urban waterlogging with

high precision. Integrating the flood simulation module and the

commuting simulation module that can be flexibly applied to

various flood scenarios, to measure the commuting impact under

flood events, is the common method used in many studies

(Kasmalkar et al., 2020b; Tsang and Scott, 2020; Hauer et al.,

2021a).

As for commuting simulation, it is important to accurately

clarify the commuting demands of residents. The commonly

used method is the four-step traffic assignment method,

including trip generation, trip distribution, modal split, and

traffic assignment (Sharma and Chandel, 2020). A commuting

survey sampling dataset was also employed to determine travel

OD demand (He et al., 2021a). Many studies employed the

gravity model and the Monte Carlo method through

demographic data and other spatial data of employment to

estimate travel OD (Hu and Downs, 2019; Liu et al., 2021).

Although this method can be verified by statistical data to some

extent, it is still not the real commuting OD of urban residents

but only a proxy indicator for commuting OD demand. With the
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development of information technology, geographic commuting

big data have gradually been applied to urban studies (Zhao and

Cao, 2020; An et al., 2022). Many Internet companies have the

ability to collect location-based services’ request information

received from various applications loaded on residents’

electronic devices, and the location of urban residents’ homes

and workplaces can be calculated by clustering methods such as

the density-based spatial clustering of applications with noise

(DBSCAN) method (Wang et al., 2021). This kind of emerging

data can greatly help to promote commuting simulation under

floods. However, as far as we know, it is rare to see research that

incorporates this commuting big data into the hazard field to

guide analysis and decision-making. This study obtained flood

maps under various rainfall scenarios using a high-precision

hydrological model and attempted to use Baidu location-based

service (LBS) commuting big data to predict commuting

responses under floods, providing spatial information about

commuting disruptions, thereby contributing to the literature.

This study has three main objectives: 1) to determine road

vulnerability under multiple rainfall scenarios in combination

with the impact of floods on road speed; 2) to predict and

quantify the commute loss under different flood events; and

3) to explore the spatial hot spot patterns of flood exposure, road

vulnerability, and commute loss. This study integrates flood

modeling and spatial analysis to understand the commuting

response under different flood events, aiming to provide a

decision-making basis for disaster prevention and mitigation,

urban planning, and commuting resilience promotion.

The remainder of this article is organized as follows. Section 2

introduces the context of the study area, Wuhan City, the

experimental data and main methods including flood

modeling and commute simulation, and the hot spot analysis

methods used to explore the spatial patterns of flood exposure,

road vulnerability, and commuter impact. In Section 3, the

results of flood exposure are presented first, followed by the

description of road vulnerability and commuting loss. Also, we

integrated the hot spot analysis results of these three indicators

and explained the similarities and differences of spatial high-

value/low-value aggregation patterns. Section 4 is the discussion,

focusing on the theoretical value and application value of this

study and the limitation and the future direction. This article

concludes with Section 5.

2 Materials and methods

2.1 Study area description

Wuhan, as the capital of Hubei Province, is an important

industrial area, educational base, and transportation center in

China, located between 113°41′E-115°05′E and 29°58′N-31°22′N.
The terrain in the central urban area of Wuhan is low and flat,

with an average elevation of about 24 m, which is lower than the

average flood level of the Yangtze River (25.56 m, monitoring

data from 1865 to 2013). Therefore, Wuhan is often threatened

by floods in rainy seasons and has experienced frequent

rainstorms and waterlogging disasters in recent years (Liu

et al., 2021). On 18 June 2011, the maximum 24-h rainfall in

Wuhan reached 200.5 mm, and 88 locations in the urban area

were flooded. On 7 July 2013, the maximum rainfall was

increased to 258.5 mm. In June 2016, Wuhan suffered the

most severe flood disaster since 1998. The maximum rainfall

in a single day reached 582.5 mm, which paralyzed the traffic,

and nearly 200 major roads in the city were impassable

(Zhiqiang, 2016).

The central urban area of Wuhan was adopted as the study

area in this work, circled by the Third Ring Road, and we took the

traffic analysis zone (TAZ) as the smallest research unit

(Figure 1). TAZ was a commonly used research unit in the

current commuting analysis. We divided the TAZs based on the

road network data provided by Wuhan Geomatics Institute and

adjusted it according to the Wuhan Urban Planning Unit.

Finally, we obtained 512 TAZs in central Wuhan with an

average area of 0.91 km2.

2.2 Data acquisition and processing

The data used in this article are mainly used to support

hydrological simulation and commuting simulation. The types

and sources are shown in Table 1. The flood hydrological

simulation module mainly uses vector data including land use

data, digital elevation model data (DEM), drainage network

facilities data, and building data. The urban building data are

derived from the basic geographical conditions monitoring data

of Wuhan City in 2018, and the resolution of digital elevation

model (DEM) data is 10 m.

In the commuting simulation process, commuting OD data

come from location-based service (LBS) data collected by Baidu

whose base station records the user’s location point every 5s, and

the positioning accuracy in the main city of Wuhan is 50 m. In

this study, we collected all of the location records during

21 working days of June 2018. First, we merged all location

records into one dataset and then adopted the density-based

spatial clustering of applications with noise (DBSCAN) to cluster

the location points. If the clusters with large number point of

night time (21:00-8:00) were located in residence land, then its

geometric center was defined as the user’s residence location. In

the same way, clusters’ center of daytime (9:00-17:00) with work

land type was defined as the workplace. When the user stayed at

home, his dwell points stayed around the residence. When he

began to commute, the acquisition time of the first moving points

was the start time. Similarly, the acquisition time of the last

moving points near the workplace was the end time. Meanwhile,

his commuting trajectory was also recorded so that the

commuting distance, time, and speed can be calculated.
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Finally, more than 840,000 commuting OD data were identified

in central Wuhan with attributes of the user’s residence,

employment location, and commuting trajectory

characteristics (including commuting distance, time, and

speed). Furthermore, the transport network data were also

obtained from the General Survey and Monitoring of

Geography and National Conditions in 2018, which includes

attributes of road types, speed limits, and road width. The traffic

speed data were crawled from Amap (http://ditu.amap.com/)

based on the Python program, and the data acquisition time is

from 5 April to 11 April 2021.

2.3 Flood modeling

To capture the flood inundation situation of the area under a

set of rainfall scenarios, we used a hydrodynamic model to

perform hazard simulation instead of directly using flooding

FIGURE 1
Location of the study area: (A) Wuhan’s location in China; (B) Traffic analysis zones in Central Wuhan; (C) Roads in Central Wuhan.

TABLE 1 Names and sources of study data.

Analysis module Data name Data source Resolution

Flood modeling Land use data Hubei Provincial Department of Natural Resources 1 m

Digital elevation model (DEM) data Wuhan Institute of Water Science Researching in Hubei Province 10 m

Drainage facilities data Wuhan Institute of Water Science Researching in Hubei Province 10 m

Urban building data Wuhan Geomatics Institute 10 m

Commute simulation Commuting OD data Wuhan Geomatics Institute 50 m

Transport network data Wuhan Geomatics Institute 10 m

Traffic speed data Amap (http://ditu.amap.com/) —
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events records, which cannot satisfy the data demand of

continuous rainfall intensity sequence. The Wallingford

Software model for integrated catchment management

(ICM6.5) is employed in this study to produce outputs for

each time step of the simulation to give flood depths and

velocities. ICM6.5, integrating shallow drainage pipe network

and river channels, can construct one-dimensional and two-

dimensional water conservancy models of urban waterlogging for

comprehensive drainage simulation at high resolution (Sidek

et al., 2021). This study used the Chicago rainfall pattern and

considered rainfall intensity uniform across the model domain.

The rainfall series considered is summarized in Table 2. In this

study, we choose 10-year, 30-year, and 50-year floods to perform

hazard modeling, considering the local climate condition in

Wuhan. The degree of the most severe flood disaster in

Wuhan recently (in 2016) was basically close to a 50-year

flood (People’s Government of Hubei Province, 2016), and the

common rainfall intensity in summer is similar to that of a 10-

year flood. We add a 30-year flood between them in order to set a

continuous sequence.

The process of flood modeling during rainfall consists of

three main steps (Chen et al., 2016).

(1) Model building. Data of drainage facilities responsible for

rainwater discharge functions, including rainwater pipe

networks, drainage ports, pumping stations, and storage

lakes, were imported into InfoWorks ICM6.5, which was

commonly used in flood modeling (Sidek et al., 2021). The

catchment area was divided based on the terrain and image

data, and runoff generation parameters were determined

through the analysis of the underlying surface. The SWMM

(storm water management model) nonlinear reservoir

method (Xiong and Melching, 2005) (i.e., using the finite

difference method to approximate the continuous equation

and theManning equations) was used to simulate the surface

confluence process of subcatchment areas divided in the

runoff generation model.

(2) Model calibration and validation. We selected the actual

measurement data and facility operating condition data in

the water system during heavy rain from 12:00 on 30 June

2016 to 12:00 on 14 July 2016 to calibrate and check the

model. The maximum rainfall in this field on the 7th day is

582.5 mm (Wuhan National Meteorological Station), which

is the highest weekly rainfall since the meteorological record

ofWuhan City. After one-dimensional and two-dimensional

calibrations, the simulated water level and the monitored

water level of eachmonitoring station are evaluated using the

NSE (Nash–Sutcliffe coefficient) (Moriasi et al., 2007). The

closer the NSE to 1, the smaller the deviation between the

simulated value and the measured value, and the better the

simulation effect. NSE <0 means that the simulation

reliability is low, NSE >0.5 means that the simulation

result has good credibility, and NSE ≥0.65 means the

simulation result is very good and has high credibility.

The results of comparative analysis of calculated values of

the main lake nodes (see Supplementary Appendix SA1)

show that the overall agreement between the model

simulation results and the measured data after verification

is good.

(3) Model calculation. For a given scenario of rainfall, water

depth and velocity were calculated dynamically throughout

the simulation period and reported at each time step as each

subcatchment area (divided based on the terrain and image

data). However, with the huge amount of computation,

caution must be applied, the maximum inundation depth

instead of the dynamic changes during the entire process was

selected for subsequent road network analysis to reduce the

calculating burden. This is reasonable in this study as

residents are inclined to make driving decisions based on

the most severe submergence of road sections out of caution.

2.4 Commute simulation under floods

In order to compare the discrepancy between residents’

commuting distance and time under different scenarios, it is

necessary to distribute the commuting routes of every OD pair.

The simulation process is divided into three steps.

(1) OD pairs filtering and road network processing. Different

from the normal scenario, it is vital to consider the impact of

floods on the road under flood scenarios. When the flooded

depth exceeds 30 cm, the air intake of the vehicle will be

submerged, which will seriously affect the performance of

the vehicle (Shah et al., 2021). Therefore, the OD pairs and

roads located in areas with flood depth more than 30 cm

TABLE 2 Rainfall intensity of the simulated design rainfall scenarios with reference to Planning and Design Standards of Wuhan Drainage and
Waterlogging Prevention System (HubeiBureauofQualityandTechnicalSupervision, 2013).

Scenario Recurrence interval (year) Rainfall (mm) Duration (h)

A 10 205 24

B 30 273 24

C 50 303 24
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have been removed. Moreover, although roads with a water

depth of less than 30 cm can pass normally, the speed of

vehicles on this road will be limited. Pregnolato et al. (2017)

proposed a function that described the relationship between

the maximum vehicle speed and water depth under flood

scenarios (Eq. 1):

v(w) � 0.0009w2 − 0.5529w + 86.9448 (1)

where the speed v(w) is the limited maximum speed and w (0 <
w < 300 mm) is the depth of water. It should be noted that

commute simulations in normal scenarios can skip this step.

(2) Shortest path distributing. Based on the OD pairs’ location

and the construction of road network, commute route

distributions were implemented with

ArcMap10.5 software by the extensions module “network

analyst.” Assuming that the commuters tend to take the

least-time-cost path, we applied the new route option in the

network analyst to assign commute paths between origins

and destinations with the objective of minimizing time cost.

Each path’s commute distance and time can also be

calculated.

(3) Results verification. We compared our simulation results

under normal scenario to real commute time and distance in

original OD pair records of the LBS data. The Pearson

correlation coefficient (CORREL) and root mean square

error (RMSE) were used as evaluation indices. Figure 2

shows the fitting curves of the modeled and real commute

time and distance. The modeled results are highly consistent

with the real commute time and distance. The modeled time

and real time have a Pearson correlation coefficient of

0.913** (p < 0.01) and a root mean square error of 0.12,

while the distance has a Pearson correlation coefficient of

0.958**(p < 0.01) and a root mean square error of 1.79.

2.5 Hot spot analysis

Hot spot analysis (Getis-Ord Gi*) can be calculated by

ArcGIS software to obtain the spatial distribution of high-

value and low-value elements and clustering situation. The Z

score of the calculation result represents the multiple of standard

deviation, which can reflect the dispersion degree of the dataset.

A highly affected cluster area by flood surrounding a highly

affected area is called a hot-spot cluster. On the contrary, the less

affected area surrounded by a clustered area of low value is called

a cold spot clustered area (CAO et al., 2020). In this work, Getis-

Ord Gi* local statistics was used to identify statistically significant

hot spots and cold spots of TAZs affected by floods. The

calculation formula is shown in Eqs 2–4.

Gi � ∑n
i�1zhiki − �X∑n

i�1zhi

S

�������������
n∑n

i�1z
2
hi
−(∑n

i�1zhi)2

n−1

√ (2)

�X � ∑n
i�1ki
n

(3)

S �
����������∑n

i�1k
2
i

n
− �X

2

√
(4)

FIGURE 2
Results verification: modeled commute time (A) and modeled commute distance (B).
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where Gi is the Z score of output result; ki is th statistic index of

TAZ i; zhi is the spatial weight between TAZ h and i; n is the total

amount of TAZ; X is the average of statistical index; S is the

standard deviation.

3 Results

3.1 Floodmodeling and exposuremapping

Taking the traffic analysis zones as the analysis unit, we

counted the flood area at different depths under the three rainfall

scenarios (Figure 3), including less than 15 cm, 15–30 cm, and

more than 30 cm, respectively. The results revealed that water

area of depth less than 15 cm increased the smallest, only from

2,679 to 3,176 ha, while water area of depth greater than 30 cm

increased the most of 2,228 ha. We use an indicator of flood

exposure to represent the comprehensive hazard degree. The

space of the traffic analysis zones (TAZs) that bears the disaster

was homogenized, while the degree of flood disaster is considered

and divided into three types including less than 15 cm, 15–30 cm,

and more than 30 cm. Then, AHP (analytic hierarchy process)

(Saaty, 1980) was adopted to derive the severity weight of the

three types of flood depths (see Supplementary Appendix SA2 for

the weight results). The flooded area of each traffic zone was

multiplied by the weight to obtain the flood exposure, and

subsequently, the product results were summarized and shown

at the scale of the traffic analysis zones. As the intensity of flood

increases, flood exposure of a 30-year flood became

approximately 1.7 times that of a 10-year flood, and flood

exposure of 50-year flood became more than twice the 10-

year flood exposure.

Figure 4 shows the spatial distribution of flood exposure

under three flood scenarios, and we put the spatial distribution

map of flood area under three rainfall scenarios in

Supplementary Appendix SA1). Under the 10-year flood

scenario, flood exposure of the whole area is relatively light,

and only three TAZs have more than 18.84 ha of standing water.

With the increase in rainfall intensity, areas seriously flooded

began to increase. Large patches of standing water emerged in

Qiaokou District and Jianghan District in the northwest. The

terrain in this area is relatively low and flat, combined with many

buildings, wide impervious surface, and poor drainage capacity,

resulting in serious water accumulation. Also, there was serious

water accumulation around East Lake, Shahu Lake, South Lake,

and other lakes. This may be due to the generally low terrain

around the lake. If the water storage capacity of the lake exceeds a

certain limit, it is prone to overflow when urban waterlogging

occurs; therefore, the areas around the lake are easily affected.

3.2 Vulnerability assessment of road
networks

Figure 5 shows the proportion of flooded road length under

different floods. In a 10-year flood, 10.53% of the roads are

flooded, and this ratio increases to 13.63% in a 50-year flood.

Among the flooded roads, flooded roads of 15–30 cm depth

accounted for the highest proportion and increased themost with

the increase in flood intensity, which increased twice by

123.19 km from a 10-year flood to a 50-year flood. Flooded

roads of depth more than 30 cm, or failed impassable roads, also

increase in length as the flood intensity increases. The impassable

road in the 10-year flood is 2.35 km, which increases to 3.92 km

FIGURE 3
Characterization of the flood area and flood exposure.
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in the 30-year flood and finally to 11.99 km in the 50-year flood,

more than five times that in the 10-year flood.

The first line of Figure 6 shows the distribution of the roads

affected by standing water under each flood scenario within the

Third Ring. It can be seen that the distribution pattern of the

affected roads is consistent with the standing water, and the

declined velocity of the road in the area with severe stagnation is

relatively high. Specifically, affected roads were mainly present in

Jiang’an District, Jianghan District, and Jiangdi Street of

Hanyang District in the northwest, as well as the area around

East Lake. In terms of the changes in roads velocity under three

scenarios, the speed reduction in the 10-year scenario is relatively

small, generally within 1–10 km/h. With the increase in flood

intensity, the speed limit gradually increases. In the 50-year

scenario, roads with a velocity decline of more than 30 km/h

becomes the major part.

According to the declined velocity of the road, we further

classified the affected roads into three types. The roads with a

decrease in travel speed of 1–10 km/h were divided into low-

declined type, the roads with a decrease of 11–30 km/h were

divided into medium-declined type, and the decrease of more

than 30 km/h were divided into high-declined type. Then, the

proportion of the roads in three types is calculated. The second

line of Figure 6 shows the length ratio of the three declined types in

each TAZ. The area A in Figure 6 located in Jiangdi Street and the

area D located in the north of Jiyuqiao Street both have a high level

of road speed reduction under the three flood scenarios. Almost all

flooded roads in the two areas experienced a speed drop of more

than 30 km/h. The surroundings of area A are all highlands;

therefore, the accumulated water is easy to converge to area A.

Area D is located between Sand Lake and the Yangtze River,

therefore more vulnerable to floods. The declined level of road

speed in area B shows a trend from low tomedium to high. It can be

seen that the drop in the road travel speed is also increasing with the

increase in flood intensity in this area. Area C is the area with more

serious flood exposure under the flood scenario, but the main speed

drop level of the traffic area is relatively low. Even in the 50-year

flood, the main type seemed to be medium, and only a few regions

showed high level. This may be because the area belongs to the

central business district of Wuhan City. The traffic in this area is

relatively congested, and the road speed is low under normal times,

basically around 30 km/h.

FIGURE 4
Spatial distribution of flood exposure under three flood scenarios in traffic analysis zones.
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The impact of floods on the transport network within a traffic

zone includes not only the declined velocity of affected roads but

also the length of roads affected. Therefore, we measure the

vulnerability of the road network in terms of both the length of

the affected roads and the declined velocity (Formula 1).

Roads vulnerability = Affected length of roads × Declined

velocity.

The third line of Figure 6 shows the distribution of road

vulnerability at the scale of the traffic analysis zones in each

scenario. The road vulnerability level is generally low in the 10-

year flood. Only the southern Jiangdi Street, the northwestern

Hanxing Street and Changfeng Street, and the eastern East Lake

Scenic Area Streets showed a higher level. When the flood

intensity increased to 30-year and 50-year return period, the

road vulnerability level increased significantly, showing a spatial

pattern of contiguous distribution of high-level vulnerable traffic

analysis zones.

3.3 Analysis of commute condition under
floods

The commuting loss caused by flood is mainly seen in two

aspects, including commuting trip cancellation and increased

commuting time. Under floods, all commuting trips can be

divided into three categories: disconnected, passable but

affected, and unaffected. Figure 7 shows the statistical results

of the three commuting types under three flood scenarios. The

horizontal axis in the figure represents the commuting distance

in the normal scenario, with a distance interval of 5 km. The left

ordinate represents the proportion of the three types, and the

right ordinate represents the number of commuters of a certain

commuting distance type.

Figure 7 shows that it is dominated by short-distance

commuters in the study area. Commuting trips within

0–10 km account for the vast majority, and the number of

commuting trip gradually decreases with the increase in travel

distance. Among the three types, unaffected commuters account

for the highest proportion in the commuting distance of 0–5 km

under floods, indicating that short-distance commuters are less

vulnerable to floods than long-distance commuters. When

commuting distances are between 30 and 40 km, commuters

are more likely to be disconnected. Also, the proportion and

number of passable commuters in all distance intervals are the

largest in the 10-year flood, and about 80% of commuting trips

can be completed. In the 30-year flood, the order of the number

of the three types is passable but affected commuters >
disconnected commuters > unaffected commuters. With the

increase in flood intensity, the proportion of disconnected

commuters increases gradually, and the proportion of passable

but affected commuters and disconnected commuters decrease

gradually. In the 50-year flood, the proportion of disconnected

commuters exceeds that of passable but affected commuters.

The cumulative distribution function of commute distance in

Figure 8A shows that the slope decreases as the commute

distance increases. The proportion of long-distance

commuters decreases as the commute distance increases, with

more than 50% of commuting distance below 10 km. Moreover,

FIGURE 5
Characterization of the flooded road under three flood scenarios.
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the greater the flood intensity, the greater is the proportion of

short-distance commuters. Within 2 km commuting distance,

the proportion in a 50-year flood is the highest, followed by

the 30-year, and then the 10-year flood. When the distance

exceeds 10 km, the cumulative probability of the four

scenarios is reversed. The cumulative probability under

the normal scenario is the highest, followed by the 10-year

flood, the 30-year flood, and the minimum is the 50-year

flood. This indicates that long-distance commuters are more

vulnerable to flood disruption, while short-distance

commuters are less vulnerable. In addition, the increase in

flood intensity also leads to an increase in the commuting

distance. The cumulative function of commuting in a

baseline scenario reaches saturation at about 25 km, while

the longest commuting distance in the 50-year flood has

reached 80 km.

FIGURE 6
Vulnerability results of roads in traffic analysis zones.
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The results of the commuting time cumulative function

(Figure 8B) are similar to the characteristics of the

commuting distance cumulative function. In the baseline

scenario, more than 50% of the commuting time is less than

15 min, while this value reaches 40 min in the 50-year flood. The

greater the flood intensity, the greater is the proportion of short-

time commuters. Commuting trips within 20 min account for the

highest proportion in the 50-year flood, followed by the 30-year

flood, and then the 10-year flood. When the commuting time

exceeds 20 min, the proportion order changes that cumulative

probability in the 10-year ranks first, followed by that in the 30-

year flood, and then that in the 50-year flood. In the baseline

scenario, the travel time is less than 1 h, while the maximum

commuting time reaches 3 h in the 50-year flood.

Comparing the commuting distance cumulative function

diagram and the commuting time cumulative function

diagram, it can be seen that the slope difference of the

commuting time cumulative function in the baseline scenario

FIGURE 7
Structural analysis of commuters under three flood scenarios.

FIGURE 8
Cumulative function distribution of commuting travel distance (A) and commuting travel time (B) under floods.
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and three flood scenarios is greater, while the difference between

the commuting distance cumulative functions is more moderate.

This shows that there are differences in the results of time-cost

and distance-cost indicators, and the increase in time is greater

than the increase in distance, which is consistent with the

research results of Pyatkova et al. (2019). A study had also

pointed out that the time cost was more suitable for

measuring the delay of the urban network, and the distance

cost is more suitable for sparse road network (Balijepalli and

Oppong, 2014).

Our model divides into two ways in which floods have

impacts on commuting. One is to characterize the number of

unsatisfied OD, including the disconnected commuters due to

flooded homes or workplaces and necessary roads failure. The

other is to measure the cost of extended commuting time due to

floods. In order to better demonstrate the impact on commuting

from floods, we equate each unsatisfied OD with an 8-h extended

travel time (the same as the legal working time in China) and

then normalize the comprehensive commuting loss. The results

were displayed at the traffic analysis zones scale, in which home

and workplace of the commute OD pairs were located.

The top three panels of Figure 9 aggregate the disconnected

commuters by their home traffic analysis zones, while the bottom

three panels aggregate the disconnected commuters by their

workplace traffic analysis zones. Figures 10, 11 show the

results of extended time and comprehensive commute loss in

the same way.

The magnitude of the disconnected OD increases with flood

intensity, as seen in Figure 9. A large number of residents were

unable to accomplish the commuting under the 50-year flood.

The highest values of the disconnected commuters by their

workplace traffic analysis zones were more concentrated in

urban center than that by their home traffic analysis zones.

The distribution of extended time is quite different from that

of the disconnected OD (Figure 10). With the increase in flood

intensity, the extent of extension time did not significantly

deepen. This may be because when the flood intensity

increases, delayed trips in the previous state transformed to

disconnected trips so that the extended time of almost all

traffic analysis zones does not increase globally. High values

of extended time by their home traffic analysis zones are mainly

concentrated in the junction areas of Shizishan Street, Luonan

FIGURE 9
Number of disconnected OD of traffic analysis zones under three flood scenarios.
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Street, and Hongshan Street, while high values of that by their

workplace traffic analysis zones were more north-distributed,

mainly in the junction areas of Zhongnan Road Street, Shuiguo

Lake Street, and Luonan Street.

The distribution of comprehensive commuting loss is more

consistent with the distribution of disconnected OD, as seen in

Figure 11. Areas with a huge commute loss under floods are still

concentrated in the Qiaokou–Jianghan–Jiang’ an areas in the

northwestern and the Guanshan Street in the southeastern. These

two areas should be the key areas for the allocation of flood

control and disaster prevention resources.

3.4 Comparison of flood exposure, road
vulnerability, and commuting loss hot
spots

We normalized these three indicators including flood

exposure, road vulnerability, and commute loss to see and

compare their changes under three flood scenarios, as shown

in Figure 12. All of the three indicators increase with the increase

of flood intensity, but the magnitude of the variation is different.

In the 10-year flood, the normalized value of flood exposure is the

largest, followed by road vulnerability, and then commuting loss.

From the 10-year flood to the 30-year flood, the order of the three

indicators has not changed, but the increase in commuting loss is

higher than the other two indicators. The normalized value of

commuting loss is the highest in the 50-year flood, followed by

road vulnerability, and then flood exposure.

The hot spot analysis tool is employed to analyze flood

exposure, road vulnerability, and commuting loss, and the

high–high adjacent (99% confidence hot spot clustering) and

low–low adjacent (99% confidence cold spot clustering) are

extracted for visualization, as shown in Figure 13.

Flood exposure mainly shows high-value aggregation in

Qiaokou District and Jianghan District in the northwest, and

low-value aggregation in the southern bank of the Hanjiang River

and the southern bank of the Yangtze River at the junction of the

Hanjiang River and the Yangtze River (Lu et al., 2021). As for

road vulnerability, there are two high-value aggregations; one is

located in Qiaokou District and Jianghan District in the

northwest, which is consistent with the distribution of flood

exposure hot spots. It can be seen that there is a high-value

aggregation area of flood exposure, road vulnerability, and

commuting loss under the 30-year flood and 50-year flood in

the northwest. This is mainly due to the serious damage to the

road network caused by the contiguous flood, which makes the

commuting of residents in the area seriously damaged. Another

FIGURE 10
Extended time of traffic analysis zones under three flood scenarios.
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high-value area of road vulnerability is located in the Jiangdi

Subdistrict Office in the southwest of the study area. The road

speed in this area was relatively fast in the baseline scenario,

and the occurrence of floods greatly limits the speed of the

original road speed, resulting in a high-value concentration of

road vulnerability. The low-value aggregation area of road

vulnerability is distributed at the junction of Qingshan

District and Wuchang District in the northeast of the

study area.

The hot spots of commuting loss show two agglomeration

areas in the study area. One is distributed in the northwest, which

coincides with flood exposure and road vulnerability. The other

high-value agglomeration area is located in the Luonan Street

and Hongshan Street office area in the southeast, which is not a

high-value aggregation of flood exposure and road vulnerability.

Due to the poor connectivity of the road network caused by its

geographical isolation, small flood disturbances can make

particularly high commuting losses in this area. The cold spot

aggregation area of commuting loss shows a large distribution

difference under the three floods, mainly the global commuting

pattern would be affected under different floods. In the 10-year

flood, the low-value aggregation area is mainly located at the

junction of Hongshan District and Qingshan District in the

northeast, while located at the junction of the Hanjiang River

and the Yangtze River in the 30-year flood, and the intersection

of the two rivers in the central region and Yongfeng Street in the

west in the 50-year flood.

FIGURE 11
Comprehensive commute loss of traffic analysis zones under three flood scenarios.

FIGURE 12
Normalized curves of flood exposure, road vulnerability, and
commute loss under three floods.
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4 Discussion

In the context of climate change, regional and global floods

are becoming more and more frequent (Birch, 2014). Although

the road network construction in various cities is still constantly

improving and the government is also continuously increasing

investment in the construction of drainage facilities, there is still a

growing trend of flood damage to the road network. China’s

urbanization process is still advancing. As the capital city of

central China, Wuhan’s population concentration in urban areas

has gradually increased, making floods have a great impact on

commuting as a necessary transportation activity (Liu et al.,

2021). Measuring flood exposure, road network vulnerability,

and commuting loss (People’SGovernmentofHubeiProvince,

2016) is critical to building resilient cities. This is an

important contribution of our research. At present, there is a

certain foundation for the combination of a hydrological model

and a spatial analysis tool to explore the commuting risk under

flood (Tsang and Scott, 2020). We integrated flood modeling and

transportation network and further discussed the flood exposure

and commuting loss under various rainfall scenarios based on

commuting simulation. As opposed to a large number of studies

using survey data or statistical data to calculate the amount of

commuting activities (Borowska-Stefańska et al., 2018; Hu and

Downs, 2019; Liu et al., 2021; Sharma and Chandel, 2020), we

innovatively employed Baidu’s commuting big data in this field.

Baidu’s commuting big data have a high data granularity. By

actually monitoring the actual commuting activities of residents,

it can accurately indicate the commuting demands of each

resident (An et al., 2022). It is difficult to conduct a large-

scale survey of commuting activities under floods. Knowing

the accurate origin and destination of residents is an

important guarantee for commuting simulation. In addition,

we took into consideration the speed decline in the

measurement of road vulnerability based on the flood depth-

speed influence curve (Pregnolato et al., 2017). It is worth

mentioning that this is not a monitored road decline rate, but

the predicted road speed decline based on flood exposure results.

Studying the relationship between severe weather conditions

and transportation system performance at the city level has

important practical guiding significance for building

sustainable cities (Hauer et al., 2021b). First of all, flood

exposure under different scenarios can help guide the

investment and improvement of drainage facilities. The road

vulnerability assessment results identified vulnerable road

sections under flood pressure, enabling decision makers to

determine the order of priority interventions. The commuting

loss results show that long-distance commuters are more

vulnerable to flooding than short-distance commuters. In

addition, the spatial distribution of commuting losses was

shown in the form of traffic analysis zones, which helps to

understand the response of urban commuting during floods

and design adaptation and resilience strategies. Through the

simple normalization of the three indicators, we found that

when the flood intensity increased from a 30-year return

period to a 50-year return period, the increase in commuter

losses far exceeded the increase in flood exposure and road

vulnerability. Also, the damage degree of each traffic zone will

not increase linearly with the increase in flood intensity. In areas

that are not severely damaged in a former less severe flood, it is

highly likely that the damage will increase sharply as the flood

intensity increases. The emphasis and strategy of disaster

FIGURE 13
Getis-Ord Gi* results of flood exposure, road vulnerability, and commuting loss under three flood scenarios.
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prevention and mitigation are not the same in different rainfall

scenarios (Liu et al., 2021); therefore, it is very important to

conduct an assessment under various rainfall scenarios.

The hot spot analysis of these three indicators, through the

identification of high-concentration areas, clarifies which places

are urgent to be equipped with resources (He et al., 2021b).

Second, by comprehensively combining the results of flood

exposure, road vulnerability, and commuting loss hot spot

analysis, some enlightening conclusions are also obtained by

exploring the correlation factors and possible causes of overlap

and difference. The northwest of the study area is the overlapping

area of flood exposure, road vulnerability, and commuter loss,

which is also the key area of flood resistance andmitigation in the

future. For the nonoverlapping areas of the three indicators,

different measures should be taken according to the local damage

characteristics. A hot spot of commuting loss but not the other

two indicator was found in the southwest, mainly due to the

defect of the road network caused by the geographical barrier of

Wuhan (Liu et al., 2021), which makes small flood disturbance

also have a great impact on commuting. In order to improve the

traffic resilience under floods, urban decision-makers should give

priority to improving the road network construction in the

region to make it more resilient.

Despite the comprehensive findings, this research has several

limitations. First of all, in order to reduce the computational

burden, we only selected the maximum flood depth when

calculating flood exposure and did not discuss the entire flood

process. Also, our commuting simulation has only been tested in

the baseline scenario. Due to the lack of actual commuting

behavior during the flood period, the reroute results during

the flood period were not actually validated but were

consistent with the previous Wuhan City studies (Liu et al.,

2021; Liu et al., 2021). Because this study focuses on exploring the

response of traffic network and commuting under floods, we only

made the exploration at the traffic analysis zones scale. In order

to provide suggestions for disaster prevention and mitigation,

traffic management and urban planning, the research scale can be

further increased in the future, including the planning unit scale

and the catchment scale that can reflect the topographic

characteristics.

5 Conclusion

This article integrated the flood modeling module and the

commute simulation module to obtain knowledge about

commute response under three rainfall scenarios, including

a 10-year flood, a 30-year flood, and a 50-year flood. High-

resolution flood maps were obtained through the hydrological

model considering the condition of drainage facilities. Road

vulnerability was assessed at the scale of road sections and

traffic analysis zones (TAZs). We considered the declined

speed based on the correlation between flood depth and travel

speed, therefore, a targeted adaptation plan can be designed to

manage them and promote the transport resilience. In the

process of commute simulation, we introduced the Baidu

location-based service (LBS) data to get the accurate

location of residents’ homes and workplaces, and modified

the normal commuting speed based on the calculated speed

under floods to reroute residents’ commute trips. The results

in Wuhan showed that short-distance commutes are less

vulnerable to floods than long-distance commutes. In the

50-year flood, the proportion of disconnected commuters

exceeds that of passable but affected commuters. There are

differences in the results of time-cost and distance-cost

indicators, and the increase in time is greater than the

increase in distance. When the flood intensity increased,

delayed trips in the previous state transformed into

disconnected trips, so the extended time of almost all

traffic analysis zones (TAZs) did not increase globally,

while a number of disconnected commuters did. The hot

spot analysis tool is employed to analyze flood exposure,

road vulnerability, and commuting loss and we finally

integrated them. Spatial distribution inconsistency of hot

spots for flood exposure, road vulnerability, and commute

loss was identified, and these areas need to take different

measures according to the local damage characteristics. This

article examined road vulnerability and commute loss under

floods, which can provide a decision-making basis for disaster

prevention and mitigation, emergency management, and

urban planning in the context of climate change.
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