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Soil provides a diverse and complex range of ecosystem services.

Understanding the trade-offs and synergies among soil functions is

foundational for effective soil ecosystem management and human well-

being. In contrast, the long-term pursuit of solely productive functions in

cultivated land use has resulted in soil degradation and weakened other

ecological functions. This study collected soil, topographic landform,

climate, and management data from 151 fields in four counties and three

climatic zones in China. The Integrated Valuation of Ecosystem Services and

Trade-offs (InVEST) model was used to evaluate nutrient retention, water

production, and carbon storage, and the market value method was used to

evaluate the value of the soil production function. A semi-quantitative model of

Bayesian belief networks (BBNs) was used to simulate soil processes, thus

revealing factors potentially influencing the supply capacity of five soil

functions. Sensitivity analysis was used to identify the key variables

influencing soil functional supply, and the probabilistic inference was used

to identify interactions among soil’s multiple functions. The main findings were

as follows: 1) In four counties, the spatial heterogeneity in the supply of the five

soil functions was relatively high. 2) The primary variables influencing the supply

of soil’s multiple functions were climatic conditions, management level, carbon

storage, soil nutrients, soil biology, soil structure, and topography. 3) Trade-offs

existed among primary productivity (PP), water purification and regulation

(WPR), and carbon sequestration and regulation (CSR). Moreover, the

provision of functional and intrinsic biodiversity (PFIB), WPR, and CSR were

synergistic; specifically, the CSR and WPR services synergized with the nutrient

provision and cycling (PCN). This research may aid in understanding the supply

of, and interactions among soil’s multiple functions, thus aiding in using BBNs to

analyze soil ecosystem services. In addition, this study may provide a reference
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for management decision-making to maximize the overall benefits of soil

functions in cultivated land use.

KEYWORDS

agro-ecosystem, bayesian belief networks, soil ecosystem services, soil parameters,
soil multi-functionality

Highlights

1) To model the soil function supply process, a Bayesian belief

network was built.

2) Soil supply services have trade-offs with regulating services.

3) The study is beneficial for exploring soil service mechanisms

and prudent soil management.

4) Understanding soil biodiversity is extremely important for

sustainable agricultural use.

Introduction

To meet the United Nations Sustainable Development Goals

(SDGs) and national development strategies, soil use and

management can play essential roles (Zhang G. L. et al., 2022).

As an important source of ecosystem service diversity, Soil provides

beneficial services that support most agro-pastoral production

systems (Baveye et al., 2016). Soil function indicates a soil-based

ecosystem service that consists of a series of soil processes that
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support the provision of ecosystem services and contribute to the

production of goods and services that are beneficial to human social

requirements and the environment (Barrios, 2007; Ghaley et al.,

2014). Soil is critical to sustainable development, including fresh

water and energy supplies, climate change, biodiversity loss, and

food security (Lal et al., 2021). An overemphasis on increasing food

production capacity leads to soil overuse, which is detrimental to

Soil’s other ecological services (Zhao et al., 2021; Zhao and Wu,

2021). Stakeholders with input regarding how land is managed may

have different expectations or needs regarding how well the land

performs each soil function (Greiner et al., 2018; Bampa et al., 2019;

Schulte et al., 2019), thereby resulting in trade-offs among food

production and other ecosystem services. Farmers, for example, may

maximize soil productivity (Eliasson et al., 2010; Jafarzadeh et al.,

2021) but may unintentionally affect the soil’s purification or

regulation functions. Consequently, emphasizing the multifaceted

role of Soil in sustainable environmental policy and management is

an essential component of sustainable soil management (Adhikari

and Hartemink, 2016).

The functions closely associated with agricultural and forestry

production, such as primary productivity (PP), provision and

cycling of nutrients (PCN), provision of functional and intrinsic

biodiversity (PFIB), water purification and regulation (WPR), and

carbon sequestration and regulation (CSR), are driven by the

concept of functional land management (O’Sullivan et al.,

2015). The EU LANDMARK project’s Soil Navigator decision

support model is a representative soil function assessment method

used in five European countries: Austria, Germany, Denmark,

France, and Ireland (Debeljak et al., 2019). As a semi-natural and

semi-artificial system, the cultivated soil system is subject to

various selection preferences and utilization methods.

Interactions among different soil function types occur under

specific spatial and temporal conditions, thus resulting in a

complex interactive relationship that consists primarily of trade-

offs or synergies with mutual gains and losses (Zwetsloot et al.,

2021). Because of these trade-offs and synergies, not every soil

function can achieve maximum utility simultaneously (Vrebos

et al., 2021). Zwetsloot et al. (2021) assessed five soil functions at

94 sites in 13 European countries across five climatic zones for two

land use types: cultivated land and grassland. They have confirmed

that synergies and trade-offs among soil functions vary by climatic

zone and land-use type. Knowledge of the trade-offs and synergies

in multiple soil functionalities is critical for providing farmers and

policymakers with management options for the sustainable use of

cultivated land resources (O’Sullivan et al., 2022).

Soil properties are helpful for assessing the potential of

landscapes to provide terrestrial ecosystem services, but they are

affected by anthropogenic activities and environmental factors,

including landscape attributes (Syrbe and Walz, 2012; Takoutsing

et al., 2018). Because of the complexities of soil function supply

processes and the difficulty in precisemeasurement, current research

on soil multi-functionality simulates supply and demand for a single

soil function or the effects of various factors on specific soil functions

(Valujeva et al., 2016). However, studies on soil function’s trade-offs

and synergistic effects are uncommon, particularly when more than

two soil functionmodels are used. The soil functionalmodels used in

recent studies have exhibited data input overlap. For example, four

of the five function models have used soil organic matter or soil

organic carbon as data inputs (Zwetsloot et al., 2021). Correlations

observed among soil functions in the field may also be caused by

overlapping indicator data during the evaluation process. Previous

studies have widely used predictive analysis (forward reasoning) of

Bayesian belief networks (BBNs) (Delen et al., 2020; Vrebos et al.,

2021; Peng et al., 2022), whereas dependency and diagnostic analysis

(reverse reasoning) have been underutilized. BBNs can link soil and

environmental factors to multiple soil functions, visually simulate

soil processes, and input various inferential hypotheses, depending

on the purpose of the study. The outcomes of process-based models

have improved our understanding of the complex potential roles of

these soil processes concerning Soil, topographic, and climatic

factors (Vrebos et al., 2021).

Consequently, BBNs have a high potential for use in

investigating trade-offs and the synergistic effects of soil functions

(Landuyt et al., 2016). Changes in network nodes can be easily

detected with BBNs, thus revealing the differences in soil functional

relationships (Gonzalez-Redin et al., 2016; Feng et al., 2021). Vrebos

et al., 2021) used BBNs to model relationships among soil functions

at the European scale, primarily by relying on indirect indicators.

Such models have been dominated by soil physical and chemical

processes, such as nitrogen mineralization, nitrification, and

denitrification, while seldom considering soil biological

components and activities (Li et al., 2022). The main goal of this

research was to identify interaction patterns among functions,

incorporating the concept of trade-offs and synergies into

evaluating soil multiple functions in China to provide a reference

for targeted cultivated land management policies. For this purpose,

three specific sub-objectives were defined, based on 151 fields in

China, from different climatic zones and soil types. They were: 1) to

select network nodes based on soil processes and build a network

model of the supply of five soil functions, 2) to identify critical

drivers of the formation of soil multifunctional relationships through

sensitivity analysis of BBNs, and 3) identify functional trade-offs and

synergistic relationships in soils through probabilistic inference.

Materials and methods

Study site and characteristics

The study sites are located in China (Figure 1).We investigated

a total of 151 fields with three types of cultivated land use in four

specific county-level administrative regions: the China Northeast

Black Soil Area, Huang Huaihai Fluvo Aquic Soil Area, Loess Hilly

Brown Soil Area, and Jianghuai Hilly Aquorizem Area (dry land,

paddy field, and irrigated land). Natural environments,

geographical locations, crop types, and soil types vary across
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these four counties (Table 1).With an average annual precipitation

of 550 mm and an average annual temperature of 1.5°C, Hailun

County in Heilongjiang Province is at the heart of the Sonnen

Plain’s black Soil. It is a grain production center in northeast

China. Yixing County, Jiangsu Province, with an average annual

temperature of 15.7°C and precipitation of 1200 mm, this area is a

FIGURE 1
Location of the study area and distribution of sampling plots.

TABLE 1 Representative essential characteristics of sample location.

Samples site Climate Terrain Soil types Main crops Number of plots

Soil
Classification
(WRB)

Northeast Black Soil Area——Hailun County,
Heilongjiang Province

North temperate continental
monsoon climate zone

Hilly Pheaozems Soybean, rice 53

Huang Huaihai Fluvo Aquic Soil
Area——Wen County, Henan Province

Warm temperate continental
monsoon climate

Plains Cambisols Corn, wheat 28

Loess Hilly Brown Soil Area——Gaoping
County, Shanxi Province

Warm temperate continental
monsoon climate

Terrace Luvisols Corn, wheat 36

Jianghuai Hilly Aquorizem Area——Yixing
County, Jiangsu Province

North subtropical monsoon
climate

Low hills Anthrosols Rice 34
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commodity food base in the Yangtze River Delta. Wen County,

Henan Province, is nationally renowned for its wheat yield of

7500 kg/ha; it has an average annual temperature of 14.4°C and

600 mm of precipitation. Gaoping County, Shanxi Province, with

600 mm of annual precipitation and 10.4°C annual temperature, is

the birthplace of Chinese agricultural civilization in the Loess Hills

area.Most cultivated land is terraced with rain-fed agriculture. The

selection of study areas can reveal the related issues of soil

protection and sustainable management and utilization in

different climatic regions, different soil types, and different food

crops or economic crop regions in China, and provide a scientific

basis for promoting the healthy development of soil resources,

which is typical and feasible.

Sampling and field measurements

The 151 soil samples from georeferenced locations (Figure 1)

were collected from the upper 20 cm of Soil from September

2017 to October 2020. We used steel rolling pins to break up the

bulk soil samples beforemixing them to ensure uniformity and soil

purity and the removal of litter and other debris on the soil surface

before sampling. A sample of approximately 1 kg was extracted

from each mixture with the quartering method. The samples were

then sealed in sterile polyethylene bags and stored in a portable

refrigerator away from heat and light. The depth of the tillage layer

was measured with a drill rod at each soil sampling location. With

a rubber hammer and a wooden block, the 15.24 cm diameter

cutting ring was pressed down to a depth of 7.62 cm, and the soil

surfaces inside were wrapped in plastic wrap to cover the Soil and

the cutting ring fully. The cutting ring was filled with 300 ml of

water measured with a graduated cylinder, and the water remained

inside the ring after the plastic wrap was gently removed. The timer

was then started and was not stopped until the soil surface inside

flashed to record the time required for the water to penetrate the

Soil. The ring-cutting method was used to determine the bulk

density of the Soil. A total of 75 g of each Soil retained in the 2-mm

sieve was used to determine water-stable aggregates, according to

Kemper and Chepil (1965). A questionnaire was also used to poll

farmers regarding their fertilizer, crop, irrigation, drainage, and

pest control practices (Sandén et al., 2019). Drainage capacity,

irrigation conditions, average annual temperature, annual

precipitation, field slope, and terrain location were derived from

the Natural Resources Bureau’s Gradation on Agriculture Land

Quality database and field surveys.

Laboratory analyses

Air-dried soil samples were passed through a 2-mm sieve.

Soil particle sizes were determined with a full range laser particle

size analyzer (Microtrac S3500), and the clay percentage (below

2 μm), silt content (silt percentage, 2–50 μm), and sand content

(sand percentage, 50–2000 μm) were determined. To calculate

soil water content, we used the original Soil’s mass loss after

drying a constant mass at 105°C. The pH was determined with a

1:2.5 soil-to-distilled-water suspension ratio. Soil organic matter

was measured with potassium dichromate oxidation

spectrophotometry. The ammonium acetate method was used

to determine soil cation exchange capacity (Sumner and Miller,

1996). Soil total nitrogen, phosphorus, available nitrogen,

available phosphorus, and available potassium were

determined according to Chinese Soil Society guidelines (Lu

et al., 2019). To determine dissolved organic carbon, we used

the dichromate oxidation method (Jenkinson and Powlson,

1976). The carbon and nitrogen content of soil microbial

biomass was determined with the chloroform

fumigation–extraction method (Brookes et al., 1985). A

CIRAS-2 (PPSystems, Amesbury, United States) portable CO2

analyzer was used to measure soil respiration (soil CO2 flux

chamber). The carbon dioxide concentration was measured in g

CO2/m/h (Bojarszczuk et al., 2017).

Measurement of multiple soil functions

Themulti-functionality of Soil can be viewed as a “trade-offs”

black box: although the internal trade-offs among multiple soil

functions cannot be directly identified, the external functional

products provided by the output of multiple soil functions can

easily be depicted (Kearney et al., 2019), and the existence of a

variety of functional products often indicates multiple types of

soil functions (Jiang et al., 2020).

The Integrated Valuation of Ecosystem Services and

Trade-offs (InVEST) model was used to evaluate nutrient

retention, water production, and carbon storage in each

grid with grid sizes set to 100 m. Then, each sample field

was assigned with the point extraction method (Feng et al.,

2021). FRAGSTATS software calculated the Shannon

Diversity Index as a biodiversity measure (Jiang et al.,

2020). The sample field’s central grain crop unit’s

production potential value was used to represent the soil’s

production function, and the market value method was used

to evaluate the value of the soil production function with Eq. 1:

V � ∑m

i�1WiYi (1)

WhereV represents the unit production function value of the Soil

(CNY, Chinese Yuan), Wi denotes the average production

potential of the ith crop (kg/ha), and Yi denotes the market

price of the ith crop (CNY/kg).

Because the units and magnitudes of different soil function

service values differ, the data needed to be standardized to

make the soil function service values in Eq. 2 fall between

0 and 1:

SFstdi � (SFobsi − SFmin i)/(SFmax i − SFmin i) (2)
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Where SFstdi is the soil function service value after

standardization, SFobsi is the value to be assessed, SFmini is the

minimum value of each soil function service, and SFmaxi is the

maximum value of each soil function service.

Bayesian belief networks (BBNs)

BBNs are probabilistic network models based on Bayesian

causal probabilistic inference that reflect the partial state of

the corresponding real world and show how these states are

related by probabilities (Scrieciu et al., 2021). In BBNs, the

variables involved in the research questions are represented by

nodes. Each network node corresponds to a variable, which

can be discrete, continuous, or logical (true/false). Users can

customize the variables’ discrete states and methods (Zhou

et al., 2014; Wu et al., 2022). A BBN is a probabilistic graphical

network, with each node containing a directed acyclic graph

and a conditional probability table. Because BBNs are semi-

quantitative, they can learn and infer under limited,

incomplete, and uncertain information and can effectively

address scientific problems involving uncertainties and

human reasoning (Feng et al., 2021). Soil functions are

groups of soil processes that emerge from interactions

among Soil’s physical, chemical, and biological components

(Vogel et al., 2019). Towards cultivated land, agricultural

management practices strongly influence the physical,

chemical, and biological components of soil ecosystems

(Sanaullah et al., 2020). Due to a large number of soil

function indicator variables, multivariate analysis is

recommended as an effective method and widely used in

soil quality or soil function studies (Rezaei et al., 2006;

Zuber et al., 2017; Rottler et al., 2019). On the basis of our

existing data resources, we selected 37 variables, which also

pave the way for the subsequent sensitivity analysis. In this

study, the Netica software was used to build BBNs according

to soil process principles and multifunctional soil supply, thus

demonstrating the interactions among five soil function

supply processes. In addition to the five soil functions,

37 variables were chosen to create the BBNs, and the

network nodes were discrete, as shown in Table 4 (because

of the large number of variables, some nodes were combined).

Carbon storage was determined, for example, by bulk density,

organic matter, tillage layer depth, and soil texture). Given the

model’s accuracy and complexity, each node was assigned one

of four states: D (ex poor), C (poor), B (medium), or A (good).

The structures of the BBNs (the node settings, the

determination of connection and direction) are generated

from expert knowledge, previous literature, and the

causality among the variables (Vrebos et al., 2021).

Probabilistic inference and sensitivity analysis were

performed after the BBNs were completed.

Sensitivity analysis

The sensitivity analysis performed by Netica determined

the independence and dependence of each node in the

network. Variance reduction is the most effective

sensitivity indicator because it reflects the influence of a

TABLE 2 Summary of the descriptive soil parameters (n = 151).

Soil
parameter

Mean SEM Median Min Max SD Skewness Kurtosis CV

Tillage layer depth cm 33.54 0.81 35.00 15.00 60.00 10.01 0.25 -0.57 0.30

Aggregate stability % 74.88 1.14 77.18 27.92 98.70 14.06 -0.77 0.32 0.19

Bulk density g/cm3 1.26 0.01 1.27 0.69 1.70 0.18 -0.26 0.32 0.14

Soil water content % 0.30 0.01 0.29 0.16 0.53 0.07 0.86a 1.49b 0.22

pH — 7.50 0.08 7.20 5.43 9.82 1.02 0.05 -1.37b 0.14

Total N g/kg 1.81 0.08 1.67 0.39 9.88 0.98 3.81a 29.17b 0.54

Total P g/kg 0.62 0.02 0.57 0.09 1.54 0.25 0.61a 0.62 0.41

Available P mg/kg 18.99 1.52 13.15 0.80 107.60 18.73 2.31a 6.90b 0.99

Available K mg/kg 112.96 5.88 98.50 14.97 489.42 72.23 2.07a 6.56b 0.64

Available N mg/kg 126.23 4.88 118.51 27.08 315.91 60.01 0.45a -0.53 0.48

Dissolved organic carbon g/kg 0.42 0.01 0.40 0.25 1.15 0.11 2.29a 11.90b 0.27

Organic matter g/kg 28.42 1.19 25.93 3.65 75.34 14.60 0.62 -0.18 0.51

Cation exchange capacity cmol/kg 18.76 0.44 19.97 4.80 26.70 5.44 -0.77 -0.20 0.29

Microbial biomass C to N ratio — 10.22 0.21 9.50 6.53 16.80 2.54 0.72 -0.36 0.25

Soil respiration g/m/h 0.76 0.05 0.63 0.18 7.76 0.64 9.04a 97.62b 0.84

a, the standardized skewness value is not within the range expected for data from a normal distribution; b, The standardized kurtosis value is not within the range expected for data from a

normal distribution.
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specific variable on the target variable: the more significant

the variance reduction, the greater the influence of the input

factor.

As a result of the evidence input from node F, the expected

value of node Q’s expected variance decreased, thus reducing

variance [0, V(Q)] was the variance reduction range. The

stronger the interrelationship among node Q and node F

when independent, the more significant the variance

reduction. The variance reduction was determined as follows.

Vr � V(Q) − V(Q|F) (3)
V(Q) � ∑

q

P(q) · [Xq − E(Q)] 2
(4)

V(Q
∣∣∣∣f) � ∑

q

P(q
∣∣∣∣f) · [Xq − E(Q

∣∣∣∣f)]
2

(5)

E(Q) � ∑
q

P(q) ·Xq (6)

where Q is the target variable, F is the change variable, q is the

state of the target variable, f is the change variable’s state,Xq is the

real numerical value corresponding to state q,∑
q
is the sum of all q

of node Q, E(Q) is the expected value of Q before any new

evidence was input, E(Q|f) is the expected value ofQ after the new

evidence f of node F was input, and V(Q) is the variance of the

actual value of Q before any new evidence was input.

TABLE 3 Descriptive statistics of the soil properties in different regions.

Soil
property

Unit Region Mean SD CV Soil
property

Unit Region Mean SD CV

Tillage layer depth cm HL 41.89 6.17 0.15 Available K mg/kg HL 136.61 83.04 0.61

WC 33.07 9.68 0.29 WC 141.85 71.08 0.50

GP 28.61 8.64 0.30 GP 85.34 37.21 0.44

YX 26.15 6.13 0.23 YX 81.55 57.32 0.70

Aggregate stability % HL 83.47 8.49 0.10 Available N mg/kg HL 184.78 39.45 0.21

WC 60.28 14.14 0.23 WC 79.01 28.03 0.35

GP 67.86 10.43 0.15 GP 72.81 29.68 0.41

YX 80.95 10.02 0.12 YX 130.43 40.80 0.31

Bulk density g/cm3 HL 1.19 0.13 0.11 Dissolved organic carbon g/kg HL 0.45 0.11 0.25

WC 1.42 0.14 0.10 WC 0.36 0.08 0.22

GP 1.31 0.14 0.10 GP 0.38 0.07 0.17

YX 1.17 0.20 0.17 YX 0.45 0.13 0.30

Soil water content % HL 0.31 0.06 0.19 Organic matter g/kg HL 40.94 10.32 0.25

WC 0.26 0.06 0.21 WC 14.03 4.29 0.31

GP 0.29 0.05 0.19 GP 23.63 13.77 0.58

YX 0.32 0.08 0.26 YX 25.84 10.64 0.41

pH — HL 6.88 0.84 0.12 Cation exchange capacity cmol/kg HL 21.72 2.60 0.12

WC 8.43 0.32 0.04 WC 11.37 4.07 0.36

GP 8.52 0.13 0.02 GP 22.85 2.40 0.10

YX 6.63 0.53 0.08 YX 15.92 3.99 0.25

Total N g/kg HL 2.45 0.49 0.20 Microbial biomass C to N ratio — HL 10.72 2.61 0.24

WC 1.09 0.32 0.29 WC 10.07 2.61 0.26

GP 1.48 1.46 0.99 GP 9.93 2.48 0.25

YX 1.76 0.59 0.33 YX 9.85 2.26 0.23

Total P g/kg HL 0.68 0.26 0.38 Soil respiration g/m/h HL 0.81 0.32 0.40

WC 0.67 0.21 0.31 WC 1.05 1.33 1.27

GP 0.53 0.22 0.41 GP 0.52 0.09 0.18

YX 0.57 0.27 0.48 YX 0.69 0.17 0.25

Available P mg/kg HL 28.41 17.91 0.63

WC 11.93 7.60 0.64

GP 6.58 5.36 0.82

YX 23.28 24.67 1.06

HL, Hailun County (53 samples); WC, Wen County (28 samples); GP, Gaoping County (36 samples); YX, Yixing County (34 samples).
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Results

The capacity to supply multiple soil
functions

A regular pentagon area model indicated soil versatility and

the degree of interaction among various functions. The soil

function scores of the 151 sample plots in this study

(converted to function grades, from A grade = 4 to D grade =

1) did not form a regular pentagon (Figure 2), thus indicating

that a trade-off indeed existed among the five functions. When

the functional strengths did not differ significantly, the soil’s

multi-functionalization and ecosystem stability were most

extraordinary (Jiang et al., 2020; Li et al., 2021).

We detected that no single field supplied all five soil functions

at a high level (such that all five soil functional grades were A

simultaneously) and that no single field supplied all five soil

functions at a low level (such that all five soil function grades

were D simultaneously). According to Figure 3, PP and PCN

were frequently supplied at a high grade, owing to the intensive

utilization of most arable land plots; WPR, CSR, and PFIB were

typically supplied at medium capacity with slight variation in

TABLE 4 Description of some network nodes.

Variable Type States and ranges Unit

Soil texture Discrete D (gravelly Soil), C (sandy Soil), B (clay), A (loam) —

Tillage layer depth Continuous D, C, B, A; [0, 10], (10, 15], (15, 20], >20 cm

Soil configuration Discrete D (sticky/sand/sand, all sand, all gravel), C (sand/sticky/sand, loam/sand/sand), B (loam/sticky/loam), A (all loam,
loam/clay/loam)

—

Aggregate stability Continuous D, C, B, A; [0, 20], (20, 40], (40 50], (50,100] %

Soil infiltration Discrete D, C, B, A; [0, 1]/>40, (1, 3]/[30, 40], (3, 5]/[20, 30], (5, 20] min

Bulk density Continuous D, C, B, A; >1.55, (1.45, 1.55], (0, 1]/(1.25, 1.45], (1, 1.25] g/cm3

Soil water content Continuous D, C, B, A; [0, 30], (30, 50], (50, 70], (70, 100] %

pH Continuous D, C, B, A; [0, 4.5]/≥9.0, [4.5, 5.0), [5.0, 6.0)/[7.9, 9.0), [6.0, 7.9) —

Total N Continuous D, C, B, A; [0, 0.9], (0.9, 1.5], (1.5, 2], >2 g/kg

Total P Continuous D, C, B, A; [0, 0.5], (0.5, 0.8], (0.8, 1], >1 g/kg

Available P Continuous D, C, B, A; [0, 5], (5, 10], (10, 15], >15 mg/kg

Available K Continuous D, C, B, A; [0, 50], (50, 100], (100, 150], >150 mg/kg

Available N Continuous D, C, B, A; [0, 200], (200, 300], (300, 400], >400 mg/kg

Organic matter Continuous D, C, B, A; [0, 10], (10, 20], (20, 40], >40 g/kg

Cation exchange capacity Continuous D, C, B, A; [0, 10], (10, 15], (15, 20], >20 cmol/kg

Dissolved organic carbon Continuous D, C, B, A; [0, 0.3], (0.3, 0.4], (0.4, 0.5], >0.5 g/kg

Microbial biomass C to N
ratio

Continuous D, C, B, A; [0, 5]/>10, (5, 6], (6, 7], (7, 10] —

Soil respiration Continuous D, C, B, A; [0, 400], (400, 700], (700, 1000], >1000 g/m/h

Field slope Continuous D, C, B, A; >15, (6, 15], (2, 6], [0, 2] °

Terrain location Discrete D (mountains), C (plateaus), B (hills), A (plains) —

Average annual temperature Continuous D, C, B, A; [0, 5], (5, 10], (10, 15], >15 °C

Annual precipitation Continuous D, C, B, A; [300, 400], (400, 500], (500, 600], >600 mm

FIGURE 2
Pentagon diagram of Soil multifunction.
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quantity, primarily in Yixing and Hailun paddy fields. The most

notable feature was Gaoping’s poor performance in terms of

WPR, CSR, and PFIB, which was also associated with a lack of

water in farmland (dependent on natural rainfall) and complex

terrain. Altitude has also affected soil biodiversity by influencing

temperature and precipitation (Kouser et al., 2021). Yixing

County had the highest PP and PFIB of the four areas, owing

to the county’s favorable climatic conditions, the farming system

of three crops per year, and paddy fields being the most common

type of cultivated land.

Furthermore, due to the high precipitation in Yixing County,

warm and humid weather during the rainy season accelerates litter

FIGURE 3
Soil multifunctional supply capacity in different land types and counties.

FIGURE 4
The compiled BBN
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decomposition, increasingmicrobial nutrient fixation (Lv et al., 2014;

Dou et al., 2022). On the other hand, its soil type was black soil (also

referred to Pheaozems), with a relatively high organic carbon content

(the mean was 40.94 g/kg); Hailun County had a higher supply

capacity for PCN and CSR than the other three counties.

Furthermore, the field investigation discovered that most of the

sampled fields in Hailun County had adopted measures such as

returning straws to the fields and applying organic fertilizers. These

measures can increase organisms’ living space, improve the soil’s

physical structure, and increase soil fertility (Zhang S. et al., 2022). PP

and PFIB supply frequencywere higher in paddy fields, and theWPR

was higher than in dry land. Because the unique paddy field

management system regulates the redox-driven processes that

occur in the Soil, affecting the transformation, turnover, and

nutrient cycling of soil organic matter (Liu et al., 2021).

Furthermore, rice is almost uniformly planted in paddy fields,

and the rice roots can release oxygen into the Soil, creating a unique

aerobic microbial habitat in an anoxic rhizosphere environment

(Kögel-Knabner et al., 2010). The use of intensive soil management

activities that disrupt the structure of the Soil with heavy machinery,

causing compaction, i.e., by increasing bulk density, reducing pore

space, and breaking up soil aggregates (Rodríguez-Martín et al.,

2019), and this is the case ofWen County has the highest mean bulk

density at 1.42 g/cm3. The CSR supply capacity is relatively low.

Construction and testing of BBNs

The BBNs structure of the supply of five soil functions

comprised 37 nodes and 49 one-way arrows in the networks

FIGURE 5
Changes in the PCN, WPR, CSR, and PFIB nodes.

TABLE 5 Results of BBN accuracy evaluation.

Node Error rate (%) Logarithmic loss Quadratic loss Spherical payoff

PP 39.13 0.8025 0.4873 0.8491

PCN 32.75 0.6728 0.4228 0.6856

WPR 34.67 0.7882 0.5549 0.6613

CSR 30.83 0.7353 0.5006 0.7315

PFIB 37.25 0.7296 0.5712 0.6892
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(Figure 4). All nodes were assigned one of four grades: A (excellent),

B (medium), C (poor), or D (ex poor). The node name is at the top of

the node hierarchy, followed by the node status, belief bar, and

corresponding probability. More than half the farmlands had PP

above medium, and 50.7% had PCN belowmedium, thus indicating

that more than half had poor PCN. Only 11.3% of farmlands had a

high level of WPR, and only 3.9% and 8.4% of farmlands had good

CSR and PFIB regulation, respectively. Notably, only one farmland is

located in the mountains and is not suitable for farming, and

approximately one-quarter of farmlands have inadequate drainage

capacity. Furthermore, 34.8% of farmlands had deplorable irrigation

conditions, indicating that most farmland infrastructure was in poor

condition and consequently indirectly affected soil multifunctional

performance.

After the construction of the BBNs, the networks’ accuracy

was tested with Netica’s Network Test by Case function, 100 cases

were obtained through random sampling with points, which

were used to conduct accuracy tests. Five soil function supplies

were selected as the nodes to be tested. Netica software was used

to compare the generated predictions with the true values in the

test case file, and the results are displayed in Table 5. The

measures calculated by the Netica include the error rate,

logarithmic loss, quadratic loss, and spherical payoff.

According to the judgment rule mentioned by Feng et al.

(2021) and Sun et al. (2022), the relatively high accuracy of

the BBN created in this paper as a whole demonstrates that the

BBN is considerably accurate in the simulation of the soil

functions supply process and shows strong reliability to

conduct the probabilistic inference of each soil function node.

Probabilistic inference for every soil
function

According to the Bayesian theorem, using conditional

probability tables, BBNs can infer unobserved nodes’ posterior

probabilities (i.e., conditioned on all current findings). Soil

function trade-offs and synergies were determined by entering

the findings for one node and recording the updating posterior

probabilities of other nodes. First, the PP node states were set to

the four known states, namely D = 100%, C = 100%, B = 100%,

and A = 100%. The state of each network node was then updated.

The posterior probabilities of the four-node states PCN, WPR,

CSR, and PFIB were observed and recorded as they changed.

Figure 5 depicts how the corresponding posterior probability

distributions of the PCN and PFIB nodes changed irregularly and

insignificantly as the PP node’s state improved from D to A,

making it difficult to identify the relationships among the PP,

PCN, and PFIB services. On the other hand, the probabilities of

the WPR nodes’ A states decreased, while the probabilities of the

FIGURE 6
Changes in the PP, WPR, CSR, and PFIB nodes.
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CSR nodes’ D states increased. As a result, trade-offs were made

between the PP service and the WPR and CSR services.

Second, the PCN node states were set to four known states,

namely D = 100%, C = 100%, B = 100%, and A = 100%. Figure 6

shows that as the PCN node gradually improved from the D state

to the A state, the probabilities of the CSR node remaining in the

D state decreased. In the case of the WPR node, the likelihood of

the A state increased. Consequently, the CSR and WPR services

synergized with the PCN service.

Third, the WPR node states were set to four known states,

namely D = 100%, C = 100%, B = 100%, and A = 100%. Figure 7

shows that the changes in the CSR, PCN and PFIB nodes were

similar as the WPR node progressed from the D state to the A

state. The probabilities of the A state of the CSR and PFIB showed

an increasing trend, whereas the probabilities of the D state in the

PCN showed a decreasing trend, and the probabilities of the A

state of the PP showed a decreasing trend. Thus, synergies existed

among the WPR, CSR, PCN, and PFIB services. A trade-off

relationship was observed between the WPR and PP services.

Fourth, the CSR node states were set to four known states,

namely D = 100%, C = 100%, B = 100%, and A = 100%. A line chart

is presented in Figure 8. As the CSR node gradually improved from

the D state to the A state, the PP node changed in the opposite

direction. The probabilities of the A state of the PCN and PFIB nodes

showed an increasing trend, whereas the probabilities of the D state

showed a decreasing trend in the WPR node. Therefore, trade-offs

occurred between CSR and PP services, the CSR service synergized

with the PCN, WPR, and PFIB services.

Finally, the PFIB node states were set to four known values: D =

100%, C = 100%, B = 100%, and A = 100%. Figure 9 depicts the

change in the CSR node as the state of the PFIB node gradually

improved from the D state to the A state. The probabilities of the

CSR node’s D state decreased while the probabilities of the A state

increased. Furthermore, the A state of theWPR grew gradually. As a

result, trade-offs were observed between the PFIB and PCN services.

According to the above analysis, the PFIB service collaborated with

the CSR and WPR services.

Identification of critical factors

Network sensitivity analysis was performed in Netica with

PP, PCN,WPR, CSR, and PFIB as target nodes, and the degree of

influence of each node in the network on the target node was

identified through variance reduction, thereby identifying the key

variables affecting the supply of each soil function. Only the top

FIGURE 7
Changes in the PP, PCN, CSR, and PFIB nodes.
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15 most influential variables were counted because of the large

number of variables. The findings (Figure 10) revealed that the

key variables influencing PP included climatic conditions,

topography, management level, soil nutrients, and carbon

storage; the key variables influencing PCN included soil

nutrients, soil structure, management level, climatic

conditions, total N, and average annual temperature; the key

variables influencing WPR included soil structure, soil

infiltration, water storage, aggregate stability, and topography;

CSR was influenced by factors including carbon storage, climatic

conditions, management level, average annual temperature, and

drainage capacity; and PFIB was influenced by factors including

soil biology, topography, climatic conditions, average annual

temperature, management level, and terrain location.

Furthermore, the partial variance reductions among PP, PCN,

WPR, CSR, and PFIB were more significant than zero, thus

indicating that the five soil functions were correlated because

they shared impact factors. However, owing to a large number of

related variables in this study and their different effects on the soil

functions, it was difficult to determine which factor was most

sensitive to soil function supply. For example, soil texture,

configuration, and bulk density influenced soil structure.

Temperature and precipitation affect soil pedogenesis,

affecting the soil’s versatility (Geng et al., 2017). Because the

level of land-use management affects soil properties directly or

indirectly, we discovered that climatic conditions and

management levels are almost simultaneously key variables of

soil versatility. Combined with the statistical analysis of soil

parameters in Table 2 and Table 3, the pH and bulk density

exhibited low variation (CV = 0.14), indicating that the soil

pH and bulk density values exhibited low dispersion.

On the other hand, soil respiration and available P were highly

variable (CV = 0.84 and 0.99, respectively). The measured bulk

density values ranged from 0.69 to 1.70 g/cm3, with a mean value of

1.26 g/cm3. An increase in bulk density is typically associated with a

decrease in organic matter and soil moisture content (Nielsen et al.,

2014). Thus, the observed difference in soil organic matter and water

content could be explained by the higher mean bulk density levels in

Wen County compared to other Counties. Soil’s pH directly impacts

the formation, transformation, and availability of soil nutrients

(Zhang et al., 2019). As a result, their soil nutrient content is

relatively high because Helen and Yixing’s average pH values are

close to 7 (pH = 6.88 and 6.63, respectively). Because of Soil

waterlogging caused by rice cultivation, farmland soil becomes

more acidic. Yixing County has the lowest pH mean at 6.63. The

pool of biologically available P appears to regulate C and N

accumulation in many terrestrial ecosystems (Lloyd et al., 2001).

Because farmers in China prefer to apply high-P fertilizers such as

diammonium phosphate or compound fertilizers to crops, high

concentrations of P and N, P, and K imbalances frequently occur

in intensively managed soils, affecting PCN supply capacity. The

intensity of respiration can reflect soil organism activity and the

FIGURE 8
Changes in the PP, PCN, WPR, and PFIB nodes.
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FIGURE 9
Changes in the PP, PCN, WPR, and CSR nodes.

FIGURE 10
Results of BBN sensitivity analysis.
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intensity of material metabolism (Wang, A., et al., 2023). Given that

Helen planting soybeans has a relatively high average value of

organic matter and dissolved organic carbon (mean = 40.94 g/kg

and 0.45 g/kg, respectively), the cardamom agroforestry system may

have the highest soil biodiversity, which may indicate that the

microorganisms in the agroforestry system have a relatively better

capacity to fix carbon. At the same time, soil respiration varied

greatly depending on the plot location’s temperature and moisture

(climate conditions) (Gelybó et al., 2022).

Discussion

Trade-offs and synergies among soil
multi-functionality

The ability of soils to perform multiple functions

simultaneously is called multi-functionality (Creamer et al.,

2022). Human demand preferences for soil functions and

changes in natural conditions result in soil multifunction

trade-offs, mainly when humans prioritize one or more soil

functional services (Löbmann et al., 2022). Decision-makers,

for example, may attempt to improve intensive cultivated land

use while also increasing cultivation income at the expense of

decreasing SOC (Fiantis et al., 2022; Gong et al., 2022). Zwetsloot

et al. (2021) demonstrated that trade-offs between multiple soil

functions are more pronounced in cropland than in grassland.

Furthermore, O’Sullivan et al. (2015) highlighted the trade-off

between primary productivity and carbon storage in Irish

grassland. This trade-off relationship was also discovered in

the soil function of cultivated land because the topography is

regarded as the primary factor influencing the spatial distribution

of both SOC and soil texture (Takoutsing et al., 2018).

As a result, some farmlands with high terrain in Gaoping

County perform very poorly regarding CSR and PFIB functions.

Furthermore, increasing slope changes soil properties, resulting

in changes in land cover and vegetation type (Pham et al., 2018)

and crop yield (Ladoni et al., 2016). Witing et al. (2022) identified

spatial heterogeneity and climate as critical drivers of synergies

and trade-offs between agricultural production, regulation, and

maintenance services to achieve landscape-level versatility. We

also discovered that climatic conditions, topography, and land

management all impact the trade-offs of soil multi-functionality,

emphasizing the importance of tailoring sustainable cultivated

land management measures to local conditions. A synergistic

relationship between Soil regulating services (such as CSR and

PFIB) is frequently observed in agro-ecosystems (Li et al., 2022).

In contrast, a trade-off exists between provisioning services

(such as PP) and regulating services (such asWPR and CSR), that

is, a trade-off between agricultural productivity improvement

and the sustainability of ecological services (Zhong et al., 2020),

which is consistent with our results. The critical role of soil

carbon components in both functions explains the synergistic

relationship between soil biodiversity and carbon storage (Van

Leeuwen et al., 2019; Zwetsloot et al., 2021). An increase in PP is

accompanied by a loss of performance for other soil functions,

and Vrebos et al. (2021) also observed lower performance of

other soil functions in areas with the highest PP. Because soil

functions have synergies and trade-offs, maximizing the supply

of all five soil functions simultaneously is difficult. None of the

151 fields in this study could provide all five soil functions

simultaneously at a high level. Soil function supply varies

primarily due to environmental and management factors and

maximization of individual soil functions clearly shows different

effects on other soil functions, as well as changes over time in

response to policy interventions and environmental changes

(Dade et al., 2019). It should be noted that the BBNs include

multiple indicators for each soil function and may not provide

accurate predictive information about the soil multi-

functionality relationship. In the future, we propose using

fewer indicators for soil multifunctional sensitivity analysis

and re-validating the relationship between soil multi-

functionality in a larger study area.

Multifunctional regulation of cultivated
land soil for farmers

Farmers and farm owners are the primary subjects of

cultivated land soil function regulation at the field scale, and

their land management practices directly impact soil function

provision (Tesfaye et al., 2022). They may seek to raise the

carbon content of their soils to levels deemed sufficient to

support soil structure, nutrient cycling, and primary

production at the field scale (Eliasson et al., 2010). Farmers’

most commonly used soil inputs are mineral fertilizers, organic

materials, pesticides, and water (Singh et al., 2020). These

practices were highly successful in increasing output and

being economically appealing, but at the expense of

environmental quality, increasing pollution, decreasing

biodiversity, and other resources such as water and fossil

fuels (Keesstra et al., 2016; O’Sullivan et al., 2015). Soil

compaction and loss of soil structure have resulted in a high

soil bulk density in Wen County as a result of the use of heavy

machinery during the annual cultivation period. Daddow, 1983)

showed that bulk density values greater than 1.63 g/cm3 inhibit

root growth in coarse loamy soils. The majority of fields in

Gaoping County do not have access to irrigation. Farmers

directly respond to reduced water constraints by applying

higher mineral and organic fertilizer doses. The multi-

functionality of soil is significantly impacted at the field level

by organic soil management (fallow, no-till, cover crops, organic

fertilizers, organic additions, and agrochemicals) (Gabriel et al.,

2012). It is worth noting that the various effects of soil

management measures should be considered under various

climatic conditions. For example, no-tillage combined with
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straw mulching in arid areas reduces mechanical interference

while increasing soil water and crop yield by about 7.3%. Long-

term no-tillage in sticky soils can cause soil stiffness and poor

drainage (Pittelkow et al., 2015). As a result, some fields in

Hailun and Yixing County are ineligible for no-tillage. Nutrient

cycling can be aided by crop residue management and

fertilization timing (inputs) (Wang et al., 2018). Livestock

manure application to dryland cropping systems can improve

soil biological activity and physical properties affecting water

infiltration and retention (Rayne and Aula, 2020). However, it

can also contribute to increased soil P if applied at levels higher

than crop needs (Calderón et al., 2018). Based on this, we suggest

that Hailun County adopts the method of mixing livestock

manure with straw, and Gaoping County adopts the method

of returning straw to the field to improve soil conditions. Adding

perennial forages to dry land cropping systems has increased soil

C and improved structural-related properties (Duchene et al.,

2019; Wachter et al., 2019). Short-term manure nitrogen can

improve soil microbial community structure and diversity in a

double-cropping paddy field (Tang et al., 2020). Cover crops

have been proposed as a cost-effective method of maintaining

Soil and water quality without reducing harvested agricultural

products on irrigated lands (Gabriel and Quemada, 2011;

Gabriel et al., 2021). In the short term, alternative soil

management practices that promote soil-based ecosystem

services rather than food production benefit society rather

than farmers. As a result, innovative governance strategies

are needed to help farmers perceive the ecological function of

farmland and understand the benefits more intuitively (Struik

and Kuyper, 2017).

It is worth noting that our study was carried out at the field

scale, and the main body of soil multifunctional regulation

was small farmers. It aimed to provide a reference for

optimizing field management measures, changing soil

dynamic properties, and maximizing soil functions. At the

county or provincial scale at larger scale, it is still necessary to

consider the characteristic attributes of cultivated land, such

as field uniformity and road accessibility, in order to

implement the policy requirements of a larger spatial scale

and administrative level.

Understanding and managing soil
biodiversity

Soil biodiversity is essential for controlling pest outbreaks,

nutrient cycling, carbon sequestration, soil formation,

pollution decontamination and bioremediation, food

production, and water purification (Underwood et al.,

2011). Most agricultural systems’ biodiversity resides in Soil

(Brussaard et al., 2007). Many measures or facts that violate

traditional biodiversity protection, such as the use of chemical

fertilizers and pesticides, and soil disturbance caused by

cultivation, must be included in the human management of

cultivated land (Wang, 2022). Tillage practices are inadequate

for soil worms but good for soil accessibility to roots, weed

control, and increased crop yields (Ahmed and Al-Mutairi,

2022). In particular, intensification of land use, crop rotation

and crop species, fertilizers and pH, the type and frequency of

periodic tillage, pesticide application, and pollution (eco-

toxicological studies) are the main driving forces

influencing biodiversity in agricultural soils (Aksoy et al.,

2017). We indicate that PFIB is closely related to climatic

regions and agricultural management. It has been established

that increasing agricultural intensity reduces overall soil

biodiversity (Tsiafouli et al., 2015).

On the other hand, loss of soil biodiversity can negatively

impact ecosystem functions and services, such as decreased

productivity or unbalanced nutrient cycling (Bach et al.,

2020). No-tillage and conservation tillage management

practices in agro-ecosystems can increase soil biodiversity

(microbes and animals) and ecosystem services (Luo et al.,

2020). Most of the fields studied are primarily intensive

production, and using chemical fertilizers and pesticides

encourages nutrient storage while endangering soil biological

habitat and decreasing soil nutrient cycling capacity. Many

agricultural management practices, such as intensive tillage,

fertilization, and pesticide use, have been shown to reduce soil

biodiversity (Bender et al., 2016), and the loss of specific species

can potentially result in the loss of specific soil functions

(Philippot et al., 2013). There is a trade-off between PP, PCN,

and PFIB under this condition. Vazquez et al. (2021)

demonstrated how PP and PCN significantly reduce soil

biodiversity. However, based on data from 151 fields, we

cannot clarify the relationship between PP, PCN, and PFIB

for cultivated land in China. First, land managers’ needs for

each of these soil functions vary greatly; in pursuit of agricultural

soil productivity, many chemical inputs and unreasonable

management lead to the decline of soil biodiversity.

Additionally, second, organic farming management

techniques like reduced soil tillage and the use of cover crops

offer food and more stable soil moisture conditions for microbial

communities (Campos-Herrera et al., 2019); that is, favorable

interactions among multi-trophic organisms in agro-ecosystems

can promote soil nutrient cycling and increase crop yield (Lupatini

et al., 2019). Sustainable agricultural production aims to create a

positive feedback loop in agricultural management and

production. The continuous cropping obstacle in Wen County

and Gaoping County dryland is a typical negative feedback effect,

whereas soybean and corn intercropping in Hailun County is a

positive feedback effect. As a result, improving the versatility of soil

ecosystems through increased biodiversity necessitates a long-term

development perspective (Zhang et al., 2020). Furthermore, there

is still much to learn about how PFIB interacts with other soil

functions, and the mechanism is not yet fully understood in this

study.
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Conclusion

The main objective of this research was to attempt, for the

first time to identify the fundamental relationship between soil

multi-functionality in Chinese farmed land using probabilistic

inference of BBNs. In most studies, soil physical and chemical

processes have dominated such models, whereas soil biological

components and processes have rarely been considered. Our

study has shown that cultivated soil’s multifunctions are complex

and interconnected, and there will be a trade-off between soil

supply and regulation services. Farmers’ soil management

practices significantly influence this trade-off effect on

cultivated land in stable climatic and topographic conditions.

As a result, various soil health management methods such as

fallow, no-till, planting cover crops, using organic fertilizers,

organic amendments, and agrochemicals should be tailored to

the problem under different types of cultivated land use.

This research incorporated the concept of trade-offs and

synergies into evaluating multiple soil functions. PP and PCN

were frequently supplied at high grade because most cultivated

land was intensively used. Using chemical fertilizers and pesticides

promotes nutrient storage while endangering soil biological habitat

and decreasing soil nutrient cycling capacity. Bayesian belief

networks include multiple indicators for each soil function and

do not provide accurate information about the relationship between

soil multi-functionality. We also showed that climatic conditions

and land management significantly influenced the trade-offs of soil

multi-functionality. Finally, soil function supply varied primarily

due to the environment and management, showing different effects

on soil functions and changes over time.
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