
Disaster cassification net: A disaster
classification algorithm on remote
sensing imagery

Jianye Yuan1, Xinwang Ding1*, Fangyuan Liu2 and Xin Cai3

1School of Electronic Information, Wuhan University, Wuhan, China, 2The Second Clinical Medical College,
Jinan University, Shenzhen, China, 3School of Electrical Engineering, Xinjiang University, Urumqi, China

As we all know, natural disasters have a great impact on people’s lives and properties,
and it is very necessary to deal with disaster categories in a timely and effective
manner. In light of this, we propose using tandem stitching to create a new Disaster
Cassification network D-Net (Disaster Cassification Net) using the D-Conv, D-Linear,
D-model, and D-Layermodules. During the experiment, we compared the proposed
method with “CNN” and “Transformer”, we found that disaster cassification net
compared to CNN algorithm Params decreased by 26–608 times, FLOPs decreased
by up to 21 times, Precision increased by 1.6%–43.5%; we found that disaster
cassification net compared to Transformer algorithm Params decreased by
23–149 times, FLOPs decreased by 1.7–10 times, Precision increased by 3.9%–
25.9%. Precision increased by 3.9%–25.9%. And found that disaster cassification net
achieves the effect of SOTA(State-Of-The-Art) on the disaster dataset; After that, we
compared the above-mentioned MobileNet_v2 with the best performance on the
classification dataset and CCT network are compared with disaster cassification net
on fashion_mnist and CIFAR_100 public datasets, respectively, and the results show
that disaster cassification net can still achieve the state-of-the-art classification
effect. Therefore, our proposed algorithm can be applied not only to disaster tasks,
but also to other classification tasks.
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1 Introduction

Natural disasters refer to natural phenomena that can cause damage to human production
and life, including drought, high temperature, low temperature, cold wave, flood and volcanic
eruption, etc. (Botzen et al., 2020). Traditional natural disaster detection techniques frequently
ignore many natural disasters in various surroundings in favor of detecting a single natural
disaster in a particular situation and location. For instance, literature (Barmpoutis et al., 2020)
proposed a system to detect forest fires using remote sensing images in real time; literature
(Wang and Xu, 2010) proposed a method to track changes in the severity of forest damage
following hurricane disasters using remote sensing images; literature (Saad et al., 2021)
proposed an earthquake monitoring framework based on deep learning with an algorithm
that can be used in four different seismic zones; The literature (Anusha and Bharathi, 2020)
monitors flood dangers in real time using wireless sensor networks, whereas the literature (Al
Qundus et al., 2020) employs radar and optical data to detect and map flood hazards. In
conclusion, we examine the uncertainty and vast scale of natural disaster occurrence, we classify
the primary natural hazards in real time, and monitoring is essential. Traditional natural
disaster monitoring are monitored in a specific environment for a single catastrophe hazards.
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According to the guideline for the loss of people’s life safety from
natural disasters issued by the state, we selected the four types of
natural disasters with the greatest impact for classification, including
hurricanes, earthquakes, floods, and fires. Our contributions are listed
as follows:

(1) The modules for the D-Layer and D-model are proposed;
(2) Combining four components, D-Conv, D-model, D-Layer and

D-Linear, in tandem to form the D-Net disaster classification
algorithm;

(3) Experiments are conducted with natural disaster datasets and two
public datasets to demonstrate the effectiveness and
generalization ability of our algorithm.

2 Convolutional neural networks and
transformers

Deep learning has quickly gained popularity and has produced
numerous promising outcomes in areas as image segmentation
(Zhu et al., 2022) and classification (Yuan et al., 2022). We used the
deep learning method, and the later experiments mainly compared
the CNN(Convolutional Neural Networks) (Sun et al., 2021) model
and Transformer (Han et al., 2021) model. The CNN and
Transformers algorithms will be introduced respectively in the
following.

2.1 Convolutional neural networks

CNN is a variant of MLP (Multilayer Perceptron) (Tolstikhin
et al., 2021) It is a feedforward neural Network model consisting of
learnable weights and bias constants of neurons. In the process of
feature extraction, common CNN includes Convolutional layer,
Rectified linear units layer, Pooling layer, and Fully-connected
layer. Convolutional layer is a three-dimensional feature extractor.
Each filter trains a depth, and the features of multiple units are trained
through multiple filters, so as to achieve the purpose of feature
extraction. In addition, it is characterized by weight and parameter

sharing. Pooling layer is a downsampling process, which aims to
reduce feature maps and generally includes Max Pooling, Mean
Pooling (Zeng et al., 2019), Gauss Pooling (Kobayashi, 2019), etc.
The Fully-connected layer acts as a classifier in the whole CNN and
converts the previous layer of convolution into 1 × 1 convolution, and
it can be replaced by the convolution layer in practical work. CNN is
composed of input layer, hidden layer, and output layer. The input
layer and output layer only contain one layer, while the hidden layer
can be composed of multiple layers. Therefore, the simplest MLP is
composed of three layers, as shown in Figure 1.

FIGURE 1
The simplest MLP model structure.

FIGURE 2
Transformer model structure diagram.

Frontiers in Environmental Science frontiersin.org02

Yuan et al. 10.3389/fenvs.2022.1095986

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1095986


The modern neural Networks mainly stem from the proposal of
AlexNet (Zhu et al., 2021) model in 2012, whichmakes many scientists
start to use convolutional neural Networks to solve image problems.
Meanwhile, the 3*3 convolution kernel proposed by VGG (Ding et al.,
2021) reduced the running time of the model; GoogleNet (Ran et al.,
2021) improved the complexity of the model by increasing the width
of the model; ResNet (Wightman et al., 2021) proposed in 2016 solved
the phenomenon of gradient disappearance and explosion, and further
accelerated the development of neural Network. In 2018, SENet
(HermineMariette et al., 2021) model was proposed to make the
model focus on important parts. With the proposal of EfficientNet
(Tan and Le, 2019) and RegNet (Mahbub et al., 2021), deep learning
has been developing in image processing tasks and has become a
widely accepted technology among scientists.

2.2 Transformers

With the continuous development of CNN Network model,
researchers, through in-depth research on the attention mechanism
in CNN, found that only attention mechanism (Mormann and Russo,
2021) can be used to carry out machine translation, image
classification, and other operations on the Network, without using
other modular layer structures of CNN. Therefore, more and more
researchers pay attention to the attention mechanism, and
Transformer is the best attention mechanism module. Transformer,
as a rising star of artificial intelligence, emerged as a result of the
application of Google’s BERT model (Tenney et al., 2019) to NLP
(Natural Language Processing) (KangCai et al., 2020) tasks in
2019 and achieved remarkable results in machine translation tasks.
As shown in Figure 2.

With the continuous development of Transformer, many
Transformer models have been proposed, such as albert
algorithm (GOH et al., 2021), beit algorithm (Lev et al., 2021),
deit algorithm (Maurice et al., 2021), vit algorithm (Yuan et al.,
2021), and swin algorithm (Liu et al., 2021). This model not only

shows satisfactory results in the field of NLP (Cambria and White,
2014) but also achieves satisfactory results in the image classification
processing. Therefore, we further optimized the algorithm in the
experimental environment and compared it with Transformer, and
concluded that our D-Net algorithm had a better classification
processing effect and portability.

3 Related work

In view of the continuous development of deep learning and the
impact of disasters on people’s life and property, we proposed a new
classification Network D-Net for disaster classification tasks. Among
them, D-Net is composed of D-Model, D-ConV, D-Layer and
D-Linear, the important part of which is D-Model.

3.1 D-model

In order to improve the superiority of D-Net Network, we
proposed a D-Model module, which was composed of six
convolutional layers and connected with each other through two
jump connections, as shown in Figure 3. It can be found that the
D-Model was divided into three parts, namely One-part, Two-part,
and Three-part. The One-part consisted of two 1 × 1 convolution, a
3 × 3 deep convolution (Guo et al., 2019), three BN (Batch
Normalization) layers (Bjorck Gomes et al., 2018), and a
ReLU6 activation function (Zou et al., 2020). The output X value
was directly added to the output M directly through the short
connection on the channel dimension, and the output Y value
was obtained; after that, in the Two-part, which was composed of
two 1 × 1 convolution and ReLU6 and Sigmoid activation function
(Hanna and Kaiser, 2021), the Two-part input value Y was added to
the output value Q in the channel dimension to obtain the output
characteristic graph N. Finally, the Three-part was composed of a 1 ×
1 deep convolution and a BN layer.

FIGURE 3
D-model module structure diagram.
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3.2 D-Net

We open the network structure for building the model from the
foundation, the D-Net Network structure is shown in Table 1, which
consists of one D-ConV, four D-Model modules, one D-Layer, and
one D-Linear. The D-layer consists of One-part and Two-part of the
D-Model. Dep-Conv denotes deep convolution, where the number of
groups of each Dep-ConV is set to be the same as the number of input
channels. Since BN layer and activation function do not change the
size of input and output images of the algorithm, Input Size and

Output Size in Table 1 both represent the size of input and output
images of the convolution layer. Since D-Model contains six
convolution layers and D-layer contains five convolution layers,
excluding Linear, the full connection layer, D-Net Network has a
total of 30 layers. Subsequent experiments verify that the algorithm
performs well on disaster data sets, so the D-Net proposed by us is
suitable for disaster classification tasks.

At the same time, we visualize the D-Net network structure, as
shown in Figure 4, where each layer of the model is labeled with
modules using the output, and by comparison with Table 1, we can

TABLE 1 D-Net Network structure table.

Model Layer Intput channel Output channel Kernel size Stride/Padding

D-Conv Conv/BN/ReLU6 3 64 7 × 7 2/3

D-model 1 ConV/BN 64 32 1 × 1 1

Dep-ConV/BN 32 32 3 × 3 1/1

ConV/BN/ReLU6 32 128 1 × 1 1

ConV/ReLU6 128 8 1 × 1 1

ConV/Sigmoid 2 128 1 × 1 1

Dep-ConV/BN 64 128 1 × 1 1

D-model 2 ConV/BN 128 64 1 2

Dep-ConV/BN 64 64 3 1

ConV/BN/ReLU6 64 256 1 1

ConV/ReLU6 256 16 1 1

ConV/Sigmoid 16 256 1 1

Dep-ConV/BN 128 256 1 2

D-Layer ConV/BN 256 64 1 1

Dep-ConV/BN 64 64 3 1/1

ConV/BN/ReLU6 64 256 1 1

ConV/ReLU6 256 16 1 1

ConV/Sigmoid 16 256 1 1

D-model 3 ConV/BN 256 128 1 2

Dep-ConV/BN 128 128 3 1/1

ConV/BN/ReLU6 128 512 1 1

ConV/ReLU6 512 32 1 1

ConV/Sigmoid 32 512 1 1

Dep-ConV/BN 256 512 1 2

D-model 4 ConV/BN 512 256 1 2

Dep-ConV/BN 256 256 3 1/1

ConV/BN/ReLU6 256 1,024 1 1

ConV/ReLU6 1,024 64 1 1

ConV/Sigmoid 64 1,024 1 1

Dep-ConV/BN 512 1,024 1 2

D-Linear Global_pool/Linear 1,024 4
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find that the D-Module and D-Layer only differ by the last layer
“ConV/Sigmoid”, Our algorithm inputs an image and outputs a class
of images after feature extraction by each model. At the same time,
Figure 4 can better show the algorithm flow of D-Net network
structure.

4 Experiment procedure

4.1 Lab environment

Our experiment was carried out on ubuntu20.04 system with
version 10.1.243 cuda, version 1.7.1 Pytorch and version
3.10 Python. The batch size was 32 and .57 m for each iteration.
The dataset was from the kaggle competition dataset (Cyclone, 2021)
and the State Key Laboratory of Information Engineering in
Surveying, Mapping and Remote Sensing of Wuhan University,
with a total of 9,792 pieces. Among them, there were 7,791 in
training sets and 2,001 in test sets. For each type of disaster
training test, the number of images in training sets accounted for
80% and the number of images in test sets accounted for 20%. The
horizontal and vertical resolution of disaster images were 96dpi and
the bit depth was 24. Among them, the image output and input size
was 224 × 224, the iteration cycle was 100 times, the optimizer was
SGD (Woodworth et al., 2020), the initial learning rate was .01, and
weight_decay was set to .0004.

4.2 Evaluation indicators

In order to optimize the effect of the data visualization model, the
evaluation indicators we selected included confusion matrix (Chicco
et al., 2021), accuracy curve, loss function curve, precision rate (top1,
top3, and top5) (MitchellBillingsley et al., 2021) and recall rate (Zhong
et al., 2021). Confusion matrix is to place all the forecast results and
real results of the model in a unified table, and the number of correct
and wrong recognition classes can be intuitively displayed through the
table using supervised learning method. As shown in Table 2, TP
represents that the real result is positive and the forecast result is
positive; FN represents that the real result is negative and the forecast
result is negative; FP means that the real result is negative and the
forecast result is positive; TN means that the real result is positive and
the forecast result is negative. Each blank represents the number of
categories in this case.

Among them, Accuracy, Precision, Recall formulas and F1 values
are shown in Formula Eqs. 1–4 respectively. Precision reflects the
correct number of images detected by the algorithm; Recall reflects the
number of images of all the correct categories detected; F1 value is the
result of Precision and Recall weighted harmonic averaging.

Accuracy � TP + TN
TP + TN + FP + FN

(1)

Precision � TP
TP + FP

(2)

Recall � TP
TP + FN

(3)

F1 � 2*Precision*Recall
Precision + Recall

(4)

4.3 Experimental comparison

In order to demonstrate the effect of D-Net algorithm, we
compared it with CNN algorithm and Transformer respectively, so

FIGURE 4
D-Net visualization network structure diagram.

TABLE 2 Confusion matrix classification table.

Real result Forecast result

Positive Negative

Positive TP TN

Negative FP TN
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as to verify the effect of D-Net algorithm through different
experimental effects.

4.3.1 Convolutional neural networks experimental
comparison

First, it can be seen from Table 3 that this paper compared the
algorithm model D-Net with the CNN models MobileNet_v2 (Zhang
and Ding, 2020), ResNet152, MnasNet1_3 (Tan et al., 2019),
SqueezeNet1_1 (Koonce, 2021), Efficient_b7 (Wang et al., 2021),
and VovNet57a (Su et al., 2022). It can be found that FLOPs and
Params are much lower than other algorithm models. The FLOPs of
D-Net are close to MnasNet1_3, but Params are 107 times less than
MnasNet1_3. Compared with Precision, it is found that the Precision
of MnasNet1_3 is only .508, which is not suitable for classifying
disaster tasks. D-Net is still far ahead in Precision, which is higher than
other algorithm models and has a better classification effect.
Therefore, it is concluded that the D-Net algorithm model
proposed in this paper has better classification processing ability
than the CNN algorithm model.

4.3.2 Transformer experimental comparison
In order to further verify the algorithm effect, the D-Net was

compared with the Transformer algorithm ViT, DeepViT (Zhou et al.,
2021), CaiT (Martín Sujo et al., 2021), CCT (Tang et al., 2021), PiT

(Abdulai and Sharifzadeh, 2021), LeViT (Levit and Malenko, 2011)
and CvT (Wu et al., 2021) models. It can be seen from Table 4 that
D-Net is lower in FLOPs and Params than other models, and its
FLOPs are generally 5 to 10 times lower than the Transformer model;
Params is generally more than 20 times lower than the Transformer
model. Compared with LeViT with the smallest FLOPs and Params of
the Transformer model, D-Net is still 435M lower than the LeViT
algorithm model in FLOPs; its Params are nearly 20 times lower than
the LeViT algorithm model. On Precision, D-Net is about 5% higher
than the Transformer model, and the Precision of DeepViT and CCT
is only .686 and .675, which is not suitable for disaster classification
tasks. Therefore, the algorithm model D-Net in this paper is more
suitable for disaster classification tasks than the Transformer model.

It can be seen from Figure 5 and Figure 6 that the Accuracy and
Loss of the D-Net algorithm tend to be stable after 100 iterations,
which proves that it is effective to set the number of iterations to 100 in

TABLE 3 Comparison of D-Net and CNN model data. MobileNet, MnasNet,
SqueezeNet, and Efficient are lighter modeling methods, while ResNet and
VovNet are among the better performing methods.

Model Params(M) FLOPs(M) Precision

MobileNet_v2 (2018) 74.25 318.96 0.918

ResNet152 (2016) 226.06 11,847.68 0.906

MnasNet1_3 (2020) 80.66 546.23 0.508

SqueezeNet1_1 (2019) 20.06 269.17 0.885

Efficient_b7 (2020) 456.00 5,376 0.875

VovNet57a (2020) 58.64 9,154.56 0.913

D-Net (ours) 0.75 560.10 0.934

TABLE 4 D-Net and Transformer algorithm model data comparison. While ViT,
DeepViT, CaiT, and PiT are more cutting-edge approaches with superior
experimental performance, CCT, LeViT, and CvT are lighter ways.

Model Params(M) FLOPs(M) Precision

ViT (2020) 53.51 2,735.10 0.850

DeepViT (2021) 53.51 2,735.10 0.686

CaiT (2021) 112.26 5,015.55 0.675

CCT (2021) 26.02 6,060.03 0.895

PiT (2021) 46.21 11,472.90 0.873

LeViT (2021) 16.83 995.51 0.866

CvT (2021) 17.57 3,898.37 0.873

D-Net (ours) 0.75 560.10 0.934

FIGURE 5
D-Net algorithm Accuracy curve.

FIGURE 6
D-Net algorithm Loss curve.
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our experiments. In addition, according to the confusion matrix in
Figure 7, it can be seen that Flood has the highest number of correct
identifications, followed by Wildfire, Earthquake, and Cyclone. The
algorithm model misidentified Earthquake as Flood 33 times; Flood
was misidentified as Earthquake 23 times; Wildfire was misidentified
as Flood 22 times; Flood was misidentified as Wildfire 10 times, and
other misidentification rates are lower. As can be seen from Figure 8,
the ROC curve of our algorithm performs well, and the effect of AUC
reaches .993. This proves that the data in this paper is highly effective,
and further verifies that D-Net is suitable for application in disaster
classification task processing.

4.4 Public datasets

To further verify the generalization ability of the D-Net algorithm
model, we used the fashion_mnist dataset (Khanday et al., 2021) and
the cifar_100 dataset (Hirose et al., 2022) for further experiments.

4.4.1 fashion_mnist
The fashion_mnist dataset contains ten data categories, of

which there are 60,000 images in training sets and 10,000 in test
sets, and each image is 28 × 28 in size, width and height are both
28 pixels. All of the images are in “png” format and are categorized
as follows: “T-shirt/top,” “Trouser,” “Pullover,” “Dress,” “Coat,”
“Sandal,” “Shirt,” “Sneaker,” “Bag,” and “Ankle boot.” We
compared the MobileNet_v2 with better performance in Table 3
and the CCT algorithm model with better performance in Table 4
with D-Net respectively. It can be seen from Table 5 that in terms of
Recall and F1 values, D-Net and MobileNet_v2 are basically the
same, slightly better than CCT; in terms of accuracy Top-1, Top-3,
and Top-5, D-Net is still basically the same as MobileNet_v2 and
performs better than the CCT algorithm model. It is concluded that
the algorithm model D-Net proposed in this paper has a good
generalization ability on the fashion_mnist dataset, and there is no
abnormal situation, which is suitable for application in other
classification tasks.

FIGURE 7
D-Net algorithm confusion matrix diagram.

FIGURE 8
D-Net algorithm ROC and AUC curves.

TABLE 6 Data comparison of D-Net on cifar_100.

Model Recall F1 Top-1 (%) Top-3 (%) Top-5 (%)

MobileNet_v2 (2018) 0.693 0.691 69.30 86.97 91.87

CCT (2021,9) 0.621 0.62 62.13 80.82 86.77

D-Net 0.661 0.659 66.10 84.73 90.25

TABLE 5 Data comparison of D-Net on fashion_mnist.

Model Recall F1 Top-1 (%) Top-3 (%) Top-5 (%)

MobileNet_v2 (2018) 0.934 0.934 93.40 99.58 99.96

CCT (2019) 0.914 0.914 91.44 99.27 99.91

D-Net 0.933 0.932 93.27 99.44 99.94
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4.4.2 cifar_100
The cifar_100 dataset contains 100 categories of images, and

each category has 600 three-channel color images of size 32 × 32,
including 50,000 for the training set and 10,000 for the test set. We
use the cifar_100 (http://www.cs.toronto.edu/~kriz/cifar.html)
dataset from the public data of the official website, width and
height are both 32pixels. It can be seen from Table 6 that D-Net is
basically the same as CCT in terms of Recall, F1 value and Top-1,
and CCT is about 4% higher than Top-3 and Top-5. The
comprehensive cost performance shows that D-Net is slightly
better than CCT algorithm model. Compared with MobileNet_
v2, D-Net is basically the same in Recall, F1 value, Top-1, Top-3
and Top-5, and the impact on the algorithm model is almost
negligible. Considering the performance of D-Net on public
datasets, it can be concluded that D-Net does not have large
abnormal classification errors. Therefore, the D-Net proposed in
this paper has good stability and robustness, and is suitable for
application in other classification tasks.

5 Conclusion

With the increasing number of natural disasters, it is very
important to classify and deal with the disasters effectively.
Therefore, we propose a fast and efficient disaster classification
network D-Net. We compared “CNN” and found that D-Net not
only reduced FLOPs and Params by more than 100 times, but also
maintained a high classification accuracy; compared with
“Transformer” network, we found that D-Net’s FLOPs and Params
were reduced by more than 20 times, it Precision is about 5% higher
than the “Transformer” model. In addition, we conducted
experiments on the public datasets fashion_mnist and cifar_100.
We compared the two networks MobileNet_v2, CCT and D-Net,
which performed the best on the disaster dataset, and found that
D-Net still has a good classification effect. Therefore, we can conclude
that the D-Net network is not only suitable for disaster datasets, but

also for other classification tasks, with high generalization and
portability.
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