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Water supplies around the world are currently heavily polluted by heavy-metal chemicals,
synthetic dyes, and other toxic pollutants released by major factories rather than typical
household waste. This pollution necessitates adequate monitoring to protect natural water
sources. There are various wastewater treatment methods available, including
nanotechnology, i.e., two dimensional (2D) nanomaterials. Rising 2D nanomaterials
including graphene, g-C3N4, MoS2, MXene, black phosphorus, and h-BN have
exhibited an unparalleled surface-to-volume ratio, promising ultralow usage of material,
ultrafast handling time, and ultrahigh treatment performance for cleaning, and monitoring
of water. We provide a current overview of tunable 2D nanomaterials and their uses in
water management. A brief description of 2D nanomaterials, their types, synthesis
strategies and salient features involved in water management is provided. Furthermore,
application of 2D nanomaterial in different processes of water treatment such as pollutants
adsorption, filtration, disinfection, photocatalysis are discussed in detail. Likewise, the
potential of 2D nanomaterials to be used in water quality monitoring gadgets like
fluorescent sensors, colorimetric sensors, electrochemical sensors, and field-effect
transistors are also explored. The study ends with a look at the current problems,
limitations and future prospectus associated with the use of 2D material in water
management. The importance of clean and fresh water to upcoming generations will
bring new light and innovations to this emerging sector, allowing it to improve the quality
and accessibility of water treatment while also ensuring global water supplies in an
increasing part of the world.
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1 INTRODUCTION

Water acts as a valuable natural asset and has a significant effect
on human continuity circumstances. Water services are essential
not only for biodiversity survival but also for improving
livelihoods, generating income, and eradicating poverty. Clean
and secure drinking water is a vital right of humanity, but only
71% of the world’s population has access to it (World Health &
United Nations Children’s Fund, 2017). However, as the national
economy and population overgrow, so does the issue of water
contamination, which is becoming increasingly severe. Water is
essential for all familiar modes of life, and it also plays a critical
role in human culture, community creation, and even space
investigation (Fu et al., 2016; Bi et al., 2020; Chen et al., 2020).
The majority of water on Earth is saline seawater, and fresh and
clean water only accounts for round about 3% of the global water
resource, mainly in the form of groundwater, icecaps, and glaciers
(Van Engelenburg et al., 2019).

Water pollution is now becoming inevitable due to the current
need of urbanization and industrialization. Pollutants introduced
into water from hazardous waste and incidental spills give rise to
significant threats to the atmosphere and human health (Wu
et al., 2017; Wang et al., 2019). Pollutants must be disposed
efficiently and safely to protect water environments from
pollution events and regular waste discharges. Therefore, it is
critical to establish precise and effective methods for tracing
pollutant origins, determining the sources of contaminants,
being emitted into waterways, and determining the amount of
pollution emitted (Jiabiao et al., 2018).

Different factories release different water contaminants during
different hydrological cycles; thus, it is critical to implement
effective sample construction techniques for the better refining
of polluted water. Most sample construction techniques focus on
adsorbent materials and these adsorbents are critical in achieving
high clean-up and enrichment performance. As a result, research
into advanced adsorbent materials has grown in popularity over
the last few decades (Kumar et al., 2017; Premarathna et al., 2019).

Nanotechnology provides a good solution for water treatment.
Several nanomaterials, including zero dimensional nanoparticles
of metal or metal oxide [e.g., nanoparticles of Au (Wang S et al.,
2018; Xu et al., 2019a), Ag (Liu et al., 2018a; Xu et al., 2019b),
Fe3O4 (Zhao et al., 2016; Zhao J. et al., 2018), and TiO2 (Zhou and
Fang, 2015; MiarAlipour et al., 2018)], 1-dimensional nanowires
or nanotubes [e.g., nanowires of titanate (Yin et al., 2017) and
carbon nanotubes (Dehghani et al., 2016; Akinpelu et al., 2019)],
and 3-dimensional macrostructures (Shehzad et al., 2016)
obtained from nanowires, nanoparticles, and nanotubes, are all
demonstrated with great merits in water purification,
considerably due to their large specific surface areas.

However, a number of constraints limit the number of uses for
these low dimensional nanomaterials; for example 1) they prefer
to aggregate or re-stabilize in solution, resulting in a significant
decrease in surface area (Zeng et al., 2021), 2) complete recovery
of depleted nanomaterials are critical, and nanomaterials in water
that are not recycled, can significantly harm individuals and
ecosystems (Zeng et al., 2021), 3) due to their limited
dimension, their application is also limited (Zeng et al., 2021).

Two-dimensional (2D) nanomaterials possess atomically thin
structures with lateral sizes between tens of nanometers to a
few micrometers and possess promising extremely low material
consumption, rapid handling, and high treatment reliability
(Anichini et al., 2018). The large lateral size and nanometer
thickness endow 2D nanomaterials with a high specific surface
area, making them desirable in a plethora of environmental
remediation applications, such as adsorption, sensing, and
catalysis (Chimene et al., 2015). The application of 2D-
nanomaterials has been shown in the development of many
water-treatment systems with remarkable adsorptive, catalytic,
and separation capacity, such as graphene membranes with thin
atomic layers (Surwade et al., 2015; Wei et al., 2017), oil
adsorbents of high efficiency (Ge et al., 2017), extra-fast
photocatalysts that use visible light to speed up the process
(Liu et al., 2016; Haque et al., 2017), and other structures that are
smart or self-heal (Luo et al., 2016; Oh et al., 2017) due to their
ability to regulate the thickness and scale of their
nanostructures.

In spite of the advances reported in the literature on 2D
nanomaterials based water treatment technologies, relatively
less work led it to market up to date, and in the water zone,
the social value of 2D material has still to reach its original
objective (Zheng et al., 2016a; Wang and Mi, 2017). The main
reason behind this review is to lighten the properties of 2D
nanomaterials in the range of water treatment and overcome
the barriers in their pathway. Because of the increasing interest in
2D nanomaterials for water treatment, this analysis will provide
investigators with an overview of the field’s present acquirement.
Moreover, the mechanistic basis of how the elementary structures
of 2D nanomaterials influence their cumulative nature, types of
2D nanomaterials with their synthesis process and salient features
and their applications in water treatment and monitoring have
been discussed.

2 SOURCE AND TYPES OF WATER
CONTAMINATIONS

Pollutants introduced into the water from hazardous waste and
incidental spills give rise to significant threats to the environment
and human health (Fang et al., 2018). Contamination in water is
comprised of both natural and artificial components, with each
species affecting human health to varying degrees (Sweetman
et al., 2017). An overview of the major contaminant classes and
example species in each, including their current removal
strategies and associated removal difficulties are given in
Table 1. Water toxins can take several forms, including
dangled solids, chemical pollutants (organic and inorganic),
and biological pollution (Wang et al., 2019), all of which are
briefly discussed below.

2.1 Biological Contaminants (Waterborne
Pathogens)
Water contains a variety of microorganisms including
Proteobacteria, Cyanobacteria, Bacteroidetes and Firmicutes.
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Bacteria from the Cyanobacteria, Methylobacteriaceae,
Sphingomonadaceae, and Xanthomonadaceae families.
Microbial biofilm formation is common in drinking water
delivery systems and is exacerbated in older distribution
systems (Douterelo et al., 2017).

Along with these microorganisms, concerned pathogens
can sometimes make their path into drinking water and
increase the consumer’s fear probability (Ashbolt, 2015).
Enteric microorganisms and opportunistic pathogens are
examples of pathogens that activate the illness in patients
with immunological disorders. Waterborne protozoans such
as Entamoeba histolytica and Giardia duodenalis become a
source of waterborne diseases as well (Efstratiou et al., 2017).
Viruses such as Hepatitis (A) and Norovirus are also known to
be the causative factor in various diseases including
waterborne (Bonadonna et al., 2019). These pathogens are
known as the root of a variety of diseases that range in acerbity

and can even be lethal. These illnesses cover kidney infections,
lung diseases, gastroenteritis, dysentery, cholera, fever, and
urinary tract (Khan and Malik, 2019).

2.2 Macroscopic Contaminants
Large and visible contaminants in rivers or bodies of water are
referred to as macro-pollutants. Trash, whether deliberately
spilt into bodies of water or left on the ground and swept into
storm drains by runoff, is ultimately drained into waterways.
This has resulted in the modeling of the “significant pacific
garbage field,” which is now the magnitude of France. Nurdles
(small plastic pellets), wood, and metal are other examples of
macroscopic contamination. Though it may be simple enough
to do, time is of the essence. This larger contaminants must be
eliminated to prevent the destruction of marine habitats and
damage caused by the chemical breakdown of these objects
(Yu et al., 2017).

TABLE 1 | A summary of contamination type in water, removal methods and removal challenges.

Contaminant
class

Example species Removal methods Removal challenges References

Natural organic
matter

Humic acids, fulvic acids
and proteins

Flocculation/sedimentation
filtration; adsorption

• Wide range of functionalities, sizes and Schreiber et al., 2005; Sharp et al., 2006;
de Melo et al., 2016

• different mixture of compounds for each
water source with seasonal variations

• Adsorption affected by environmental factors
and other contamination species (pH,
temperature)

Microorganisms Bacteria, viruses, and
protozoa

Chlorine disinfection • Chlorine disinfection leads to DBPs Wang et al., 2013; Srinivasan et al., 2013;
Holinger et al., 2014; Sweetman et al.
(2017)

Neutralization must meet regulation
requirements
• Size exclusion does not capture all

microorganisms
• Potential release of nanoparticles/

nanomaterials into ecosystem

Disinfectant by
products

Trihalomethanes Adsorption • Too small for ultra-filtration Richardson et al., 2012; NHMRC 2011,
Rasheed et al., 2016Halo acetic acid • Regulatory guidelines for maximum

concentrations apply
Halo-nitromethanes
Haloamides
Nitrosamines

Heavy metals Arseny Ion-exchange • Rage of adsorption affinities Fu and Wang, 2011; Mahdavian and
Mirrahimi, 2010Mercury Adsorption • Adsorption affected by other contaminant

species
Lead Filtration
Cadmium Reverse Osmosis
Chromium Flocculation/

Sedimentation

Synthetic organics Dyes Adsorption • Molecular weights Forgacs et al., 2004
Plasticizers Filtration • Effects of pH, temperature, ionic

concentration
Solvents Degradation
Perflourinated
compounds

Agriculturally
derived

Pesticides Adsorption • Molecular weight and complex adsorption
mechanisms

Rashed, 2013

Fertilizers Filtration
Animal waste Flocculation/sedimentation

Reverse osmosis
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2.3 Organic Materials Contamination
Petroleum, insecticides and herbicides, detergents, disinfecting
cleaners, and pharmaceutical medications are promising
examples of organic products. Methyl tert-butyl ether (MTBE)
is one of the most often found highly toxic organic chemicals and
was previously used as an air-cleaning gas additive (Stupp, 2007),
however it is currently considered as a prohibited chemical,
nonetheless it will take many years to be fully eliminated from
polluted water supplies. Due to this organic chemical, water
pollution can cause tumors in the testicles, kidneys, thyroid
glands, as well as cause leukemia and lymphoma (Tran et al.,
2015; Lipczynska-Kochany, 2018).

Pesticide toxicity is a pervasive problem in aquatic
environments, accumulating in the bodies of aquatic
organisms and the soil, creating health concerns to humans
(Sharma, 2019). Numerous pesticide formulations have been
introduced because of the global pesticide market’s rapid
growth and their wide use in agricultural and non-agricultural
sectors. Pesticides can be transported to surface waters and
groundwater through runoff and infiltration, causing
contamination to water bodies and thereby reducing the
usability of water resources. (Syafrudin et al., 2021). The
persistent and ubiquitous nature of various agriculture-based
pesticides has posed revengement to the environment due to
their bioaccumulation properties (UNEP 2007). Presently,
throughout the globe approximately 2 million tons of
pesticides are utilized, out of which 47.5% are herbicides,
29.5% are insecticides, 17.5% are fungicides and 5.5% are
other pesticides (UNEP 2001).

Pharmaceutical compounds (PCs) are specially manufactured
to produce a biological response in a target organism, may also
produce the same response in non-target entities following
chronic exposure to even trace concentrations of these
compounds (Wilkinson et al., 2016). Pharmaceuticals are
widely disseminated in the environment but are mainly found
in wastewater effluents, however effluents from hospitals
considered as the key emission source of PCs in the aquatic
environment (Jureczko and Kalka, 2020) Among the wide variety
of PCs, nonylphenol and bisphenol-A are the most extensively
investigated compounds (Bilal et al., 2018), which compromise
the health of different living organisms including humans
(Corcoll et al., 2014). Moreover, pharmaceutical pollutants
have been documented in groundwater, surface waterways
(lakes, rivers, and streams), seawater, wastewater treatment
plants (influents and effluents), soils, and sludges. In this
scenario, their detection throughout the biosphere has become
a supreme environmental concern, and it is of great importance
to increase the efficacy of wastewater technologies to overcome
environmental pollution. Interestingly, the worldwide detection
and monitoring of PCs in surface water, wastewater, groundwater
and drinking water (DW) also received the significant
consideration of the World Health Organization (WHO), and
they published an exclusive report documenting the presence of
pharmaceuticals in groundwater and drinking water and the
associated potential dangers for human health and ecosystem
(World Health Organization, 2011). Given the PCs toxicity, Their
removal from aquatic systems has been accomplished using a

variety of techniques, including oxidation, photolysis, UV
degradation, nanofiltration, reverse osmosis, and adsorption
(Patel et al., 2019).

Detergents can contaminate water treatment systems,
impairing their performance. Detergents are an integral
element of human life and are consumed for a variety of
reasons, most notably hygienic ones. Detergent elements can
reach soil and water bodies via a variety of routes such as point
sources and non-point sources. Point sources include domestic
sewage networks, industrial effluents, accidental spills, seepage
from waste water treatment plants, and non-point sources
include agricultural practices such as irrigation with
contaminated water in agricultural soils, washing laundry at
the banks of streams at remote and country sides area
particularly in developing countries, land run-off, thus
imposing negative effects on the sustainability of the different
flora and fauna of Earth’s (Holt 2000; Heidari 2012; Olkowska
et al., 2014;Mousavi and Khodadoost, 2019). These chemicals can
be toxic to both natural plant and wildlife on a chronic and acute
basis, thus their removal from water is of prime importance.

2.4 Inorganic Material Contamination
Toxic wastes such as ammonia or urea-based nitrogen fertilizer,
phosphorous based fertilizer and heavy metals are some examples
of inorganic material contamination. Large massive metals like
lithium, copper, chromium, nickel, barium, zinc, and mercury
though insignificant in minimal quantities, become contaminants
when concentrated in water (Verma et al., 2013; Shahzad et al.,
2018; Tanveer et al., 2019; Bolan et al., 2021). Inefficient water
disposal technique, leaching of polluted water and running off
into water streams causes significant water pollution. This type of
water contamination, especially at a high absorption level, can
result in dangerous health issues in animals and humans,
including death (Nieto-Delgado et al., 2019).

2.5 Thermal Contamination
The discharge of heated liquid (such as wastewater from a
factory) into natural waters at a temperature harmful to the
environment is known as thermal pollution/contamination
(Vallero 2019). The single biggest cause of thermal pollution is
probably cooling for industrial machinery and power plants
(Raptis et al., 2016). Increased water temperatures lower
oxygen levels, which can change food chain structure,
consume fish, and lessen species biodiversity especially in
riverine ecosystems (Miara et al., 2018). Temperatures in
surface waters can also rise due to urban runoff (Råman
Vinnå et al., 2017).

3 INSIGHT INTO 2D NANOMATERIALS FOR
WATER MANAGEMENT

Nanomaterials are commonly described as structures with
dimensions of 1–100 nm (Saleh and Gupta, 2016).
Nanomaterials behave differently than bulk form due to their
higher ratio of surface area to volume and the possibility of
quantum effects (Ding et al., 2017). Because of their unique
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shapes and properties, 2D nanomaterials have gotten plenty of
coverages in recent decades (Bhimanapati et al., 2015; Robertson
et al., 2016; Tan and Zhang, 2015). Currently, researchers are
interested in using 2D nanomaterials in water treatment and

monitoring (Table 2). Particularly, 2D nanomaterials are thought
to be ideal replacements for conventional desalination and water
purification membrane materials due to their atomically thin
shape, wide surface area, and mechanical ability. One well-known

TABLE 2 | Two-dimensional nanomaterials applications for water treatment.

2D materials Properties Applications References

Graphene Great mechanical strength,
distinct surface area,
hydrophobic

Spongy nano-web structure, Thermally
and chemically stability, fine mechanical
strength

Desalination Molecule
separation

(Perreault et al., 2015; Surwade
et al. (2015))

Graphene oxide Better mechanical strength, hydrophilic Desalination, Molecule
separation contaminant or
pollutant, Adsorption,
photocatalytic disinfection

(Goh et al., 2015; Wang J et al.
(2016); Wei et al., 2018)

2D BNMs Chemically inert, great Mechanical power, hydrophobic Contaminant or pollutant
adsorption

(Ikram et al., 2020; Low et al.,
2018; Shahabuddin et al. (2018)

Molybdenum
disulfide (MoS2)

Greater thermal stability, Fine mechanical Desalination (J. Gao et al., 2019; Z. Wang
and Mi (2017); Wu et al., 2018)Strength

Tungsten
chalcogenides (WS2)

Semiconductor with band gap (2.1 eV), electron mobility of value 20
(cm2 V−1 s−1)

Desalination (Eftekhari, 2017; Rahmanian
et al., 2018)

Titanium carbide
(Ti3C2Tx)

Great structural and chemical stability, hydrophilic, efficient value of
conductivity, non-toxic

Contaminant or pollutant
adsorption

(X. Gao et al., 2019; Ren et al.
(2015)

FIGURE 1 | Structures of 2D nanomaterials. Reproduced with permission (T. Hu et al., 2019) (Copyright 2019 ELSEVIER).
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example is the strong clumping tendency of 2D materials
(i.e., agglomerates), which is frequently associated with
unwanted material properties degradation, random structural
deformation, and heterogeneous interlayer interference.(Goh
and Ismail, 2015; Dervin et al., 2016; Homaeigohar and
Elbahri, 2017; Jeong et al., 2020).

3.1 Types of 2DNanoparticles Used inWater
Management
In recent years, 2D materials have gained widespread scientific
consideration because of their unique structure and appealing
applications (Figure 1). As a result, many different 2D
nanomaterials have been projected and prepared using various
techniques, with excellent implementations of these 2D materials
shown. In this section, we will go through some common 2D
nanomaterials, like carbon products (Graphene), boron nitride
materials (BNM), transition metal oxides (TMOs), transition
metal dichalcogenides (TMDs), layered double hydroxides
(LDHs), and MXene (Huang et al., 2020).

Graphene: Graphene is considered as a specific atom thick
graphite, a carbon allotrope having a 2D structure. It is made up
of a carbon network in a close hexagonal packing. In this
structure, the single atom covalently bonded to further three
neighbors (carbon atoms). A single sheet of carbon has around
0.142 nm from two adjacent carbon atoms. Individual layers pack
collectively to form graphite with the help of the van der Waals
power, with a space of around 0.335 nm between neighboring
layers (Huang et al., 2020).

Boron nitride materials (BNMs) are isostructural to carbon and
being used in various fields of science. BNMs exhibit large surface
area, better mechanical strength, exceptional thermal stability and
conductivity, excellent corrosion and oxidation resistance, low
density, and wide-band gap semiconducting property, making
them an ideal candidate for water remediation (Feng et al., 2016;
Yu S et al., 2018). BNMs usually exist in four crystalline forms,
including graphite like hexagonal BN (h-BN), rhombohedral BN
(r-BN), wurtzite BN (w-BN), and diamond-like cubic BN (c-BN).
The c-BN and w-BN are low-density phases with sp3 hybridized
bonds, while the h-BN and r-BN are a dense phase with sp2
hybridized BeN bonds (Yu S et al., 2018; Sharma and Naushad,
2020). Two of the most widely used BNMs are BN nanosheets
(BNNSs) (analogous to graphene) and BN nanotubes (BNNTs)
(analogous to carbon nanotubes) (Golberg et al., 2010; Ruiyang
Zhang et al., 2017). BNM-based adsorbents showed better
performance as adsorbents for water purification compared with
others, such as activated carbon (Sharma and Naushad, 2020),
chitosan (Anitha, 2016) and carbon nanotubes (Ihsanullah, 2021).

Transition metal dichalcogenides (TMDs) are considered as
layered materials with the common chemical formula MX2, here
M represents a transition metal and X acts as a chalcogen. TMD
monolayers stack collectively with the help of the van der Waals
power. Each TMD monolayer is made up of fine three layers of
atoms: a layer of transition metal, two layers of chalcogen, and a layer
of transition metal interjected between them. TMDs’ ability to shape
diverse crystal polytypes is one of their distinguishing characteristics
(Manzeli et al., 2017).

Transition metal oxides (TMOs) are used as electrode
materials to make electrochemical capacitors (ECs) due to
their better redox activity compared with carbon materials. On
the other hand, TMO’s lower electrical conductivity restricted
their energy storage capacity, especially at higher rates. 2D
nanostructured TMOs exhibit a high surface area, better
compatibility with electrolytes, and a short way ion transfer
pathway, which concomitantly and significantly increases the
storage of charge capability of ECs as electrode materials (Tan
et al., 2016). MXenes are a kind of two-dimensional layered
transition metal carbide or nitride created by specific lithograph
of rawMAX phases with the following equations Mn+1Xn (n = 1,
2, or 3), here M represents the transition metal (TM), A is a
member of category of IIIA or IVA from periodic table, and X
represents may be carbon or nitrogen. M layers are almost
hexagonally close packed all together in MAX phases, and X
atoms inhabit the octahedral sites. The elements of A and M are
metallically bonded with each other and interleaved in the
Mn+1Xn layers. Using solid etching solutions such as HF, the
A layer could be depicted from the MAX phases, resulting in
MXenes with 3 distinct structures, namely M2X, M3X2, and M4X3

(Dhakal et al., 2015). To date, close to 30 MXenes have been
successfully synthesized including Ti3C2Tx, Ti2CTx, Nb4C3Tx
(Ghidiu et al., 2014), Ti3CNTx, Ta4C3Tx (Naguib et al., 2012),
Nb2CTx, V2CTx (Lukatskaya et al., 2013), Nb4C3Tx (Ghidiu
et al., 2014); however, many more have been theoretically
predicted based on the available MAX phase precursors
(Barsoum, 2013; Lukatskaya et al., 2013). Of those, titanium
based MXenes, such as Ti2CTx, and Ti3C2Tx are most
promising for environmental applications due to element
abundance and non-toxic decomposition products.
Particularly, titanium carbide (Ti3C2Tx) is the most widely
studied MXene (Naguib et al., 2014). Furthermore, different
MXene compositions have been introduced with two or more
transition metals in the M layers in both ordered and disordered
structures (Mo2Ti2C3, (Ti0.5,Nb0.5)2C, (V0.5,Cr0.5)3C2) (Anasori
et al., 2015; Gogotsi and Anasori, 2019).

Layered double hydroxides (LDH) are positively charged
layered materials with loosely bound charge balancing anions
or solvation molecules, as well as interlayer molecules of water,
with a typical formula of [Mz+

1-xM
3+
x (OH)2]

m+ [An−]m/n.yH2O, in
interlayer spaces. Much of the time, Mz+ and M3+ reflect divalent
and trivalent metal ions, respectively, yielding m = x. An− is a
replaceable anion found in the inter—layer region. A
distinguishing feature of LDHs is the absence of bonding
between the cation layers, which enables the interlayer spacing
to expand or contract to accommodate a diverse array of
interlayer anions. As a result, An− can be any anion capable of
balancing charges (organic or inorganic) (Mohapatra and Parida,
2016; Bukhtiyarova, 2019).

3.2 Synthesis of 2D Nanomaterials
3.2.1 Top-Down Method
Top-down synthesis method of nanomaterials involves the
development of ultrathin like needlelike nano-sheets using
either a chemical or physical procedure (Figure 2). The
physical top-down synthesis method uses ultrasonic waves or
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mechanical force to scale off layered van der Waals solids into
solo and some layer 2D materials, while the chemical top-down
synthesis method depends primarily on chemical reactions
induced by ion exchange, heat, and some other means (Chen
et al., 2018; Jianghao et al., 2016). The physical top-down
approach involves the usage of photons, electrons, and ions
while the chemical top-down strategy relies largely on
chemical reactions that are brought about by chemical
etchants or by application of heat (Yu et al., 2013). The top-
down approach is widely used in the semiconductor device
industry because it can be used to fabricate a wide range of
devices with high reliability and integrity. Many innovative
structures, such as nanowires which may be utilized to detect
biological samples without labelling, have been produced by
adopting this approach. In a top-down technique, the main
fabrication stages are 1) lithography, 2) laser ablation, 3)
chemical etching, 4) milling, and 5) thermal breakdown
(Bellah et al., 2012).

3.2.2 Bottom-Up Method
The top-down approach is effective for creating ultra-thin,
needlelike, high-quality nano-sheets with broad sideways
dimensions (Figure 2). Moreover, it should be noted that all
of the previously described exfoliation techniques are only
relevant to materials with layered crystals in bulk form. The
cost of mass production using the methods described previously
is typically very low. Materials at nonorange are made from

molecular or atomic precursors that may be reactive and expand
in size or self-assemble into more structures found in complex
form, using a bottom-up method. Thus 2Dmaterials can be easily
extended (Karfa et al., 2020). This method offers the ability to
construct effective multicomponent devices by self-assembly of
atoms and molecules without wasting them or requiring the
removal of system components (Biswas et al., 2012). Physical
aggregation, chemical reactions, or the use of templates are
commonly used to manipulate the assembly of the basic
building blocks (Liu and Bashir, 2015). Controlled chemical
reactions cause the building blocks to self-assemble and form
nanostructures like nanotubes, nanoribbons, and quantum dots
(Noah, 2020). Although one of the primary obstacles is ensuring
predetermined structures with precise forms and sizes, this
strategy has the ability to create nanostructured materials
when the top-down approach fails (Bellah et al., 2012).

3.3 Salient Features of 2D Nanomaterials
Two-dimensional nanomaterials are made up of thin films of at
least one atomic layer of thickness. In contrast to materials in bulk
form, these nanomaterials have a higher ratio of surface area to volume
and hence have many atoms present on their surfaces. Since these
atoms have a multi-purpose than the inner atoms, enlarging the
number of atoms at the surface alters the behavior of 2D
nanomaterials. Because of their thickness and dimensions on the
macroscale or nanoscale, 2D nanomaterials are thought to be
attenuated nanomaterials. These nanomaterials are strongly layered

FIGURE 2 | Synthesis methods of 2-dimensional Nanomaterials. (A) There are two primary strategies: top-down exfoliation and bottom-up growth. (B) A series of
different extensive fabrication techniques to synthesize 2D Nanomaterials (Li, Wang, Yin, Lewis, & Wang, 2020).
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with each otherwith in-plane bonds andwithin layers, they are layered
through weak van derWaals bonds (Rafiei-Sarmazdeh et al., 2019). A
brief description of these features is provided below:

3.3.1 In-Plane Electronic Confinement
Amaterial’s electrical and optical properties are determined by its
electronic band arrangement. It explains how electrons (e−s) pass
around the substance and is caused by the periodicity of the
crystal structure. When a substance is converted from bulk form to
two-dimensional, the consistency in the perpendicular direction to
the plane is eliminated, which may significantly alter the structure
of bands. The altered band structures are then pledged for
graphene’s extraordinarily large conductivity and mono-layer
MoS2 fluorescence (Sangwan and Hersam, 2018).

Lessened screening of dielectric between holes and electrons
present in semiconductors is another consequence of
dimensional confinement. When there is small material
available to screen the electric field, Coulomb interaction starts
increasing and strongly bounded excitons become more stable
than those excitons present in the form of bulk materials. If
excitons are trapped in a plane that is narrower than their Bohr
radius, as it already happened in many 2D semiconductors, thus
quantum confinement starts increasing their energy relative to
excitons present in bulk form, increasing the wavelength of light
they consume and release (Zheng and Zhang, 2019).

Their energy levels could be regulated by altering the number
of layers in the 2D substance (for example, a bi-layer structure can
absorb or emit lower-energy light than a mono-layer structure).
However, this may have an impact on the band composition, as
well as by developing modifications to other properties (for
example, bi-layer MoS2 becomes non-emissive analyzed to a
mono-layer due to transition in electronic band structure)
(Ramalingam et al., 2020).

3.3.2 High Surface Area to Volume Ratio
In comparison to 0D, 1D, and 3D materials, 2D materials have a
high surface-to-volume ratio. A high surface area to volume ratio
provides a broad surficial area for the contact of 2D materials and
analytes, making 2D materials more suited for sensor
applications. As a result, low concentration analytes can be
detected using such sensors.

The ratio of surface area to volume of a substance determines
howmuch it is available to its surroundings. This is significant for
chemical reactions because the larger reactant that comes into
connection with the sample, will perform the reaction quicker, so
2D compounds are more reactive than in bulk form equivalents.
It also makes 2D materials more receptive to their environment
and is used in sensors made of 2D materials (Yu X et al., 2018).

3.3.3 Superior Tensile Strength
Many covalently bound planes are placed together with the help
of weak van der Waals interactions present in a bulk material of
layered form. When a force is practiced to an object, these Van
der Waals forces are quickly resolved, and the material fractures,
giving the impression that it is fragile. The covalent bonds that tie
the atoms altogether in the layers, on the other hand, are
extremely more powerful. A monolayer has only covalent

bonds. After replacing the material’s “weak links,” it tends to
become even stronger. For example, graphene has 1,000 times the
tensile strength of graphite, and although a graphite pencil is
easily broken, graphene is about 100 times stronger than steel (Liu
et al., 2019).

4 POTENTIAL APPLICATION OF 2D
NANOMATERIALS IN WATER
MANAGEMENT
4.1 Water Purification Application
Two-dimensional nanomaterials are thought to be ideal
replacements for conventional desalination and water
purification membrane materials due to their atomically thin
shape, wide surface area, and mechanical ability. One well-known
example is the strong clumping tendency of 2D materials
(i.e., agglomerates), which is frequently associated with
unwanted material properties degradation, random structural
deformation, and heterogeneous interlayer interference (Goh
and Ismail, 2015; Dervin et al., 2016; Homaeigohar and
Elbahri, 2017; Jeong et al., 2020). In this section, we have
briefly discussed the mechanistic mechanisms of different 2D
nanomaterials and their applications in removing and controlling
water contaminants.

4.1.1 2D Nanomaterials as Excellent Adsorbents
Adsorption is one of the most efficient techniques that is widely
utilized for water purification owing to their ease of operation,
regeneration ability, low cost, high removal efficiency,
availability of plentiful adsorbents, and less harmful by-
products (Zubair et al., 2018; Ihsanullah, 2021). Several
nanomaterials such as graphene (Lim et al., 2018), carbon
nanotubes (Abbas et al., 2016), metal oxide (Kumar et al.,
2013), and MXenes (Rasool et al., 2019; Ihsanullah, 2020)
have been extensively exploited as adsorbents for the
elimination of numerous toxic impurities from water (Jia
et al., 2017; Chang et al., 2017). In this section, we have
briefly discussed the mechanism conferring the role of 2D
nanomaterials as adsorbents for water treatments.

Graphene is a 2D nanomaterial and exists as sheets of a single
layer of graphetically bonded carbon atoms (Geim and
Novoselov, 2010). The high available surface area for
contaminant species to adsorb to, as well as the potential for
exotic chemical modifications and composite fabrication make
graphene an attractive material to use for water purification
(Dreyer et al., 2010). For water purification applications,
graphene is usually converted into graphene oxide (GO) via
an acid treatment process, namely the Hummers or improved
Hummer’s methods (Han et al., 2013). This conversion to GO
introduces a high number of hydrophilic oxygens containing
groups across the graphene sheet, including hydroxyls and
epoxides (Gao et al., 2011). The most profound effect of the
chemical modification is to markedly increase water flow through
GO materials due to an increase in hydrophilicity, enabling the
formation of membranes with high water permeability and flux
(Sweetman et al., 2017). The underlying mechanisms involved in
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graphene and GO mediate water purification include
electrostatic, hydrogen bonding and π–π interactions between
contaminant species and the graphene material all contribute to
the material’s excellent adsorption capacity (Baig et al., 2019).
Furthermore, the high specific surface area (over 1,000 m2/g), the
laminar structures and nano-perforated membranes of
graphene’s facilitates excellent adsorption capacity (Sen Gupta
et al., 2015). Graphene materials for neutralizing
microorganisms’ function via disrupting the biological
function of these species, comptonization of the bacteria
membrane, generation of reactive oxygen species (ROS) and
envelopment of microorganisms, are key mechanistic
approaches for water purification regulated by graphene (Hu
et al., 2010; Chen et al., 2014).

LDHs: adopt a hydrotalcite-like anionic lamellar structure,
which is assembled throughnoncovalent bonding interactions
between the cationic host layers and the anionic guest
interlayers (Zou Y et al., 2016). LDHs exhibit large interlayer
spacing, broad chemical composition, and ion-exchange ability,
thus making them an excellent 2D materials to use as catalysts or
adsorbents in the field of water remediation (Song et al., 2018).
Over the last decade, numerous efforts such as surface decoration,
calcination, intercalation, and multiple composition methods,
have been made to improve LDH materials and graphene-
LDH compost (G-LDH) has been widely accepted for water
remediation (Pang et al., 2019).

2D BNMs: hexagonal BNM (so-called “white graphene”), a
layered material, structurally analogous to graphite has been
explored by researchers extensively in water treatment, carbon
capture, and catalysis (Fang et al., 2016). Briefly the mechanistic
mechanisms of the adsorption process of water pollutants on
BNMs can be explained in the context of the electrostatic
attractions, pep stacking interactions, physisorption, surface
complexation, van der Waals forces, hydrogen bonding, and
chemical adsorption, however the adsorption mechanism
merely depends on the nature of the pollutants, structure, and
surface characteristics of the BN materials (Gonzalez-Ortiz et al.,
2020). BNMs can interact with the aromatic rings of organic
compounds through hydrophobic interaction and p-p
interactions and the hydrophobic interaction between the
aromatic rings of organic compounds and the hydrophobic
surface of BNMs also plays an important role in the
adsorption of pollutants (Ihsanullah, 2021).

MXenes are another potential player for water purification, as
due to the high specific surface area, abundant functional –OH
and –O groups with tunable surface chemistry, the adsorption
performance of MXenes can effectively compete with or
outperform with other nanomaterials. Moreover, the presence
of functional groups onMXene surface not only provides sites for
direct ion exchange, but also reduces some organic molecules and
cations (Shahzad et al., 2017; Zhao L et al., 2018). This in-situ
reduction ability coupled with adsorption is considered an
advantageous over many other nanomaterials and opens a new
promising function of MXenes for unique reductive-adsorptive
removal of pollutants. Due to a high negative surface charge (zeta-
potential between 30 and 80 mV), MXenes have demonstrated an
excellent ability to spontaneously intercalate Na+, K+, NH4

+,

Mg2+ and Al3+ cations and polar organic molecules such as
hydrazine, urea, and DMSO between their layers, showing the
potential of their use as adsorbents (Lukatskaya et al., 2013;
Mashtalir et al., 2013). Moreover, the exterior surface groups
of MXenes not only provide direct ion exchange sites, but also
reduce some organic molecules and cations like Cu2+and Cr6+

(Zou G et al., 2016; Shahzad et al., 2017). This in-situ reduction
ability also reveals a new promising function of MXenes for
pollutant removal. For example, DL-Ti3C2Tx nanosheets
exhibited efficient reductive removal of Cr6+, where the
residual concentration of Cr6+ after treatment was less than 5
parts per billion (ppb) witha maximum removal capacity of 250
mgg 1 (Ying et al., 2015). Some other features of MXenes such as
thin interlayer spacing (<2Å) between MXene nanosheets, and
the presence of hydrophilic groups and weak bonding forces in
hydrated MXene make them very distinctive in adsorbing
pollutants more efficiently as compared with other 2D
nanomaterials (Ren et al., 2015). Different MXenes have been
used as absorbent to treat contaminated water (Table 3).

4.1.2 2D Nanomaterials Mediated Membranes
Filtration for Desalination
Membranes provide a physical shield to distinguish unwanted
materials present in water depending on their size or may be
permeability, which is a primary goal of water treatment. Because
of the common trade-off between water permeability and
selectivity, it is especially difficult to develop practical
membranes with both high permeability and high selectivity
using conventional membrane materials. The permeability of a
membrane is understood to be inversely proportional to its
thickness. As a result, 2D nanomaterials with atom-thicknesses
ranging from 1 to a few nm have appeared as exciting structural
blocks for producing splitting membranes of the future
generation. Incorporating 2D nanomaterials through practical
membrane architecture, for example, allows for the development
of an atomic thin separating structure that allows molecules of
water to move along selectively. These isolated membranes can be
classified into membrane filtration like liquid state of water and
solar membrane distillation like gas state of water depends on the
state of water that infused them (such as, gas phase or liquid
phase) (Liu et al., 2016; Zhu et al., 2018). A typical example of 2D
nanomaterials mediated membranes filtration is desalination
process. So far, seawater desalination has been mainly
performed via multistage flash distillation and reverse osmosis
(RO) (Xu et al., 2016). The desalination plants adopt reverse RO
technology, and, in this technology, water is forced through a
semi-permeable membrane by an external positive hydrostatic
pressure. Accordingly, a larger volume of water passes through
the membrane compared with the volume of dissolved salts or
organic molecules. RO is indeed the most energy-efficient
technology for seawater desalination and is the benchmark for
the comparison of any new desalination technology, however this
technology still suffers from low desalination capacity, treatment
with RO is membrane fouling, which reduces treatment
effectiveness and results in difficult-to-manage concentrate
output. Separation of ammonium is frequently insufficient
during reverse osmosis (Tałałaj et al., 2019) and high capital
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costs, hampering its broad application in most developing
markets (Nicolaï et al., 2014). The core of the RO process is a
semipermeable membrane that separates pure water from
seawater (Zheng et al., 2016b). The classic semipermeable RO
membrane is still based on the same polyamide thin-film
composite design that was developed 3 decades ago (Cohen-
Tanugi and Grossman, 2015). The most permeable thin-film
composite membranes currently offer only 1.5–2 times higher
permeability than that 20 years ago and they are still damaged
when contacting chlorine; thus, disinfection becomes challenging
and the fouling tendency increases (Lee, 2011). To meet the needs
of advanced desalination required to address the water challenges
of the twenty-first century, a breakthrough in RO membrane
technology is a must. In comparison to standard RO membranes,
the produced TFC-PE membrane exhibits greater mechanical
robustness and resistance to organic solvents, which is mostly due
to the PE support’s impressively high mechanical and chemical
stability (Park et al., 2018). However, there are certain downsides
of polyamide thin film composites membranes, such as chlorine,
fouling, and working temperature restrictions (0–45°C) (Ibrahim
et al., 2015).

Graphene can be regarded as an ultimate RO membrane,
because it is stronger, thinner and more chemically resistant than
the polyamide active layers in thin-film composite RO
membranes (Cohen-Tanugi and Grossman, 2015;
Homaeigohar and Elbahri, 2017). The atomic thinness of
graphene (d ≈ 0.34 nm) can lead to larger water permeability
than the polyamide active layer in thin-film composite
membranes (d ≈ 100 nm) (Goh and Ismail, 2015). In addition,

graphene shows better tolerance to chlorine than polyamide, that
is, an important advantage in hindering membrane fouling
without degradation (Cohen-Tanugi and Grossman, 2015).
GOs shows antimicrobial properties, thus lowering membrane
biofouling, that is, improving the membrane lifetime and energy
consumption of the water purification processes (Mahmoud et al.,
2015). Some flaws in graphene sheets, such as grain boundaries,
have been proven to be important in assessing their dependability
in real desalination plants, since these defects might affect the
mechanical and selectivity capabilities ascribed to graphene
membranes (Xu and Zhang, 2016). Moreover given the
excellent properties of graphene materials for water
desalination and purification membranes (Wang and Karnik
2012; You et al., 2016), the difficulty to obtain a large area
graphene membranes on appropriate supports, and the lack of
suitable strategies to generate pores of proper dimensions to
exclude small ions, such as Na+, K+ and Cl−, in a pressurized
filtration process, are the two major limitations to be overcome
for the wide use of graphene on desalination (Presumido et al.,
2021). MXenes on other hand also show very effective results in
desalinisation process (Table 3). In a study, it was found that
because of excellent electrical conductivities and high specific
surface areas, a high salt removal rate of 9.4 mg g−1 min−1 was
observed using Mxenes Ti3C2Tx in a capacitive desalination
process (Guo et al., 2018).

4.1.3 2D Nanomaterials as Photocatalysts
Photocatalysis is a process which makes use of solar energy to
clean water, has been extensively studied and is regarded as one of

TABLE 3 | Selected examples of the utilization of MXenes for water purification (adapted from Rasool et al. (2019)).

MXene Material Applications References

Adsorbents • Multilayered Ti3C2Tx Nanosheets • Removal of Cu2+, Pb2+, Cr5+, Cr6+, phosphate, Hg2+

and uranium from water
Shahzad et al. (2017); Q. Peng et al., 2014; Ying et al.
(2015); Zou X et al. (2016); Zhang et al. (2016);
Mashtalir et al., 2014; Shahzad et al. (2018); Wang
et al., 2017

• Alk-MXene (Ti3C2(OH/ONa)xF2-x)
• Urchin-like rutile Titania carbon

(u-RTC) from (Ti3C2(OH)0.8F1.2)
• Ti3C2(OH)0.8F1.2 -iron oxide

nanocomposite
Magnetic Ti3C2Tx nanocomposite

membranes • Ti3C2Tx/PVDF • Selective sieving of different heavy metals such as
Li+, Na+, K+, Mg2+, Ca2+, Ni2+ and Al3+, andMB+ dye

Chang E Ren et al. (2015); Pandey et al., 2018; Han et
al., 2017; Liu C et al. (2018); Kang et al., 2017; Y. Gao
et al. (2015)• AgNPs/Ti3C2Tx • Membranes with high water flux and high rejection to

Congo red, Gentian violet dyes, salt, and blue dye
• Ti3C2Tx/PES • Photodegradation of MO under ultraviolet irradiation
• Ultrathin 2D Ti3C2Tx film
• Ti3C2Tx-GO
• TiO2/Ti3C2

Photocatalytic
agents

• TiO2/Ti3C2 • Increased hydrogen production under UV irradiation
with enhanced photocatalytic activity

J. Zhang et al., 2020; C. Peng et al., 2016; Ran et al.,
2017; C. Peng et al., 2017

• 2D Ti3C2/TiO2 • Photocatalytic degradation of methyl orange dye
• CdS/Ti3C2

• Ti3+ doped rutile TiO2/Ti3C2

Antibacterial
agents

• Ti3C2Tx and Ti3C2Tx/PVDF • Antibacterial activity against E. coli and B. subtilis in
aqueous media

Rasool et al., 2016; Rasool et al., 2017; Pandey, et al.,
2018; Mayerberger et al., 2018)• Ag@ Ti3C2Tx

• Ti3C2Tx/chitosan electrospun
nanofibers
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the most durable approaches to addressing environmental
problems with limited energy production. In general,
photocatalysis entails 1 or more photo reaction procedures
catalyzed by the photocatalyst, in which available unbound
electrons (e−s) are excited to the conduction band and holes
remain in the same state, i.e., valence band. As a result, these
electron-hole pairs are crucial in photocatalytic applications such
as splitting water, pollutant oxidation, and reduction of CO2.
Though, the excited charge carriers by photo-generated are
unstable and simply recombined, lowering photocatalysis
conversion efficiency. Because of the distinct structures of 2D
nanomaterials and their nanocomposites, 2Dmaterial-dependent
photocatalysts are promising applicants to give indication
characteristics like multiplicity of host-guest species, high
specific surface-areas, abundant surface energetic sites, and
porous structures. The photo-catalyst black phosphorus (BP)
has lately emerged as a promising photo-catalyst for solar H2

generation, but its bulk crystal with a bandgap of 0.3 eV limits the
driving force required for optimal photocatalytic activity
(Figure 3A). In addition, the massive and intimate 2D
nanojunctions created in this smart 2 dimenional-2
dimensional BP/MoS2 can speed up photo-generated charge
separation, resulting in strong photocatalytic H2 production
activity (Yuan et al., 2019). Graphene, carbon nano-sheets,
metal oxide, and BNM and MXene have recently been
studied as 2D material-based photocatalysts for a variety of
applications.

Graphene-based nanocomposites photocatalysts have showed
a significant potential as heterogeneous photocatalysis systems
for water purification. The complement of semiconductor with
graphene has also emerged as a prominent alternative for
improving the photoactivity of the nanocomposites. Three
strategies can be mainly considered for the synthesis of
graphene nanocomposites.

(1) increasing the contact area between semiconductor and
graphene by forming hybrids with a 2D-2D material for
efficient charge transfer and, also, formation of trapping
channels for electron to lower the rate of recombination.
For instance, an electron transport model of graphene/
titanate nanotubes (TNTs) photocatalyst under visible-
light illumination based on their energy band topologies.
A metal–semiconductor junction is formed by graphene
and TNTs, and graphene can be used as a sensitizer to
provide the photocatalyst with an outstanding visible-
light response (Figure 3B). Xiang et al. (2012) prepared
TiO2/graphene and graphene/g-C3N4 composites as 2D-
2D materials which, under the visible light, exhibited
enhanced photo-efficiency. Moreover, three different
synthetic protocols (co-calcination, solvothermal
treatment, and charge-induced aggregation) were used
to make TiO2 and g-C3N4 2D/2D nanocomposites, with
different degrees of enhancement (1.4–6.1 fold) in the
visible-light-induced photocatalytic hydrogen evolution

FIGURE 3 | (A) Schematic diagrams of 2D-2D BP-10000/MoS2 photocatalysts. Reproduced with permission from Yuan et al. (2019), (B) Photocatalytic
mechanisms of graphene-TiO2 composite under (a) visible light (b)UV light, Reprinted with permission fromG. Hu & Tang (2013), (C) The energy diagram of the TiO2 and
g-C3N4 composites for photocatalytic H2 evolution under visible light irradiation. Reproduced from (Zhong et al., 2019), (D)Mechanism of photocatalytic generation of
RSs on TiO2-rGO under UV and visible irradiation, and in the presence of chloride. Reproduced from Liu et al. (2019).
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reaction compared to the simple physical mixture and
mechanism (Figure 3C),

(2) improvement in the proximity of bonding between
semiconductor and graphene, because it plays a major role
in regulating the photocatalytic efficiency,

(3) introducing interfacial mediators between semiconductor
and graphene (Han et al., 2014). For instance, using a
noble metal as an interfacial mediator to prepare Cu2O/
Pd/RGO (reduced graphene oxide) composites (Bai et al.,
2014). The role of Pd nanoparticles here is collecting the
holes from Cu2O and transferring them onto graphene
surface, and thereby suppressing the electron-hole pair
recombination to a great extent. Graphene electrical
conductivity can be enhanced via solvent-exfoliated
graphene (SEG) method, for instance (Yuan et al., 2014),
fabricated the SEG/TiO2 which was of higher photo-activity,
as compared to RGO/TiO2, for aerobic oxidation (3D).

BNMs are another potential 2D nanomaterials, which
facilitate water purification by photocatalysis mechanism
(Table 4). BNMs are excellent candidates for the sorption of
pollutants, such as oil and organic solvents from heavy industries,
and for water purification (Gonzalez-Ortiz et al., 2020). BNMs
interact with other metal oxides to increase photocatalytic reaction,
for instance, BNMs significantly enhance the photocatalytic
performance of TiO2/porous BNMs by facilitating the electron-
hole separation on TiO2/P-BNMs. The presence of photoreaction
species such as hb andOH, on TiO2 surfaces, and large surface area
of BNMs make the fast adsorption of LR2B onto TiO2/porous
BNMs (Ihsanullah, 2021). Moreover, BNM doped polyaniline
(PANI) hybrid nanocomposite was found effective in
photodegradation of pollutants (Shahabuddin et al., 2018) PANI
has the conducting polymeric chains that enable them to degrade
organic matter; however, doping of PANI with BN amplifies the
generation of photoelectrons and holes that enhances the
photocatalytic efficiency of the nanocomposite (Shahabuddin
et al., 2018). BNM can be used also to enhance TiO2

photocatalytic activity for the treatment of pollutants in water.

BNMs/TiO2 nanocomposites have been also tested to remove other
contaminants, such as ibuprofen, by photocatalytic oxidation.
BNNS addition improved the light absorbance and reduced the
electron/hole pair recombination. Moreover, the nanocomposite
photocatalytic oxidation rate increased with higher BNMs loads
(Lin et al., 2019).

MXenes exhibit metallic behavior with a substantial electron
density near the Fermi level (Tang et al., 2012). In addition, the
large and anisotropic carrier mobility in MXene facilitates the
migration and separation of photogenerated electron-hole pairs,
making them promising for photocatalytic applications (Rasool
et al., 2019). The higher photocatalytic performance of the TiO2/
Ti3C2Tx nanocomposite can be attributed to more effective
electron-hole separation and the formation of a Ti3C2Tx and
TiO2 heterojunction of the composite over TiO2 or Ti3C2Tx alone
under UV light irradiation. TiO2/Ti3C2Tx nanocomposites have
also been used for hydrogen production through photocatalytic
water splitting (Liu J et al., 2015). In this nanocomposite, Ti3C2Tx
acted as an electron sink to promote the separation of photo-
generated charge carriers and provide a 2D platform for intimate
interactions with TiO2 NPs (Rasool et al., 2019). In a study by
Guo et al. (2016), based on ab initio calculations, 48 two-
dimensional (2D) transition metal carbides also referred to as
MXenes were investigated to understand their photocatalytic
properties, and obtained results highlighted 2D Zr2CO2 and
Hf2CO2 as the candidate single photocatalysts for possible
high efficiency photocatalytic water splitting. A significant
property of 2D Zr2CO2 and Hf2CO2 is that they exhibit
unexpectedly high and directionally anisotropic carrier
mobility, which may effectively facilitate the migration and
separation of photogenerated electron–hole pairs (Guo et al.,
2016). Some additional examples of the use of MXenes as
photocatalytic agent have been given in Table 3.

4.1.4 2D Nanomaterials-Based Disinfection
Disinfection, i.e., the elimination, deactivation, or destruction of
pathogenic microorganisms, is the final and most significant
phase of water and wastewater treatment to safeguard natural

TABLE 4 | Scope of different BN based materials for water purification via photocatalysis.

Material Surface area
(m2/g)

Target pollutant Remarks References

TiO2/porous BNNSs
composites

201.8 Cr6+ Enhanced the photocatalytic performance of TiO2/P-BNNSs
with higher removal of Cr6+

(Xie et al., 2017)

BN doped PANI
nanocomposites

34.85 Malachite green, malachite
blue, malachite orange

The photocatalyst exhibited excellent reusability and
degradation performance for selected dyes in five cycles

Shahabuddin, et al. (2018);
Ihsanullah (2021)

BN modified bismuth
phosphate

22.93 enrofloxacin The introduction of BN suppressed photogenerated electron-
hole recombination

(Z. Chen et al., 2017)

AgI-BN
nanocomposites

— rhodamine B Enhanced the photocatalytic performance due to high light
absorption and transfer of photogenerated electrons to the AgI
nanostructures through the BN nanosheets

(Choi et al., 2015)

BN modified BiOBr 19.10 ciprofloxacin tetracycline,
rhodamine B

The superior photocatalytic performance of the composite after
BN modification was ascribed to the improved light harvesting
ability and enhanced separation efficiency of photogenerated
electron-hole pairs

(Ke et al., 2019)
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habitats and public health. Disinfectants used in water treatment
today include Cl2, NH2Cl, O3, and ClO2. These disinfectants are
ineffective at inactivating all contaminants and produce toxic
disinfection by-products (DBPs). The need for new disinfectants
for water treatment is becoming increasingly urgent. Thus, 2D
nanomaterials play an important role in this regard. Recently,
application of MXenes (Ti3C2Tx) have been found very effective
in treating various bacteria such as against Bacillus subtilis and
Escherichia coli (Table 3). The distinctive feature of tremendous
resistance to biofouling makes MXenes fit for membrane
application. The antibacterial characteristics of MXenes can be
attributed to anionic nature of the surface, the direct killing of
bacteria due to contact with hydrophilic surface high and
hydrogen bonding between the cell membrane and oxygenate
groups of MXene that preclude the nutrient intake (Ihsanullah,
2020). The atomic structure of MXenes also plays a role in their
antibacterial properties (Jastrzębska et al., 2019).

Likewise, graphene and graphene oxide (GO), even without
any functional, also very effective antimicrobial agents (Yang
et al., 2011). The antibacterial activity of water-dispersible

graphene derivatives; GO and RGO nanosheets can efficiently
prohibit the growth of E. coli bacteria while exhibiting minimal
cytotoxicity (Table 5) (Hu et al., 2010). GO weakens the
metabolic activity of microorganisms (Ahmed and Rodrigues,
2013). This causes a reduction in oxygen consumption and
ultimately decreases the value of biological oxygen demand
(BOD) which finally leads to cell death. The bactericidal effect
of graphene is also induced by the sharp edge of graphene
nanosheets which results in physical disruption of the cell
membrane and causing the integrity loss in membrane and
release of cellular content and eventually cell death (Upadhyay
et al., 2014). Graphene-based materials can also cause oxidation
of bacterial proteins, lipids, DNA and, also, are capable to oxidize
other cellular components and thiols (Upadhyay et al., 2014). The
bacterial cytotoxicity of GO and rGO is attributed to both
membrane and oxidative stress (Singh et al., 2020).

4.2 Water Contaminants Monitoring
In water treatment systems, precise, sensitive, and rapid
identification of contaminants is critical because it

TABLE 5 | Graphene mediated bacterial disinfection in water (adapted from Singh et al. (2020)).

Nanocomposites Method Used Source of
light

Targeted bacteria References

TiO2/graphene Redox reaction Visible light E.coli (Cao et al., 2013)

TiO2/graphene/
porphyrin

Solvothermal method Visible light E.coli (Rahimi et al., 2015)

ZnO/graphene Thermal decomposition UV light E.coli (Kavitha, Gopalan, Lee, & Park, 2012)

G-CdS Solvothermal method Visible light E.coli (Deng et al., 2016)

TiO2/RGO Photocatalytic reduction Sunlight E.coli (Vickers, 2017)

GO/ZnO Electrodeposition method Visible light E.coli (Nourmohammadi, Rahighi, Akhavan, &
Moshfegh, 2014)

GO-TiO2 Chemical exfoliation method Solar light E.coli (Akhavan & Ghaderi, 2009)

GO-TiO2 NRCs Two phase hydrothermal
method

Solar light E.coli (Chowdhury & Balasubramanian)

CdS/GO Two phase assembly method Visible light B. subtilis, E.coli (P. Gao, Liu, Sun, & Ng, 2013)

MWCNT-ZnO Sol-gel method UV Visible
light

E.coli (Akhavan, Azimirad, & Safa, 2011)

TiO2/MWCNTs Dip-coating sol-gel method Visible light E.coli (Akhavan, Abdolahad, Abdi, &
Mohajerzadeh, 2009)

MGO-TiO2 Simple synthesis method Visible light E.coli (Chang et al., 2015)

Bi2MoO6-RGO Hydrothermal method Visible light E.coli (Y. Zhang et al., 2013)

GO-TiO2-Ag Two phase method Solar light E.coli (L. Liu, Bai, Liu, & Sun, 2013)

SGO-ZnO-Ag Hydrothermal method Visible light E.coli (P. Gao, Ng, & Sun, 2013)

Bi2WO6/GO Hydrothermal method Sunlight B. subtilis (B. Wang et al., 2015)

P25/Ag3PO4/GO Ion exchange method Solar light E. coli, S. aureus, S. typhi and P.aeruginosa (Yang et al., 2015)

CNRGOS8 Wrapping method Visible light E.coli (W. Wang, Yu, Xia, Wong, & Li, 2013)

TiO2/Ag3PO4/GO Ion exchange and hydrothermal
method

Visible light E.coli, S.aureus, S.typhi, B.subtis
P.aeruginosa, and B. pumilus

(Yang et al., 2014)

GO-Ag3PO4 Ion exchange method Visible light E.coli (L. Liu, Liu, & Sun, 2012)
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quantitatively defines the efficacy of water decontamination. For
identifying and tracking toxins in water, a substantial number of
nanomaterials have been studied (Farka et al., 2017; Yan et al., 2018;
Zhang et al., 2019). Notably, the potential of 2D Nanomaterials to
reply to exterior stimuli having extra high surface reactivity explains
the vital properties for monitoring water and observing properties for
pollution. Recently, 2D nanomaterials with exceptional electrical or
optical properties have sparked intense concern in the evolution of
great production sensor devices for pollutants. Noncovalent
interactions like electro statical force and covalent
interconnections, i.e., amide bonding could be used to investigate
pollutants depending on the kind of analytes. This section focuses on
the phase of the art of 2Dmaterial-dependent sensors for monitoring
water pollutants via optical (Gu et al., 2017; Li B. L et al., 2017; Li et al.,
2015; Liu C et al., 2018; Liu X et al., 2015; Mao K et al., 2015; Mao P
et al., 2015; Qian et al., 2015; Wang Y et al., 2016; Zuo et al., 2016) or
electrical outputs (Jiang et al., 2015; Seenivasan et al., 2015; Chaiyo
et al., 2016; Zhou et al., 2016; Cui et al., 2017; Li P et al., 2017; Mao
et al., 2017). Following are the key applications of 2D nanomaterials
that can help in controlling and monitoring water contamination.

4.2.1 2D Nanomaterial as Fluorescent Sensors
Fluorescent sensors, also known as photo-luminescent sensors,
depending on variations in fluorescence, such as intensity,
wavelength, and lifetime caused by pollutants (Xu et al., 2016).
Such variations in the intensity of light or wavelength result from
pollutant binding and altering the sensor’s structure or
composition (Gao and Tang, 2017). The basic principle of
fluorescence-based sensors has been built on the fact that the
specific interaction between recognition component
(nanomaterial) and target analyte (Pb) induce changes in the
fluorescence properties of nanomaterial as can be observed in
various forms (e.g., fluorescence quenching, fluorescent
enhancement/recovery, radiometric fluorescence output,
wavelength shifts, and anisotropy) (Luo et al., 2020). Recently,
a variety of nanomaterials have been used in the development of
fluorescent sensors with improved sensitivity and selectivity
along with the formation of nanocomposites and/or
functionalization with organic linkers (Singh et al., 2021). As
photoluminescence is associated with transfer processes of
energy, the electronic band-gap layout of 2D nanomaterials is
critical for establishing fluorescent (bright) sensors. With a broad
variety of band-gap alternatives, 2-dimensional nanomaterials,
such as graphene of zero band-gap, have provided tremendous
possibilities in the region of sensing (Zeng and Zhang, 2019).
Some 2D nanomaterials with UV-Vis band-gaps could be used
directly as fluorescent (bright) sensors or mixed with some other
materials for making practical composites (Rong et al., 2015).

4.2.2 2D Nanomaterial as Colorimetric Sensors
Unlike fluorescent sensors which require UV light for laser excitation,
colorimetric sensors can alter color when they encounter
contaminants (Nirala et al., 2015; Sano et al., 2016). Colorimetric
sensor detects pollutants in water via surface plasmon resonance
(SPR) approach, enzyme-based catalysis, fluorescent switch, and
ligand-receptor binding (Liu et al., 2018b). In SPR mechanism,
upon contact with pollutants 2D nanoparticles colorimetric

sensors reveal different colors. When the nanoparticles gather, the
solution color of the nanoparticles will change, which is convenient
for the naked eye to determine. This process of aggregation is caused
by the composition of the solution or the properties of the surface of
the particles, through the electrostatic interaction or hydrogen bonds
between the nanoparticles and their surroundings (Li B. L et al.,
2017). For instance, a flow batch-operated AgNP-based automatic
colorimetric sensor was used for the detection of trace Cu2+ in water
samples (Peng et al., 2017). In 2D colorimetric sensors, detection of
pollutants is done by the fluorescence properties of some organic
dyes, fluorescent polymers, and fluorescent nanomaterials (such as
metal nanoclusters, quantum dots, and carbon dots) (Liu et al., 2019)
(For more details see Liu et al. (2018b)).

Enzymatic catalysis based colorimetric sensors utilized two
types of enzymes, natural enzymes, and mimic enzymes. Though
there is no major difference among these two enzyme types in
their catalytic mechanisms, however, the stability and catalytic
activity of natural enzymes are excellent (Zeng et al., 2020).
Colorimetric sensors mediated by enzyme and mimic enzyme
catalysis are usually based on color changes caused by enzyme
and biomimetic enzyme catalysis of 3,3,5,5-tetramethylbenzidine
(TMB) (Liu et al., 2019).

In ligand-receptor based colorimetric sensors, the interaction
between ligands and receptors as indicators (fluorophore and
chromophore) and analytes (cation/anion) can change the
emission spectrum of the indicator and provide a colorimetric
response to different concentrations of analyte (Zhu et al., 2021).
Themost common ligand or receptor is a Schiff base, which has been
widely used in the manufacture of colorimetric chemical sensors to
detect metal cations and other anions, for instance multifunctional
Schiff bases have been utilized for the colorimetric detection of Fe2+,
Zn2+, Cu2+ (Tang X. et al., 2017), Al3+, and cyanide (Lee et al., 2014).
Moreover, some selected examples of the colorimetric detection
mechanism of various colorimetric sensors and the usedmaterials, as
well as their specific detection applications are presented Table 6.
The contents are summarized from five aspects: SPR changes,
enzyme and mimic enzyme catalysis, fluorescence switches,
ligand, and receptor binding.

4.2.3 2D Nanomaterial as Electrochemical Sensors
Detecting electrodes that can generate a detectable electrical
indication regarding electrochemical adsorption or reaction with
analytes is standard for electrochemical identification of aqueous
contaminants. A counter electrode, a working electrode and a
reference electrode are also used in electrochemical sensing.
Pollution will cause changes in resistance, potential, capacitance,
or current both of which can be registered or analyzed.
Electrochemical sensors based on 2D nanomaterials can detect
other toxins in addition to heavy metals (Tiwari et al., 2016). Gas
sensors may also be used to track water quality for hazardous
contaminants such as NH3 or toluene. A detailed analysis of gas
sensingwith 2Dnanomaterials could be found in a new review article,
and we will briefly discuss a few fresh developments in water for gas
sensing of common contaminants (Anichini et al., 2018). The surface
chemistry of 2D nanomaterials can be manipulated to create gas
sensors.
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4.2.4 2D Nanomaterial Use in Field-Effect Transistors
In field-effect transistors (FETs) for pollutant detection, 2D
nanomaterials have gotten a lot of coverage. The adsorption of
selected contaminants on 2D nano-sheets affects one or more
core variables of the FETs, such as the Ion/Ioff ratio, field-effect
mobility and threshold voltage in a standard FETs based sensor.
Semiconducting nano-sheets, in particular, have gained a lot of
attraction because of their high charge transporter mobility and
acceptable band-gaps. Furthermore, the huge sideways scale of
2D nanomaterials allows for conformal interaction with metal
electrodes, lowering in contact resistance in field-effect
transistors-based sensors. FETs, for example, are quick to
react, while fluorescent sensors are known for having a longer
detection time. 2D nanomaterials-based FET sensors, in
particular, are often characterized by compact dimensions and
low energy consumption, making them ideal for use in embedded
and wearable sensors (Mao et al., 2017; Tu et al., 2018).

Field-effect transistors dependent sensors for standard control
and detection of pollutants in water have been developed using
2D nanomaterials. Due to its larger surface area, high carrier
mobility and flexible chemical functionalization, graphene has
gained a lot of intention as a symbolic 2D nanomaterial for
graphene field-effect transistor (GFET) dependent sensors. A
narrow film of safety layers like metal oxide is also required
for water-sensitive 2D nanomaterials to avoid irreversible
degradation of channel materials. An electrostatic double-layer
appears on the surface of adsorbed target analytes during the
study of aqueous contaminants, producing harmful effects on
FETs sensors. The field formed by charged contaminants or gate
potential is reduced by the firm electrostatic double layer (such as
smaller Debye length) (Gao et al., 2015).

5 CHALLENGES AND LIMITATIONS

A host of problems must be overcome to understand the large-
scale use of 2D nanomaterials in the purification of water. Since
2D nanomaterials are still in the prompt period of growth,
technological challenges and manufacturing problems make
their installation in industrial processes costly and limit their
use to small-scale structures. The cost of manufacturing many 2D
nanomaterials is still relatively high as compared to traditional
products, so considerable cost savings is desirable. In addition, the
long-term viability of 2D nanomaterial (both in terms of output
and application) should be considered. Since water treatment is
basically a decontamination procedure, the biocompatibility of

2D nanomaterials must ponder to prevent substance
recontamination and environmentally safe 2D materials with
lower toxicity (such as LDHs) should be prioritized. It would
be essential to improve methods for maintaining specific
nanochannels with long-term operating stability. For energetic
water transport and high-performance solar desalination,
creating larger throughput channels is critical. Thus, up to
date self-assembly and guided aggregation schemes that shape
sequence structures with high throughput channels could be
extremely advantageous. The systematic modulation of
material pollutant interaction is required for establishing new
procreation of creative nanostructures that are programmable,
adaptive, multifunctional, and selective for adsorption,
photocatalysis, and sensing processes. Many pristine
environments exhibit poor and unspecific encounters with
contaminants (Mounet et al., 2018). Until now, the MXenes
are mainly synthesized through a top-down route, and very
limited literature is available on the manufacturing cost of
synthesis of MXene using a bottom-up approach (Ihsanullah,
2021). Considerable attention is needed in this research trend to
explore the novel bottom-up methods of MXene synthesis with
more control of product characteristics. Storage of MXene
requires sub-zero temperatures that is another hurdle for
researchers to be overcome. Development of an efficient
method is vital for storing MXene solution for a long time
without oxidizing. The development of high throughput
construction of stable 2D nanomaterials with adequate quality
and lower cost is essential for mass commercialization. For large-
scale deployment, production expense, processability, scalability
stability, and consistency of 2D materials are all critical and often
inter-dependent elements to remember (Zhong et al., 2015).

6 CONCLUDING REMARKS

To summarizing all, several extensively utilized water purification
techniques such as boiling, sedimentation, distillation, and
oxidation, as well as solar and chemical disinfection, are
presently incapable of supplying a cost-effective and reliable
source of water to the world. Thus, an improved technology
must be developed and industrialized to provide clean drinking
water and 2D nanomaterials are useful for use in integrated
membrane operations and water purification due to their
inherent properties. Low-cost 2D material strategies focusing
on high scalability and processability can be beneficial.
Because of the use of inexpensive and multiple layered
crystals, solution-based top-down exfoliation will achieve a

TABLE 6 | Selected examples of different 2D nanomaterials as colorimetric sensors.

Materials Interaction Detection object References

Ag NPs SPR change Proteins and metal ions Slocik et al., 2008; Shrivastava & Dash, 2010; Peng et al., 2017
MoO3 NPS Enzyme and nanozyme catalysis ACP Hu et al., 2017
Schiff base derivatives Fluorescent switch F−, Zn2+, Cu2+, Al3+ Samanta et al., 2015; Liu et al., 2020c
Chelated Schiff base Ligand–receptor binding Fe2+ and Fe3+ Peng et al., 2012
Multifunctional Schiff base Ligand–receptor binding Fe2+, Zn2+, Cu2+, CN− Lee et al., 2014; Tang et al., 2017
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scalable output of 2D materials at an affordable cost (Cai et al.,
2018). In comparison to one-dimensional nanomaterials, which
are often produced with the help of bottom-up techniques from
molecular precursors like chemical vapor deposition growth, the
top down exfoliation methodology for 2D nanomaterials is
almost advanced and easily processed in an industrial setting
by exfoliating bulk layered precursors with the help of sonication
or shear force (Varrla et al., 2015; Stafford et al., 2018). Given that
most of the 2D nanomaterials are produced from Earth plentiful
elements such as carbon, nitrogen, boron, Mo, Sulphur, Ti, and so
on. Biodiversity and the problem of materials shortages would be
achievable if prudent steps like materials recovery are
implemented. Continual use of 2D materials does not result in
material deterioration, corrosion, injury, or secondary
contamination from an application standpoint. As a result,
device sustainability is also a critical consideration. Self-
assembly of 2D nanomaterials can result in a variety of
ordered nano-architectures, including both orientationally and
positionally ordered structures (Davidson et al., 2018). According
to the hard-soft-acid-base principle, transition metal
dichalconides (such as MoS2 and MoSe2) nano-sheets have
soft dangling groups such as S and Se, which react firmly with
soft acids such as Hg2+ and Pb2+, while MXene surface groups
including –F and –OH, which contribute to stronger adsorption
on hard acids (Li et al., 2020). With the help of multi-component
assemblies and superlattices of nanomaterials, chemical
programmability can attain various functions such as the
elimination of various pollutants in a single material system.
By mixing photocatalysts and membranes, organic foulants can
be photo-catalytically degraded, reducing organic fouling in

membrane isolation (Runnan Zhang et al., 2016). In addition,
the naturally abundant elements that make-up many
nanomaterials such as MXenes may be advantageous for cost-
sensitive environmental applications. More investigations are also
required to improve stability and achieve recyclability of 2D
nanomaterials adsorbents, so that consistent performance is
achieved even after repeated use. More studies are needed to
bridge the gap between the newly predicted and experimentally
available 2D nanomaterials with the hope of identifying candidate
materials with enhanced thermal, electrical, and catalytic
properties that are more suitable for water treatment and
environmental remediation. Experimental verification of
theoretical predictions is an important task that may facilitate
the development of materials with improved photocatalytic,
electrocatalytic and other useful properties.
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