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Environmental flows are critical to the recovery and conservation of freshwater ecosystems
worldwide. However, estimating the flows needed to sustain ecosystem health across
large, diverse landscapes is challenging. To advance protections of environmental flows for
streams in California, United States, we developed a statewide modeling approach
focused on functional components of the natural flow regime. Functional flow
components in California streams—fall pulse flows, wet season peak flows and base
flows, spring recession flows, and dry season baseflows—support essential physical and
ecological processes in riverine ecosystems. These functional flow components can be
represented by functional flow metrics (FFMs) and quantified by their magnitude, timing,
frequency, duration, and rate-of-change from daily streamflow records. After calculating
FFMs at reference-quality streamflow gages in California, we used machine-learning
methods to estimate their natural range of values for all stream reaches in the state
based on physical watershed characteristics, and climatic factors. We found that the
models performed well in predicting FFMs in streams across a diversity of landscape and
climate contexts, according to a suite of model performance criteria. Using the predicted
FFM values, we established initial estimates of ecological flows that are expected to
support critical ecosystem functions and be broadly protective of ecosystem health.
Modeling functional flows at large regional scales offers a pathway for increasing the pace
and scale of environmental flow protections in California and beyond.

Keywords: environmental flows, flowmetrics, hydrologic modeling, holistic method, California environmental flows
framework, natural flow regime

INTRODUCTION

The protection of environmental flows—water needed to sustain biodiversity and the services that
healthy freshwater ecosystems support—is essential to reversing worldwide trends in freshwater
ecosystem degradation (Reid et al., 2019; Tickner et al., 2020). To address this need, river scientists
have developed a broad suite of environmental flow assessment tools (Horne et al., 2017), and
advanced policy agendas for environmental flows (Arthington et al., 2018). Yet, most environmental
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flow programs are limited in spatial scale (Poff et al., 2010) and
are narrowly focused on species of management concern. For
example, environmental flow protections in the western US have
primarily focused on major rivers supporting Pacific salmon and
trout (Oncorhynchus spp.), and other threatened fish species
listed under the federal Endangered Species Act (Gillilan and
Brown, 1997; Obester et al., 2022). As pressures on water
resources intensify at a global scale (Grill et al., 2019), the vast
majority of rivers and streams still lack environmental flow
protections. New environmental flow approaches are needed
to broaden the pace, scope, and scale of flow protections
across diverse river types and geographies.

Recently, river scientists have argued that a functional flows
approach offers a promising framework for establishing holistic
environmental flow protections at regional scales (Grantham
et al., 2020; Yarnell et al., 2020). Functional flows are
components of the natural flow regime that sustain the
biological, chemical, and physical processes upon which native
freshwater species depend (Escobar-Arias and Pasternack, 2010;
Yarnell et al., 2015). The functional flows concept is founded on
the principles of the natural flow regime paradigm (Poff et al.,
1997), but recognizes specific dimensions of flow variability, and
their interactions with the landscape, as being particularly
important for supporting ecosystem processes. For
mediterranean-montane rivers, functional flow components
include fall pulse flows, wet season peak flows, wet season
baseflows, spring recession flows, and dry season baseflows
(Yarnell et al., 2020). By focusing environmental water
allocations on these functional flow components, the
maintenance of their associated physical and biological
processes is expected to be broadly protective of ecosystem
needs. Furthermore, there is evidence that functional flows can
be managed to accommodate human water demands and deliver
benefits to both people and nature (Grantham et al., 2020).

The California Environmental Flows Framework (CEFF) is a
technical approach for developing environmental flow
recommendations in California, United States, and relies on
the functional flows concept (Stein et al., 2021). The purpose
of CEFF is to provide a consistent, scientifically-defensible, and
holistic approach for assessing environmental flow needs
statewide. To support this goal, models are used to predict the
natural range of functional flows in all rivers and streams in the
state at the resolution of individual stream segments. If there are
no physical modifications, water quality impairments, or invasive
species present in focal streams, the habitat needs of native
aquatic species are assumed to be supported by the natural
range of functional flows (Stein et al., 2021). Therefore, under
CEFF, predicted natural values of functional flows are considered
an initial estimate of ecological flow needs and can be used to
develop environmental flow recommendations without the need
of further resource-intensive studies. CEFF allows for more
detailed evaluation of ecological flow needs in contexts where
there are physical habitat modifications or other local
environmental factors that could limit the effectiveness of
natural functional flows in supporting ecosystem functions
and the habitat requirements of native species. Once ecological
flow needs are defined as quantitative targets, CEFF also includes

a series of steps to evaluate tradeoffs between ecological and other
water management objectives, and to develop environmental flow
recommendations that balance human and ecosystem needs
(Stein et al., 2021).

Here, we present a data-driven modeling approach to predict
functional flows in California rivers, a 424,000-km2 region that
encompasses a diversity of river types, human pressures, and
water management objectives. We describe data requirements
and model training procedures and assess the influence of model
predictor variables on distinct functional flow metrics. We also
evaluate the predictive performance of the models by metric and
stream type, using a suite of model performance criteria. Finally,
we use the models to predict the natural range of functional
metrics at all stream reaches (over 140,000) in the state, serving as
a foundation for CEFF and other environmental flow
management efforts. By estimating functional flows statewide,
this modeling approach can support development of holistic
environmental flow programs at large spatial scales and across
diverse geographies, jurisdictions, and management contexts.

METHODS

Modeling Approach Overview
We calculated observed annual values of 24 functional flow
metrics (FFMs) describing 5 functional flow components (fall
pulse flows, wet season baseflows, wet season peak flows, spring
recession flows, and dry season baseflows) from reference gage
records in California (Figure 1). We then characterized the
watershed above each reference gage using a suite of physical
and climatic variables from publicly available data sources. Next,
we used a machine learning approach to relate the watershed
variables to functional flow metrics, developing a total of 24
models (one for each functional flow metric). The predictive
performance of each model was then evaluated by comparing
predictions of functional flow metrics with observations at gages
excluded from model training. Finally, we used the models to
predict the natural range of values of each FFM at all stream
reaches in California’s stream network, using the same set of
predictor variables calculated for the catchment of each stream
reach. The details of each step are provided below.

Streamflow Data and Functional Flow
Metric Calculations
All gages operated by the U.S. Geological Survey (USGS) in
California were screened to identify those considered to be
reference-quality, following methods described by Zimmerman
et al. (2018). Briefly, the watershed above each gage was evaluated
using GIS-based methods and visual inspection of aerial imagery
to exclude sites with evidence of significant human activities,
including water diversions and storage reservoirs, intensive
agriculture and forestry practices, dense road networks, and
extensive impervious surfaces. We also reviewed USGS
published annual data reports for each gage that note the
influence of significant anthropogenic activities on observed
flow records (Falcone et al., 2010). Through a subsequent
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manual screening process, several gages were removed from the
analysis that exhibited irregular, impaired, and or aseasonal flow
patterns. In total, we identified 216 reference gages in California,
which included both active stations located on relatively pristine
streams and gages with historical observations that pre-dated
significant anthropogenic disturbances (e.g., prior to dam
construction). We included an additional 3 gages located
below dams for which reconstructed unimpaired flow data
were available in order to increase the physiographic range
represented in the dataset (California Department of Water
Resources [DWR], 2007), bringing the total number of
reference gages to 219 (Figure 1; Supplementary Table S1).

The resulting reference gage set includes periods of record as
early as 1950 and as recent as 2015, with an average period of
record of 33 years and ranging from 6 to 65 years
(Supplementary Table S1). These gages are well distributed
across the diversity of river types in California, including
snowmelt (n = 25), rain (n = 125), and mixed snow-and-rain
(n = 69) hydrologic regimes, following a simplified version of a
stream classification scheme developed by Lane et al. (2017). The
gages are located on streams with drainage areas ranging from 5
to 9,340 square kilometers and are distributed throughout
California, with the exception of the arid southeastern corner
of the state (Figure 1), where most streams are ephemeral and no
reference gages are present. We confirmed that reference gages

located in close proximity were separated by intervening
tributaries or had distinct periods of record.

Complete years of daily flow data for all reference gages were
downloaded from the USGS National Water Information System
(USGS, 2017). Annual FFMs were then calculated from daily flow
records using signal processing algorithms designed to
characterize seasonal flow features of the annual hydrograph.
The approach to calculate annual timing metrics detailed by
Patterson et al. (2020) is as follows: A high standard deviation
Gaussian filter was applied to daily streamflow time series to
detect dominant peaks and valleys from the annual hydrograph.
Localized search windows were set around hydrologic features of
interest (e.g., annual peak flow). A low standard deviation
Gaussian filter was then applied to the observed daily flow in
the search window to identify seasonal shifts in the hydrograph,
based on slope breaks in the derivative of a fitted spline curve.
Break points were used to quantify the timing metrics for the wet
season, dry season, and spring recession periods, from which
seasonal magnitude, duration, frequency, and rate of change
metrics could then be calculated. The spring recession rate was
calculated as themedian daily rate of change in flow from the start
date of the spring recession until the start of the dry season,
considering only days with negative change to omit storm events
during the recession period. Peak flow magnitudes were
calculated as the long-term annual flood exceedance flow

FIGURE 1 | (A) Reference quality gages in California (n = 219) used for developing functional flow metric models, including 3 gages on large rivers with naturalized
flow records (Supplementary Table S1). Gages and the stream network are shaded according to their hydrologic classification type (snowmelt-dominated, mixed
snow-and-rain, and rainfall-dominated flow regimes), modified from Lane et al. (2017) and Patterson et al. (2020). (B) A representative hydrograph from a reference gage,
highlighting five functional flow components for California streams, from Yarnell et al. (2020). Blue line represents median (50th percentile) daily discharge. Gray
shading represents 90–10th percentiles of daily discharge over the period of record.
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associated with the 2-, 5-, and 10-years recurrence intervals. We
also calculated peak flow duration (cumulative number of days in
which this peak flow magnitude is exceeded) and frequency
(number of times the flow magnitude is exceeded), in each of
the years in which a flood of a given recurrence interval occurred.
Following these methods, we calculated the values of 24 FFMs,
describing 5 functional flow components, at each reference gage
(Table 1; Figure 1).

Next, we used a GIS-based approach to calculate over 150
variables related to physical attributes of the watershed above
each reference gage using publicly available geospatial datasets
(Supplementary Table S1). These included variables related to
topography (e.g., elevation, slope, and aspect, etc.), dominant
geology and soil types (e.g., granitic, volcanic, or sedimentary,
and mean content of clay, sand, and silt, etc.), and watershed
hydraulic properties (e.g., topographic wetness index, baseflow
index, mean depth to water table, etc.). We also included time-
varying climatic variables including mean monthly
temperature and precipitation from the 800-m PRISM
dataset from Daly et al. (2008), as well as expected monthly
runoff from McCabe and Wolock (2011). These climate
variables were expressed as monthly, seasonal, and annual
values for each year of FFM observations at a reference site, as
well as for years preceding the FFM observations
(Supplementary Table S2).

Functional Flow Metric Modeling
Random forest (RF) models (Cutler et al., 2012) were developed
for each FFM. For most FFMs, observed values were calculated
for each year of the reference period of each gage. For peak flow
magnitude FFMs, single values for the 2-, 5-, and 10-years
recurrence interval flood were estimated at each gage. Each RF
model specified a FFM as the response variable and a total of 182
watershed and climate variables as predictor variables
(Supplementary Table S2; Carlisle, 2022). All models were
run using 2000 trees and default parameters with the
randomForest function in the randomForest package, version
4.6 (Liaw and Wiener, 2018) in R (R Core Team, 2020).

Random forest models include a resampling routine that
provides estimates of model performance comparable to what
is obtained from independent validation data. However, because
our dataset included repeated observations of FFM values from
each of the 219 reference sites, the replicate datasets generated
from RF’s internal sampling could produce overly optimistic
estimates of model performance. We therefore used a leave-
one-out cross-validation approach to estimate model
performance, in which each reference site (including
observations for all years of record) was excluded in turn from
a calibration dataset, following methods by Eng et al. (2017);
Zimmerman et al. (2018). The trained model was subsequently
used to predict FFM values at the excluded reference site. We

TABLE 1 | Functional flow metrics for which machine learning models were developed and their corresponding functional flow components and characteristics. There are a
total of 24 metrics that represent five functional flow components. Note that there are 2 metrics describing the magnitudes of wet season baseflow and dry season
baseflow and 3 metrics describing each of the peak flow characteristics (2-, 5-, and 10-years recurrence interval floods) in the wet season.

Functional flow
component

Flow
characteristic

Functional flow metric

Fall pulse flow Magnitude (cms) Peak magnitude of fall season pulse event (maximum daily peak flow) in years when it occurs

Timing (date) Start date of fall pulse event

Duration (days) Duration of fall pulse event (# of days start to end)

Wet season baseflow Magnitude (cms) Magnitude of wet season baseflow and wet season median flow (10th and 50th percentile of daily flows, respectively,
during the wet season)

Timing (date) Start date of wet season

Duration (days) Wet season baseflow duration (# of days from start of wet season to start of spring season)

Wet season peak flows Magnitude (cms) Peak flow magnitude (annual peak flows for 2-, 5-, and 10-years recurrence intervals)
Duration (days) Duration of peak flows over wet season (number of days in which a given peak flow recurrence interval is exceeded, in

years when it occurs)

Frequency Frequency of peak flow events over wet season (number of times in which a given peak flow recurrence interval flow is
exceeded, in years when occurs)

Spring recession flow Magnitude (cms) Spring peak magnitude (daily flow on start date of spring recession-flow period)

Timing (date) Start date of spring recession

Duration (days) Spring recession flow duration (# of days from start of spring to start of summer base flow period)

Rate of change (%) Spring recession flow rate (percent decrease per day over spring recession period)

Dry season baseflow Magnitude (cms) Dry season baseflow and high baseflow magnitude (metrics for the 50th and 90th percentile of daily flow,
respectively, during the dry season)

Timing (date) Start date of dry season

Duration (days) Dry season baseflow duration (# of days from start of dry season to start of wet season)
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retained the 10th, 25th, 50th, 75th, and 90th percentiles of the
predictions generated by the 2000 trees for each excluded
reference site. For each model iteration, we also identified the
most influential predictor variables, based on their Gini index
(Cutler et al., 2007), which measures the loss of model predictive
accuracy when that variable is excluded. Higher values indicate
greater importance in contributing to the accuracy of the models.

To assess model performance, we compared predicted FFM
values with observations at sites excluded from model training.
We restricted the assessment to sites with 20 or more
observations (i.e., 20 years of record) and calculated several
model performance criteria to limit the risk of flawed
interpretation resulting from the use of a single performance
metric (Clark et al., 2021). We calculated performance criteria
that provided measures of both the dispersion and central
tendency of model predictions in comparison to observed
values. First, we compared the distribution of observed to
predicted values of FFMs by calculating the percent of annual
observed values at a site that fell within the predicted interquartile
range (IQR, range between the 25th to 75th percentile values) and
the inter-80th percentile range (I80R, range between the 10th to
90th percentile values) for that site. The mean of these percentage
values across all sites was used to assess the overall degree to
which the distribution of observations aligned with the predicted
range of each metric. Models with perfect performance would
have percentage values of 50% for the IQR criterion and 80% for
the I80R criterion, indicating that, on average, 50% and 80% of
the observed values fall within the predicted IQR and I80R,
respectively. Models that under-estimate the natural range of
variation in FFMs would have values below 50% and 80%,
respectively, and models that over-estimate the range of
variation would exceed these values.

To evaluate accuracy for the central tendency of model
predictions, we also compared the median value of
observations to the median value of predictions at each site.
The paired values were used to calculate several “goodness-of-fit”
criteria commonly used in hydrologic model performance
assessment (Moriasi et al., 2007; Eng et al., 2017): the
observed-to-expected ratio (O/E), the coefficient of
determination (r2), percent bias, and Nash-Sutcliffe Efficiency
(NSE). We then calculated the mean value of each performance
criterion across all sites. For the peak flow magnitude metrics, we
only calculated the performance measures of central tendency
because only single values were available for each site (i.e., 2-, 5-,
and 10-years recurrence interval peak flows). Due to the skewed
distribution of peak flow frequency and duration metrics to low
values, measures of central tendency were unreliable. For those
metrics, we excluded observations with zero values and
considered only the distribution of observations relative to the
predicted range of values, by calculating the percentage of
observations falling within the predicted IQR and I80R, as
described above.

To evaluate model performance across all criteria, we
standardized the values of all calculated criteria between 0
(poor performance) and 1 (perfect performance). To scale O/E
values, we retained values less than 1 and calculated the inverse of
those greater than 1. To scale percent bias, we subtracted values

from 100 and then divided by 100. NSE values less than 0 were set
to 0 and no changes were made to the r2 values. To scale the IQR
criterion, the absolute value of difference between the calculated
value and 50 was divided by 50 and subtracted from 1. Similarly
for I80R, the absolute value of difference between the calculated
value and 80 was divided by 80 and subtracted from 1. We then
developed a composite performance index by averaging the
values of all six criteria. We assigned a qualitative performance
rating to the composite performance index values excellent
(>0.9), very good (0.81–0.9), good (0.65–0.8), satisfactory
(0.5–0.64), and poor (<0.5) model performance, following
guidelines similar to Moriasi et al. (2007).

Finally, we evaluated spatial bias in model performance by
separating reference gages into stream classes (Lane et al.,
2017). We grouped gages into one of three classes based on
their dominant hydrologic characteristics: snowmelt, rain, and
mixed snow-and-rain. We then compared model predictions
and observed data from reference gages occurring within each
stream class, using the same set of performance criteria, and
again calculated the composite performance index for each
metric.

Predicting Functional Flows Across the
Stream Network
After the model performance evaluation, we used the RF
models to predict the natural range of functional flows for
all stream reaches in California. We trained final models (n =
2000 trees) with the full set of reference gages to include the
maximum amount of information possible. We then
calculated the same set of watershed and climate variables
used in model training, obtained fromWieczorek et al. (2018),
for 142,509 natural stream reaches (mean length = 2.1 km; sd
length = 2.0 km) represented by the National Hydrography
Dataset for California (NHDPlus, Version2) (Horizon
Systems Corporation, 2012). These data were used to
predict FFM values from 1950 to 2015 at each stream reach
from the trained RF models. The 10th, 50th, and 90th
percentiles of model predictions for each FFM were
calculated for each stream reach. Predicted ranges were
compiled for all years (1950–2015) and for all dry,
moderate, and wet water years and made available on a
public website (California Environmental Flows Working
Group [CWFWG], 2021). Reported values represent the
expected natural range of FFMs at each stream, also
accounting for model prediction uncertainty.

RESULTS

Variable Influences on Functional Flow
Metrics
Climate variables were generally the most influential predictors in
the FFM models, although physical catchment variables were
important for some metrics (Table 2; Supplementary Table S3).
For the fall pulse metrics, climate variables including
precipitation, temperature, and runoff for fall season months
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(e.g., Oct, Nov) were consistently among the most influential
variables. The rainfall-runoff erosivity index, which reflects the
estimated amount and rate of runoff produced by a storm
(Renard et al., 1997), was also influential in predicting fall
pulse flow duration. Wet season baseflow metrics were
strongly influenced by monthly climate variables
corresponding to winter months (e.g., December runoff) and
multi-annual antecedent precipitation, runoff, and temperature
variables were generally the most important variables in the
models. Precipitation and runoff had a stronger influence on
wet season baseflow magnitudes and duration, whereas
temperature had a stronger influence on wet season baseflow
timing.

Peak flow magnitudes, including 2-, 5-, and 10-years
recurrence interval peak flow metrics, were most influenced by
the catchment’s long-term mean annual runoff (Gebert et al.,
1987) as well as mean maximum and mean annual precipitation
(Table 2; Supplementary Table S3). Peak flow duration–the
number of days in a year in which flows exceeded a peak flow

threshold–was most influenced by monthly precipitation
variables in the winter months and the previous water year,
catchment mean elevation, and the hydrologic landscape
region in which the catchment predominately occurs (Wolock,
2003a). Peak flow frequency—the number of peak flow events in a
year of a given recurrence interval—was also most influenced by
precipitation in winter months and antecedent year, as well as the
catchment’s rainfall-runoff erosivity index and groundwater
recharge index (Wolock, 2003b).

Annual precipitation and runoff had the greatest influence on
spring recession magnitude, whereas mean temperatures in the
spring months and spring season had the greatest influence on
spring recession timing (Table 2; Supplementary Table S3). The
duration of the spring recession flow period was most influenced
by catchment elevation, the clay content of catchment soils,
winter precipitation, and monthly runoff in December and
June, near the start, and end of the wet season, respectively
and the rate-of-change by mean runoff observed over the most
recent four-year period. Spring rate-of-change was most

TABLE 2 |Most influential variables for each functional flowmetric model, as determined by the Gini index. Only the most influential variable is reported, unless the next most
influential variable was within the 10% of its Gini index value. See Supplementary Table S2 for predictor variable descriptions and Supplementary Table S3 for the
Gini index values for all variables in each model.

Functional flow
component

Flow metric Most influential Variable(s)
in model

Fall pulse flow Fall pulse magnitude October precipitation
Fall pulse timing October precipitation
Fall pulse duration Rainfall-runoff erosivity index (R factor)a; October runoff; November precipitation

Wet season baseflow Wet season baseflow magnitude Four-year mean annual precipitation; Three-year mean annual precipitation
Wet season median baseflow
magnitude

Three-year mean annual runoffb

Wet season timing Three-year mean annual temperature
Wet season duration December runoffb

Wet season peak flows 2-years flood magnitude Long-term mean annual runoffb

2-years flood durationc Mean catchment elevation
2-years flood frequencyc Rainfall-runoff erosivity index (R factor)a

5-years flood magnitude Long-term mean annual runoffb

5-years flood durationc Proportion of catchment with in HLR 18c; July precipitation in previous water year; winter
precipitation

5-years flood frequencyc Rainfall-runoff erosivity index (R factor)a

10-years flood magnitude Long-term mean annual runoffb

10-years flood durationc July precipitation in previous water year
10-years flood frequencyc January and December precipitation

Spring recession flow Spring recession magnitude Total annual precipitation
Spring recession timing Mean spring temperature
Spring recession duration Mean catchment elevation
Spring recession rate of change Four-year mean annual runoffb

Dry season baseflow Dry season baseflow Summer runoffb; September runoffb

Dry season high baseflow Natural groundwater recharge indexe

Dry season timing Maximum catchment elevation
Dry season duration Difference between maximum and minimum catchment elevation

aFrom the Universal Soil Loss Equation, calculated mean value for each watershed (Falcone et al., 2010).
bMonthly, seasonal, and annual catchment runoff estimated from water-balance models, developed by McCabe and Wolock (2011). Long-term annual runoff values (1951–1980) are
derived from rainfall-runoff models, developed by Gebert et al. (1987).
cFlood duration is the total number of days a flood of a given recurrence value is exceeded in a year, when it occurs, and frequency is the number of discrete events within a season when a
flood occurs.
dHydrologic Landscape Regions delineate watersheds in the United States with similar land-surface form, geological texture, and climate characteristics. HLR 18 includes watersheds in
semiarid mountains with permeable soils and impermeable bedrock (Wolock, 2003a).
eMean annual natural groundwater recharge (1951–1980) for catchments in the conterminous United States (Wolock, 2003b).
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influenced by runoff variables, including annual runoff for the
water year and multi-annual antecedent periods.

Runoff variables were also influential in predicting dry season
baseflow characteristics. Runoff in the summer months and
seasonally-averaged runoff were both important in predicting
dry season baseflow magnitudes. The catchment groundwater
recharge index was also influential for the dry season high
baseflow metric. Catchment variables were most important in
predicting the timing of the dry season. Influential variables
included the mean and max catchment elevation, the baseflow
index, and soil properties (Supplementary Table S3). Similar to
the fall and spring duration metrics, duration of the dry season
was most influenced by catchment properties, including
elevation, spring precipitation, and the catchment erodibility
index (K-factor).

Model Performance
Overall, the FFMmodels had high predictive accuracy, with all 24
metrics exhibiting excellent (composite performance index [CPI]
> 0.9 for 7 metrics), very good (0.8 < CPI ≤0.9 for 12 metrics) or
good (0.65 < CPI ≤0.8 for 5 metrics) performance (Figure 2;
Supplementary Table S4). The models performed well in
predicting fall pulse flows, including the magnitude (CPI =
0.85), timing (CPI = 0.80), and duration (CPI = 0.70). The
slightly lower CPI for fall pulse duration was driven by low
NSE and r2 performance criteria values (<0.25). This was the
result of the limited range of whole number values in the
observation record (median fall pulse duration of 2–7 days
among all sites), such that slight deviation of predictions
(i.e., 1 or 2 days) caused NSE and r2 values to substantially
decrease.

The models for wet season baseflow accurately predicted all
metrics, especially the wet season low magnitude metric (CPI =
0.91), and exhibited excellent performance (CPI >0.9) in
predicting peak flow magnitudes for 2-, 5-, and 10-years flood
recurrence intervals. Model performance for within-year flood

frequency and duration were also considered good, very good, or
excellent. The model for the 10-years flood frequency tended to
overestimate the observed range of variation (i.e., a higher
proportion of observed values fell within the predicted
interquartile range than expected; Supplementary Table S4),
although overall model performance was still good. Model
performance was very good (CPI >0.8) for spring recession
flow magnitude, timing, duration, and rate-of-change. The
models were very good or excellent in predicting all dry
season baseflow metrics, including the median (CPI = 0.92)
and high baseflow magnitudes (CPI = 0.92), dry season timing
(CPI = 0.90), and dry season duration (CPI = 0.83).

When model performance was assessed by stream class, the
CPI deviated from those obtained when all streams were
evaluated together (Figure 2). For snowmelt-dominated
streams, the models performed less well in predicting
timing and duration metrics, including for the fall pulse,
wet season, spring recession, and dry season. However, only
the fall pulse timing model was considered “poor” performing
for the snowmelt stream class. Model performance declined for
some metrics in the mixed snow-and-rain and rainfall-
dominated classes, but all models were considered at least
satisfactory and most were very good or excellent (Figure 2).
Stream gage records were insufficient to evaluate the
performance of the 10-years flood duration and frequency
metrics by stream class.

Model Predictions
Based on the overall satisfactory performance of the FFMmodels,
predictions of expected, natural FFM values were generated for all
stream reaches in California using models calibrated with the full
set of reference gages. Model predictions were compiled in a
geospatial database and made available through an online
mapping tool to allow users to visualize and download
estimates of natural FFM values for any stream reach in the
state CEFWG, 2021 (Figure 3).

FIGURE 2 |Model performance summary for functional flow components and metrics for all streams and for streams stratified by stream type (mixed snow-and-
rain, rainfall-dominant, and snowmelt-dominant). The composite performance index values shown are calculated as the mean of multiple, standardized performance
criteria values (Supplementary Tables S4, S5).
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DISCUSSION

Here we applied a machine learning modeling approach to
estimate functional flows for over 140,000 stream reaches
exceeding 250,000 km in total length in California,
United States. Our evaluation of model performance indicated
that natural hydrologic signatures describing the magnitude,
timing, duration, frequency, and rate-of-change of functional
components of the flow regime could be accurately predicted
across a large region with high geographic variability. For every
stream reach in the state, we generated predictions for the
expected natural range of five functional flow components,
including fall pulse flows, wet season baseflows, peak flows,
spring recession flows, and dry season baseflows. By predicting
the range of flows that are expected to support essential ecosystem
functions under natural landscape conditions, these estimates can
serve as a foundation for assessing ecological flow needs,
quantifying flow alteration, and guiding development of
environmental flow recommendations in the state, through the
California Environmental Flows Framework (Stein et al., 2021) or
other environmental flow assessment approaches.

The models relied on a network of reference-quality gages and
a broad suite of watershed variables to predict functional flow

metrics. For most metrics, these variables appeared to capture the
effects of dominant physical processes that control seasonal flow
dynamics. In particular, the models were highly accurate in
predicting the magnitudes of fall pulse and wet season peak
flows, as well as wet and dry season baseflows. In contrast, the
models did not perform as well in predicting the timing and
duration of flow components. This likely relates to the monthly
scale of the climate predictor variables, which fail to represent
physical processes that control the timing and duration of
functional flow components at shorter timescales. These
deficiencies were more pronounced when evaluating model
performance by stream class. For example, model performance
was substantially lower for timing and duration metrics in the
snow-dominated stream class, which might relate to the inability
of the model to capture snow accumulation and snowmelt runoff
dynamics. Nevertheless, model performance remained
satisfactory or better for all but one metric: fall pulse timing in
the snow class.

The modeling approach used in this study differs from
physically-based hydrologic models (i.e., rainfall-runoff
models) that are commonly used in environmental flow
applications. First, rainfall-runoff models are generally trained
and calibrated using a small sample of streamflow gaging records

FIGURE 3 | Screenshot of online mapping tool developed to explore, visualize, and download modeled natural functional flow metrics for streams in California,
displaying dry season baseflow metrics at a gaged stream reach of the Napa River. Available at: https://rivers.codefornature.org.
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to estimate streamflow throughout individual watersheds based
on intensive field data collection and parameterization. In
contrast, the modeling approach used here relies on a large
network of gages and can be applied to generate predictions
across a broad geographic region. Model calibration procedures
also differ. Rainfall-runoff models are often run on daily or sub-
daily timescales and are calibrated to generate the best fit with
observed streamflow data. This means that model parameters are
generally tuned to minimize deviation in all elements of the flow
regime and, as a result, there may be tradeoffs associated with
improving predictive accuracy in some flow components (e.g.,
peak flows) at the expense of others (e.g., low flows). In contrast,
the modeling approach described here calibrates to specific
aspects of the flow regime, avoiding such tradeoffs, and likely
increasing model predictive accuracy of functional flow metrics.

Hydrologic models are typically evaluated using a limited set
of “goodness of fit” (GOF) criteria, such as r-squared and NSE, to
compare predictions with paired observations (Clark et al., 2021).
The performance assessment approach used in this study used a
broader suite of criteria, including both GOF and measures that
evaluate the degree to which the distributions of predictions align
with observations. We found there was notable variation in the
performance criteria values for several metrics (Supplementary
Tables S4, S5). This indicates that interpretation of model
accuracy can be highly influenced by the selection of
performance criteria and suggests that multiple criteria should
be used to assess hydrologic model performance where possible.

One of the shortcomings of statistical models is that they do not
explicitly represent the mechanisms that control streamflow
generation and variability. Although the variable importance
rankings can provide some insight into the physical controls on
specific flow components, factors contributing to model accuracy
can be difficult to ascertain. For example, the relationship between
seasonal precipitation (and runoff) volumes and the magnitudes of
functional flow components was evident in the variable important
plots of the RF models. In the dry season, the importance of the
groundwater recharge index (Wolock, 2003b) suggested that this
variable was, at least in part, effective in representing groundwater-
surface interactions that influence baseflow. The strong influence of
spring temperature on the timing of the spring flow recession was
also consistent with understanding of the physical controls on spring
snowmelt dynamics (Yarnell et al., 2010). However, the influences of
other variables on functional flow metrics were more difficult to
interpret. For example, catchment elevation was important in
predicting the duration of the 2-years flood, spring recession
duration, and dry season duration, but the physical basis for
these relationships is less clear. Additional studies that offer
robust comparisons between statistical and physically-based
models, such as performed by Hodgkins et al. (2020), would be
helpful for evaluating the benefits and limitations of different
hydrologic modeling approaches in predicting functional flows
and supporting environmental flow applications.

One important limitation in our modeling approach is the
network of available reference gages. The USGS stream gaging
network is biased towards larger, perennial streams of
management interest (Kiang et al., 2013), and these biases are
also evident in our study area. In particular, there is poor

representation of intermittent and ephemeral streams among
reference gages (Hammond et al., 2021), especially in the arid
southeastern region of California. Similarly, spring-fed streams
and those highly dependent on groundwater interactions are
poorly represented in the reference gage network. In addition,
most large streams and rivers in the state have been altered by
dams, diversions, and land use change, among other human
activities (Zimmerman et al., 2018), so there are few locations that
are considered reference-quality in these larger rivers. We
addressed this limitation, in part, by including reconstructed
natural flow records from a few major rivers below dams
(DWR, 2007). However, we recognize that predictions of
FFMs are likely less reliable in these and other poorly gaged
systems compared to better-gaged portions of the stream
network. Unfortunately, the degree to which model
performance is affected by gage network gaps is difficult to
quantify because the absence of gages for model training also
means there are no gages for model validation. Strategically
installing new gages in reference-quality streams that represent
these unique hydrologic contexts would help improve the
accuracy, aid quantification of uncertainty, and enhance the
utility of the models in environmental flow management
applications across a broader range of stream types. Limiting
human catchment disturbance would also help ensure streams
remain as reference-quality in the future.

In addition to obtaining data from a wider representation of
reference-quality streams, the performance of functional flow
models could be improved with new geospatial data that describe
hydrologically relevant watershed characteristics. In particular,
improved characterization of watershed lithology, which has a
strong effect on subsurface flow dynamics, is likely to be helpful
in predicting flow recession patterns and baseflow conditions (Lovill
et al., 2018). Advancements in satellite sensing products for assessing
vegetation dynamics, surface water, and groundwater levels (Tang
et al., 2009) also hold enormous potential for improving the
characterization of watersheds and enhancing model
performance. We acknowledge that more work is needed to
understand how changing climatic conditions will influence flow
regimes and supported functions (Grantham et al., 2018). The
current modeling approach estimates the range of variation in
functional flow metrics based on historical (1950–2015) climate,
watershed conditions, and flow responses. As California and the
world experience novel climate conditions, retraining models with
contemporary data will be necessary to generate new predictions for
the flow regime and to evaluate whether critical ecosystem functions
will continue to be supported as flow components shift in response
to climate change.

CONCLUSION

The modeling approach presented here can be used to develop an
initial estimate of flows required to sustain essential ecological
functions and establish a foundation upon which subsequent
analyses can be performed. These modeled natural functional
flow predictions provide a reference condition against which to
evaluate potential alterations to critical ecosystem functions due
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to human management activities or climate changes. For systems
with specific management objectives or where ecosystems have
been highly altered, more intensive studies will likely be needed to
determine if the functional flows estimated by the models are
appropriate for quantifying ecological flow needs (e.g.,Taniguchi-
Quan et al., 2022). In addition, support and guidance for
adaptively managing environmental flows to maximize their
effectiveness will help sustain ecosystem functions and health,
particularly in a changing climate (John et al., 2020). Efforts to
integrate the functional flows modeling approach in an
environmental flow program in California are promising
(Stein et al., 2021). As a relatively simple and cost-effective
means for supporting regional environmental flow programs,
there is also potential to adapt the approach for use in other
geographic contexts, including data-poor regions of the world.
Together with other advances in environmental flow science,
functional flows models could play an important role in
accelerating much-needed protections of environmental flows
at a global scale.
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