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Drylands cover ca. 40% of the land surface and are hypothesised to play a major role in the
global carbon cycle, controlling both long-term trends and interannual variation. These
insights originate from land surface models (LSMs) that have not been extensively
calibrated and evaluated for water-limited ecosystems. We need to learn more about
dryland carbon dynamics, particularly as the transitory response and rapid turnover rates
of semi-arid systems may limit their function as a carbon sink over multi-decadal scales.
We quantified aboveground biomass carbon (AGC; inferred from SMOS L-band
vegetation optical depth) and gross primary productivity (GPP; from PML-v2 inferred
from MODIS observations) and tested their spatial and temporal correspondence with
estimates from the TRENDY ensemble of LSMs. We found strong correspondence in GPP
between LSMs and PML-v2 both in spatial patterns (Pearson’s r = 0.9 for TRENDY-mean)
and in inter-annual variability, but not in trends. Conversely, for AGC we found lesser
correspondence in space (Pearson’s r = 0.75 for TRENDY-mean, strong biases for
individual models) and in the magnitude of inter-annual variability compared to satellite
retrievals. These disagreements likely arise from limited representation of ecosystem
responses to plant water availability, fire, and photodegradation that drive dryland
carbon dynamics. We assessed inter-model agreement and drivers of long-term
change in carbon stocks over centennial timescales. This analysis suggested that the
simulated trend of increasing carbon stocks in drylands is in soils and primarily driven by
increased productivity due to CO2 enrichment. However, there is limited empirical
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evidence of this 50-year sink in dryland soils. Our findings highlight important uncertainties
in simulations of dryland ecosystems by current LSMs, suggesting a need for continued
model refinements and for greater caution when interpreting LSM estimates with regards
to current and future carbon dynamics in drylands and by extension the global carbon
cycle.

Keywords: land surface models (LSM), drylands, productivity, aboveground biomass, model evaluation, vegetation
optical depth (VOD)

INTRODUCTION

Drylands play an important role in the global carbon cycle and
are vulnerable to global climate and land-use changes (Sietz et al.,
2011; Ahlström et al., 2015). Yet, despite their importance, we
have limited understanding of drylands and their ecological
responses to climate change and other drivers (Huang et al.,
2017). Defined by their climatic aridity, dryland ecosystems cover
ca. 40% of the land surface and are expanding as
evapotranspiration increases faster than precipitation (Huang
et al., 2016; Archer et al., 2018; Yao et al., 2020; IPCC, 2021).
Despite being characterised by relatively low-biomass densities
relative to forest biomes, drylands, and particularly semi-arid
ecosystems, are thought to dominate both the longer term (>50-
year) trend and year-to-year variability in the land carbon sink
(Poulter et al., 2014; Ahlström et al., 2015; Piao et al., 2020). There
is a pressing need to learn more about the future efficacy of
drylands as a sink of anthropogenic carbon emissions
(Friedlingstein et al., 2019). Particularly semi-arid ecosystems
are thought to have a potentially transitory response to large
perturbations causing enhanced uptake followed by rapid
turnover of carbon through decomposition and loss through
fire (Poulter et al., 2014), implying that they may only have
the capacity to function as a significant carbon sink for a finite
period (Schlesinger et al., 2009). Drylands furthermore provide
provisioning and regulating services that directly support over a
third of the human population worldwide (SRCCL, 2020). Many
of these people are experiencing increasing insecurity due to the
triple threat of climate change, population growth, and increasing
pressure on finite natural resources (Huang et al., 2016; Archer
et al., 2018; Xu et al., 2020).

There is considerable uncertainty in current and projected
storage and fluxes of carbon in drylands (Schlesinger et al., 2009;
Haverd et al., 2016; Schlesinger, 2016; Yao et al., 2020). Much of
our understanding of the processes behind these global changes
relies on simulations of land surface models (LSMs) or dynamic
global vegetation models (DGVMs, in this manuscript
collectively labelled as LSMs; Ahlström et al., 2015; Piao et al.,
2020; Poulter et al., 2014). Yet we know that LSMs often perform
more poorly in water-limited drylands relative to energy-limited
biomes (Harper et al., 2020; Yang et al., 2020; MacBean et al.,
2021). Much of this poorer performance is attributed to
incomplete representations of ecosystem responses to plant
water availability in terms of carbon inputs (Harper et al.,
2020; MacBean et al., 2021) and processes controlling the
release of carbon such as fire and photodegradation (Bond
et al., 2005; Berenstecher et al., 2020). This is compounded by

limitations in parameterisation data on land use and localised
precipitation (Yang et al., 2020). This uncertainty is further
exacerbated by a backdrop of changing environmental
conditions including CO2 fertilization, increasing plant water
use efficiency, fire suppression, woody shrub encroachment, and
increasingly variable precipitation, leaving considerable
uncertainty around the resilience of dryland ecosystem
function (Gonsamo et al., 2021; Maestre et al., 2021; Walker
et al., 2021).

To constrain uncertainty in predictions of the current and
future functioning of dryland ecosystems, further evaluations are
needed to assess LSM performance (Forkel et al., 2019; Piao et al.,
2020). LSM intercomparison efforts are common and include
those that focus on “Trends in net land carbon exchange”
(TRENDY) (Sitch et al., 2015). However, historically there has
been a lack of observational data from water-limited drylands,
and the data that do exist have not been extensively used for
evaluating model performance in these settings (Ciais et al.,
2011). New satellite-derived datasets have recently become
available with global coverage over recent decades (Smith
et al., 2019). For example, productivity describes the uptake of
carbon by the ecosystems and can be inferred from satellite
observations using light use efficiency models. Critically, light
use efficiency is modulated by changing atmospheric carbon
dioxide concentrations (Long et al., 2004). The PML-v2 gross
primary productivity (GPP) product is modelled based on
MODIS observations and has been demonstrated to have less
error compared to other products with regards to site-level eddy
covariance observations (Gan et al., 2018; Zhang et al., 2019a).
Most evaluations of LSM performance have focused on fluxes
rather than carbon stocks (Blyth et al., 2011; Yang et al., 2020; Yao
et al., 2020; MacBean et al., 2021). Vegetation optical depth
(VOD) provides a metric for vegetation structural
characterisation, by measuring the attenuation of microwaves
by water content in vegetation (Chaparro et al., 2019). Recent
studies have found L-band frequency (1–2 GHz or 15–30 cm
wavelength) VOD (L-VOD) is strongly related to aboveground
biomass carbon (AGC) in dryland ecosystems (Brandt et al.,
2018). Another advantage of this product is its multi-year
availability, which is imperative for evaluating trends and
interannual variability in biomass carbon stocks.

The long-term trends of dryland carbon stocks over centennial
timescales and their future state is critically important yet highly
uncertain given their potential transitory responses. However,
these timescales lie beyond the temporal limit of widespread
observational data, hindering evaluations of LSM estimates. To
assess model performance and evaluate long-term changes in
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dryland carbon stocks, we undertook a model intercomparison.
By evaluating the consistency of different model estimates over
time, we can better constrain the uncertainty associated with
ensemble estimates over multi-decadal periods. If different
models agree, this increases confidence in their ensemble
predictions over longer timescales. Conversely, if models differ
over time, then ensemble predictions should be treated with
caution and different ways of assessing models should be
selected by considering them as falsifiable hypotheses
(Goldstein et al., 2013).

This study aims to investigate the correspondence between
simulated and retrieved productivity and biomass carbon in
dryland landscapes. Specifically, we addressed the following
questions:

1) How well are TRENDY models able to reproduce a) spatial
distribution, b) temporal trends, and c) interannual variability
in GPP compared to estimates from the satellite-derived PML-
v2 product?

2) How well are TRENDY models able to reproduce a) spatial
distribution, b) temporal trends, and c) interannual variability
in aboveground vegetation carbon compared to estimates
from the satellite-derived L-VOD product?

3) How consistent are TRENDY simulations of vegetation and
soil carbon stocks among models through time?

METHODS

Dryland Delineation
We classified climatic drylands based on the aridity index, using a
threshold of <0.65 for the ratio of mean annual precipitation (P)
to mean annual potential evapotranspiration (PET) (Yao et al.,
2020) calculated using the 2.5 arc minutes 1981–2010
TerraClimate mean gridded surface climatology (Abatzoglou
et al., 2018). The fine grain of the TerraClimate product
corresponded more closely to physical reality than coarser
resolution products (Supplementary Table S1 for details of
these gridded products). We excluded drylands >55° north and
south of the Equator to omit “cold” permafrost drylands,
resulting in a global dryland area of 59.1 × 106 km2. While
LSMs do not always simulate drylands exactly coincident with
this climatic mask, this masking approach is standard (e.g.,
Ahlström et al., 2015; Yao et al., 2020; Gonsamo et al., 2021).

Gross Primary Productivity From MODIS
We used the PML-v2 (v016) GPP product derived using a light
use efficiency model based on MODIS observations (Zhang et al.,
2019a). This product has a spatial resolution of 500 m, revisit
frequency of 8 days, and was available from 26/03/2000 to 26/12/
2020. Importantly, the PML-v2 product couples
evapotranspiration and GPP resulting in a more robust
estimation of GPP while partly accounting for water use
efficiency, and explicitly accounts for the influence of changing
CO2 concentration on carbon assimilation via a simplified
photosynthesis model (Gan et al., 2018). PML-v2 has been
evaluated at 95 eddy covariance flux tower sites, 40 of which

lie within our delineated drylands (Zhang et al., 2019a). Over the
95 sites, PML-v2 outperformed other GPP products available at
the time for 8-day and site mean GPP, with smaller bias, lower
RMSE, and higher R2 compared to the MOD17A2H, FluxCom
GPP, and VPM GPP products; (Zhang et al., 2019a), while
performance regarding annual anomalies was comparable. We
calculated annual integrated productivity for spatial comparison
with the LSM predictions and temporal analysis.

AboveGroundCarbonDensity From L-Band
Vegetation Optical Depth
We inferred AGC in biomass from L-VOD retrieved from the Soil
Moisture and Ocean Salinity (SMOS) mission L-band
observations from 2011 to 2018 (SMOS-IC V2; Wigneron
et al., 2021; Figure 1). Soil moisture and L-VOD are derived
from a two-parameter inversion of the L-MEB model (L-band
microwave emission of the biosphere) from the multi-angular
and dual-polarized SMOS observations (Wigneron et al., 2021).
The SMOS-IC products are mostly independent of other Earth
observation datasets or simulations from atmospheric models
(Wigneron et al., 2021). The L-VOD product consists of
ascending and descending orbit datasets with a maximum 3-
day revisit time. L-VOD is sensitive to radio frequency
interference (RFI) over some specific geographic regions
(particularly central Asia and southern Europe) and noise
when retrieved over areas of variable topography or frozen
ground (Fernandez-Moran et al., 2017). L-VOD data require
filtering to retrieve reproducible signals, so we filtered
observations by quality flags to exclude pixels containing more
than 10% water, ice, or urban land cover (based on the MODIS
MCD12Q1 product and IGBP classification scheme), extreme
topography (Mialon et al., 2008) and frozen ground (ECMWF
soil temperature <273 K) (Fernandez-Moran et al., 2017). L-VOD
retrievals above a noise threshold between measured and L-MEB
modelled brightness temperature values (8 K) were discarded to
remove strong RFI (Fernandez-Moran et al., 2017). We selected
four regions with sufficient data coverage (North America, South
America, Australia, and Africa) and total dryland area 37.9 ×
106 km2, as RFI precluded reliable retrieval of L-VOD in other
dryland regions. Filtered observations (mean of 102 per pixel
annually) were aggregated to annual median ascending and
descending L-VOD. Where fewer than 20 observations per
year were available, the pixel was excluded (Brandt et al.,
2018). Large differences between annual average ascending
and descending L-VOD can indicate remaining RFI, therefore
pixels where this difference was greater than 0.05 L-VOD were
excluded. This filtering also excluded a part of North America due
to an L-VOD anomaly in 2011. L-VOD retrievals are sensitive to
both vegetation biomass and water stress (Konings et al., 2019).
However, we expect trends in annual median L-VOD to be largely
unaffected by inter-annual variability in vegetation water content.
We assume that any trend in vegetation water content would
correspond to a trend in vegetation biomass in these
predominantly water-limited ecosystems (Abel et al., 2021;
Frappart et al., 2020). We assumed a linear relationship
between plant water content and biomass in these generally
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sparsely vegetated drylands, which was supported by the findings
of (Brandt et al., 2019; Fan et al., 2019; Konings et al., 2017; Liu
et al., 2015; Mialon et al., 2020; Rodríguez-Fernández et al., 2018;
Tian et al., 2016). Annual average carbon density (Mg C ha−1) was
estimated from ascending L-VOD, which is acquired at dawn
when plant water storage usually peaks (Tian et al., 2018).
Equation 1 was used to estimate AGC which was derived
from an OLS regression of L-VOD against a global biomass
map (Santoro et al., 2018), converted to AGC following the 47%
biomass:carbon density ratio (Paustian et al., 2006; Chave et al.,
2019). We developed a drylands-specific biomass transfer
function because previous linear models (e.g., Brandt et al.,
2018) calibrated against data including high-biomass
ecosystems like tropical forests tend to overestimate dryland
biomass (Supplementary Figure S3). The GlobBiomass map
was selected as it showed a higher correlation with L-VOD for
drylands than available alternatives (Supplementary Table S2).

AGC � 52.48 × LVOD [MgCha−1] (1)

Land Surface Models Simulated
Productivity and Biomass
To test the correspondence of state-of-the-art LSMs with
retrieved biomass and productivity estimates, we used the
simulation outputs from 12 LSMs from the TRENDY v8
project (Friedlingstein et al., 2019). This TRENDY ensemble of
models includes CABLE-POP, CLASS-CTEM, CLM5.0, DLEM,
ISBA-CTRIP, ISAM, JSBACH, JULES-ES-1.0, LPJ-GUESS, OCN,
ORCHIDEE, and ORCHIDEE-CNP (Supplementary Table S3
for details). For these comparisons we focused on the most
comprehensive simulations with time-varying CO2, observed

climate and land-use forcing (TRENDY “S3” simulations).
Using the ensemble mean of these LSMs allows us to filter
some of the inter-model variability to examine the overall
model estimates. Six of these models include representation of
fire processes [Supplementary Table S3 and (Friedlingstein et al.,
2019) for details]. We annually aggregated GPP and mean annual
biomass of the LSMs, from 01/01/2001 to 31/12/2018 and 01/01/
2011 to 31/12/2018 respectively. We used AGC where this was
quantified by the LSMs (CABLE-POP, CLASS-CTEM, CLM,
ISAM). For the LSMs that did not explicitly partition carbon
into above and below pools in TRENDYv8 outputs, we assumed
40% of simulated total biomass carbon was aboveground, using
the average root to shoot ratios of grasslands, shrublands,
savannas and woody savanna biomes that together dominate
total dryland biomass (Liu et al., 2015; Qi et al., 2019). Though
this ratio will vary regionally according to environmental factors
and plant functional types, there is insufficient information
available to enable accurate spatially explicit exploration.

Land Surface Models Intercomparison
To assess the implications of different model simulations over
climate-relevant time scales, we evaluated changes in predicted
soil C (cSoil, including necromass as litter and coarse woody
debris where simulated), vegetation carbon (cVeg), and net
ecosystem (cEco = cSoil + cVeg) stocks from 1901 to 2018. At
the end of this period, we quantified how much each model
diverged from the TRENDY mean in units of standard deviation
of the ensemble mean (Goldstein et al., 2013). We excluded ISBA-
CTRIP from this portion of the analysis because this model had
issues with 1) insufficient soil carbon storage under trees and 2)
high productivity of crops causing excessive soil inputs (Boysen

FIGURE 1 | Processing of L-VOD data and TRENDY simulated above ground carbon (AGC) to obtain annual average carbon density and trends. ASC and DESC
refer to ascending and descending L-VOD data. Bold arrows indicate products compared.
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et al., 2020) (subsequently resolved by the addition of a crop sub-
model). To diagnose the causes of the differences in simulated
carbon stocks over time and between models, we isolated the
effects of CO2, climate change, and land-use change by looking at
the contribution associated with the TRENDY “S1” (including
CO2 forcing), “S2” (including CO2 and climate change forcing),
and “S3” simulations (Friedlingstein et al., 2019).

Fire
To understand the extent to whichmodel-data differences in GPP
and AGC related to fire, a process not represented in all LSMs, we
investigated these spatially in relation to fire frequency. Using the
most recent MCD64A1 version 6 burned area product (Giglio
et al., 2015), we calculated the sum of the burned area between
2001 and 2018 per 1° grid cell and divided it by the length of the
data record. This period was chosen to best encapsulate the
influence of fires on GPP and AGC.

Statistical Analysis
We tested the spatial correspondence between LSM simulations
and biomass carbon retrieved from L-VOD or GPP retrieved
from MODIS respectively. To maintain a consistent sample size
across models, we used bilinear interpolation to resample the
outputs from TRENDYmodels to a common spatial resolution of
1°. To appropriately handle boundary effects and partial coverage
due to quality filtering of satellite retrieved L-VOD and GPP, we
computed weights for the model pixels using the “exactextractr”
package in R (Baston, 2020, v0.5.1). We computed weighted
pairwise Pearson’s r (R package “weights”, Pasek, 2020,
v1.0.1), and used weighted total least squares regression (R
package “deming”, Therneau, 2018, v1.4) to fit linear models
that account for uncertainty on both axes to quantify the
agreement as the slope of the fitted model.

To test the temporal correspondence at annual resolution
between biomass carbon inferred from L-VOD and simulated
with LSMs and between GPP inferred from MODIS and
simulated with LSMs, we summed the weighted dryland values
at the native spatial resolution of each dataset using “exactextractr”,
and for the biomass comparison considered only the areas with
reliable L-VOD data for all years (Figure 1 and Supplementary
Figure S2). We quantified bias as the mean error between the
summed model predictions and the satellite retrievals. Both GPP
and AGC measurements were highly sensitive to the approaches
used to resample data. Sensitivity analysis revealed that the
inclusion or exclusion of cells only partially within our spatial
region of interest potentially introduces a 6-fold difference in the
total productivity and biomass retrieved for drylands
(Supplementary Figures S17–19). To minimise this issue when
undertaking this analysis across datasets with different native
resolutions, we used weighted extraction methods to account for
the partial coverage of cells within a mask.

We used a Theil-Sen estimator to robustly fit linear models to
the time series of productivity and AGC (Myers-Smith et al.,
2020). To assess correspondence in inter-annual variability, we
normalised each time series to its mean and detrended the series
using the Theil-Sen model slope. The goodness-of-fit was then
quantified as the mean absolute error between the series.

RESULTS

Correspondence in Gross Primary
Productivity
We found good spatial correlation between the mean GPP PML-
v2 inferred from MODIS observations and GPP simulated by the
TRENDY model ensemble (Figure 2; Table 1) over arid and
semi-arid regions between 2001 and 2018. Correlation
coefficients were moderately high across the 12 models, with
Pearson’s r ranging from 0.71 to 0.90. The spatial patterns shown
in Figure 2B are common across most LSMs (Supplementary
Figure S6), with overestimation of productivity in the African
Sahel and underestimation of productivity in southern African
and South American drylands. The linear model slopes between
themodel and the satellite retrievals ranged from 0.56 to 1.18. The
TRENDY mean exhibited strong correspondence with the
satellite retrievals, with r of 0.9 and a slope of 0.88. We found
no overarching relationship between fire frequency and bias in
GPP although several models (JULES, CLASS-CTEM,
ORCHIDEE-CNP, and OCN) did systematically overestimate
GPP in more frequently burned areas (Supplementary
Figure S11).

We found strong correspondence in inter-annual anomalies in
GPP between MODIS-derived and all TRENDY models between
2001 and 2018. There was relatively little bias in mean GPP
between the TRENDY mean and MODIS PML-v2 product (ME
−1.5 Pg C yr−1, 5.7%) (Figure 3C; Table 1). All 12 models and
consequently the TRENDY-mean exhibited positive trends in
productivity over time (11 of 12 trends were significant at α 0.05),
while the retrieved GPP had no trend over the 18 years
(Figure 3A, Supplementary Table S4). GPP trends differed
spatially, increasing in some areas and decreasing in others
(Supplementary Figures S5, S7).

Correspondence in Aboveground Biomass
Carbon
We found often poor agreement in the spatial patterns of
remotely-sensed and model-simulated biomass for the regions
analysed (Africa, Australia, North and South America) (Figure 4,
Table 1). Correlation coefficients were moderate across the 12
models, with Pearson’s r ranging from 0.52 to 0.75. The bias
between the models and the satellite retrievals was often extreme,
with most models exhibiting substantial bias and linear model
slopes ranging between 0.2 and 5.2. The TRENDY mean
exhibited slightly stronger correspondence with the satellite
retrievals, with r of 0.75 and a slope of 1.13. For most models,
we found little relation between observed burn frequency and
model - data residuals, apart from JULES and CLASS-CTEM
which overestimated biomass in more frequently burned regions
(Supplementary Figure S12).

Detection of temporal change in biomass was hindered by
the short (2011–2018) period included in the L-VOD product.
There was generally poor agreement in the temporal patterns
of simulated and remotely-sensed above ground carbon.
There was a large range in bias between models and the
satellite retrieval with MEs from −8.7 to 8.4 Pg C (−84.4
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FIGURE 2 | (A) Mean productivity retrieved from MODIS PML-v2, (B) difference between MODIS PML-v2 minus TRENDY-mean productivity over arid and semi-
arid regions. The regions analysed are shown in bold. (C–O) Pairwise pixel covariance in annual GPP means over global dryland regions (2001–2018) estimated from
MODIS PML-v2 and TRENDYmodels, displayed as counts per hexagonal bin. Dashed lines represent 1:1, and solid lines are linear models fitted with total least squares.
Units are GPP (Mg C ha−1 y−1) and all means are calculated over the common 2001–2018 time period. Note that in (C–O)models are fitted to weighted values but
weights are not illustrated while (A,B) include only grid cells with centroids within the dryland mask. LSMs with explicit representation of fire are indicated with a
flame icon.
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TABLE 1 |Correspondence between model simulations and satellite retrieved GPP and AGC fromMODIS PML-v2 and L-VOD respectively. Where Pearson’s r indicates the
weighted Pearson’s r, slope is the slope of the linear model fitted to the pairwise pixel comparison with weighted total least squares regression, bias in time is the mean
error of the annually aggregated values (percentages in brackets show the relative error), and the sensitivity to interannual variability is quantified by the mean-normalised
mean absolute error. Shading indicates the relative performance of each model, with darker shading indicating better correspondence. Regression slopes were shaded by
their log10 absolute value. * indicates models including explicit representation of fire.

FIGURE 3 | (A) Time-series of mean annual GPP (2001–2018) of global drylands for the satellite retrieval and TRENDY models (including TRENDY mean). All 12
models simulate increasing GPP over time whereas MODIS-retrieved GPP had no clear trend. (B) The mean-normalised detrended time series show good agreement in
interannual differences for all models.
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FIGURE 4 | (A)mean biomass inferred from L-VOD, (B) difference between L-VOD retrieval and the TRENDYmean AGC, the regions analysed are outlined in black
with other regions excluded due to higher RFI. (C–O) Pairwise pixel covariance in mean AGC density estimated from L-VOD versus modelled values over the focal
dryland regions, displayed as counts per hexagonal bin. Dashed lines represent 1:1 on the carbon density plots and solid lines are linear models fitted with total least
squares. Units are biomass carbon density (Mg C ha−1) and means are calculated over the 2011-2018 period. Note that in (C–O) models are fitted to weighted
values but weights are not illustrated while (A,B) include only grid cells with centroids within the drylandmask. LSMswith explicit representation of fire are indicated with a
flame icon.
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and 81.5%). Although inter-annual anomalies in AGC
generally had the same sign across the L-VOD retrieval
and TRENDY models (for the TRENDY mean the sign of
the anomaly was consistent between TRENDY and the

L-VOD in 88% of the time series), most LSMs had much
smaller anomalies from the mean compared to the larger
anomalies in the L-VOD-derived values (Figure 5). There
were no meaningful trends in the time series of AGC; the few

FIGURE 5 | (A) Time-series of aboveground carbon (2011–2018) in African, American and Australian drylands for the retrieval (black bold line) and models of the
TRENDY ensemble. There was substantial bias between most models and models were less sensitive to temporal changes in AGC compared to the L-VOD retrieval. (B)
The mean-normalised detrended time series show weak agreement in interannual differences for all models.

FIGURE 6 | Time-series of changes in (A) vegetation carbon, (B) soil carbon and (C) ecosystem carbon storage (soil plus vegetation) in global drylands between
1901 and 2018 as simulated by the models of the TRENDY ensemble. The divergence is shown relative to 1901. On average the models simulate an overall increase in
ecosystem carbon over the century, particularly in the latter 70 years.
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that were statistically significant had negligible effect sizes
(Supplementary Table S4).

Simulated Dryland Carbon Stocks Through
Time
The land surface models predicted a net gain of ecosystem carbon
in global drylands (mean 3.37 Pg C), due to an increase in soil
carbon (mean 6.35 Pg C) that exceeds the losses in vegetation
carbon (mean −2.98 Pg C) over the last 118 years (1901–2018)
(Figures 6, 7, Supplementary Table S5). There was a wide range
of carbon accumulation responses across the TRENDY models
(Supplementary Table S5). The overall loss in simulated
vegetation carbon was predominantly driven by the influence
of land-use change, exceeding the increase simulated due to CO2

fertilization (Supplementary Figure S13). Climate change had
minimal effect on the simulated dryland vegetation carbon stocks.
The overall increase in simulated soil carbon was predominantly
driven by the increase in litter inputs into the soil associated with
the increase in net primary productivity due to CO2 fertilization,
with most models predicting a small reduction due to climate
change (Supplementary Figure S14). The influence of land-use
change on soil carbon was more varied between model
simulations, with the majority showing a reduction. The
overall increase in simulated ecosystem carbon was
predominantly driven by the influence of CO2 fertilization,
exceeding the losses predicted due to both land-use change
and, to a lesser extent, climate change (Figure 6 and
Supplementary Figure S15). Overall, dryland carbon stocks
are simulated by models to have decreased by an average of
3.82 Pg C from 1901 to late-1960, before subsequently increasing

by 7.19 Pg C up to 2018 as the CO2 fertilisation effect increases
simulated GPP in response to increasing atmospheric CO2

concentrations.

DISCUSSION

In this study, we investigated the correspondence between LSM
simulated values, a MODIS productivity product (2001–2018)
and L-VOD derived AGC (2011–2018) in climatic drylands as
well as the agreement of model projections of dryland carbon
stocks (1901–2018). We examined LSMs’ performance in terms
of their ability to simulate the spatial distribution of GPP and
AGC alongside the temporal trends and variability of these
quantities over arid and semi-arid regions. GPP appears to be
reasonably well simulated, compared to estimates from the
MODIS PML-v2 product, in most LSMs. However, there were
differences in simulated aboveground carbon stocks and their
trends compared to the estimate from the L-VOD product. Large
differences potentially arise from insufficient constraints
impacting the representation of carbon allocation and release
processes.

Gross Primary Productivity
Our results suggest that carbon uptake (GPP) by dryland
ecosystems is broadly well represented by LSMs at the global
scale. We found good agreement in the spatial distribution of
GPP between simulated LSM estimates and MODIS based PML-
v2 values in drylands for most models. Correlation coefficients
were high and bias was low, especially for the TRENDY ensemble
average. Our finding that spatial patterns of GPP were broadly in

FIGURE7 | Comparison of changes in simulated vegetation and soil carbon in global drylands from 1901 to 2018. Points are coloured by the net change in
ecosystem carbon, illustrating the diversity of model predictions within the ensemble.
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agreement was consistent with previous evaluations of other
MODIS-derived GPP products against GPP observations from
dryland eddy covariance flux towers in North America
(Biederman et al., 2017). Geographic biases were consistent
across most LSMs, with overestimation of productivity in the
African Sahel and underestimation of productivity in drylands in
southern Africa and South America.

We found very strong agreement in GPP interannual
variability between LSM-simulated values and those modelled
based on satellite observations of photosynthetic capacity
(Figure 3B; Table 1), including the large 2 Pg C yr−1 positive
anomaly in 2010–11 caused by a severe La Niña event (Poulter
et al., 2014; Haverd et al., 2016). This agreement lends some
confidence that globally, LSMs capture the predominant dynamic
responses controlling inputs of carbon into dryland ecosystems in
response to annual-scale perturbations. However, the agreement
found in IAV in GPP at the global scale contrasts with the
disagreement in IAV at the site level where both MODIS and
LSM simulated productivity have been found to underestimate
IAV. Using eddy covariance observations from 25 dryland sites in
North America, Biederman et al. (2017) found IAV in GPP was
underestimated by MODIS-derived GPP. Similarly using
observations from 12 eddy covariance sites in the
southwestern U.S., MacBean et al. (2021) concluded LSMs
underestimate IAV in dryland net ecosystem exchange. These
findings underscore the ongoing need for further development
and evaluations of remotely sensed GPP products in drylands
(Smith et al., 2019).

All 12 LSMs consistently estimated a positive trend in dryland
GPP between 2001 and 2018 (Figure 3; Table 1), mainly due to
simulated CO2 fertilization (Supplementary Figure S16). The
CO2 fertilization effect has been identified for drylands using
satellite measurements (Donohue et al., 2013). Models predict a
direct CO2 fertilization effect (reduced photorespiration) and in
water-limited systems stomatal closure for the same gain in CO2

implies a longer growing season and higher annual productivity
(Gonsamo et al., 2021), as expected from theory (Prentice et al.,
2001). However, there was no trend in the satellite retrieved PML-
v2 GPP product over this time. The discrepancy in GPP trends
between models and PML-v2 was most pronounced in the Sahel
region, where PML-v2 GPP decreased and LSM-simulated GPP
increased (Supplementary Figure S7). While the PML-v2
product represents the effects of increasing CO2 concentration
on GPP (Zhang et al., 2019a), a comprehensive review of the
effects of CO2 enrichment on GPP by Walker et al. (2021)
suggests that most remotely sensed GPP products are
insufficiently sensitive to increasing CO2. Satellite-retrieved
GPP products are derived from light use efficiency models
which have limitations (Smith et al., 2019; Baldocchi, 2020;
Walker et al., 2021), one being the often very heterogeneous
patterns of dryland vegetation and soil background signal giving
rise to uncertainties, particularly in leaf area index estimations at
the coarser spatial resolutions of the satellite pixels (Smith et al.,
2019). Furthermore, the observations of evapotranspiration,
energy, and carbon fluxes used for calibrating satellite
retrieved GPP products and some of the LSMs are observed at
relatively few locations globally, with short time-series,

insufficient replication, and sampling biases that under-
represent highly dynamic dryland ecosystems (Schimel et al.,
2015; Hill et al., 2017; Jung et al., 2020). The undersampling of
semi-arid settings in particular has been suggested to have a large
impact on GPP upscaling errors (Jung et al., 2020).

Aboveground Biomass Carbon
Although we found reasonably good spatial agreement in AGC
between L-VOD retrieved and average LSM (TRENDY-mean,
Pearson’s r: 0.75), individual models exhibited poor agreement
both with each other and with the satellite-derived estimates
(Figure 4; Supplementary Figure S8; Table 1). We found large
biases in total AGC between models (Figure 5A). To some extent,
inter-LSM differences arise from different representations of land
surface processes (Sitch et al., 2008), for example, their
representation of fire and land-use change, and native model
resolutions that influence PFT fractions within grid-cells along
dryland fringes or vegetation transition zones (Supplementary
Figures S17–19). These factors also influence simulated residence
times (Friend et al., 2014) and ecosystem respiration, explaining why
LSMs that show better correspondence with the PML-v2 product for
GPP do not necessarily correspond better for AGC (Table 1).

To improve the evaluation of LSM vegetation carbon stock
predictions in low biomass drylands, further efforts are needed to
improve the accuracy and validation of satellite-derived AGC
products. A recent review concluded existing aboveground
biomass products are almost entirely inconsistent across dry
forests, savannas, and grasslands (Zhang et al., 2019b).
Uncertainties arise from insufficient data on non-forest
vegetation for calibration and validation as well as the
insensitivity of remotely sensed observations to low biomass
ecosystems (Duncanson et al., 2019; Cunliffe et al., 2021).
Furthermore, comparisons between LSM predictions and AGC
maps are strongly influenced by root-shoot ratios. These ratios
are poorly constrained by observations, particularly in drylands
(Qi et al., 2019), and also vary under different environmental
conditions in response to differences in atmospheric CO2, aridity
and grazing pressure, amongst other factors (Mokany et al., 2006;
Yan et al., 2020; Yan et al., 2021). The impact of different root-
shoot ratios also relates to the functional role of roots in LSMs.
For many models, root biomass does not impact function such as
explicit water uptake (Warren et al., 2015), therefore adding root
biomass would merely add a greater respiratory cost to the plants
and lead to lower allocation to photosynthetic material (leaves)
and reduced net primary productivity (Sitch et al., 2003).

Over the relatively short (8-year) time series, there was no
clear trend in AGC but the year-to-year anomalies (IAV) were
mostly consistent in terms of sign between models and L-VOD
AGC. The positive anomaly in 2011 was largely driven by the
influence of the La Niña in Australia (Poulter et al., 2014; Haverd
et al., 2016). These results could imply that LSMs capture the
response to key drivers on carbon inputs via photosynthesis but
not necessarily the allocation between above and belowground
biomass or the processes that release carbon from these
environments (e.g., respiration, fire, photodegradation). The
L-VOD AGC anomalies have considerably higher amplitude
than those of the LSMs. It is possible that the amplitudes of
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L-VOD-inferred anomalies may be exaggerated by variations in
plant water stress, even though the L-VOD was averaged
annually. The difference in amplitudes is furthermore sensitive
to the biomass-transfer function used to calibrate the L-VOD data
[e.g., linear, see this study (Supplementary Figure S3) and
Brandt et al. (2018), or sinusoid, Fan et al. (2019)] and
L-VOD data filtering. As L-VOD is a relatively recent product,
methods for processing and analysing the data to best understand
ecological functions are still being developed. Although longer
time-series of VOD products exist, based on C, X, and Ku band
microwave data, they have limitations such as increased
sensitivity to water stress of foliage (Momen et al., 2017) and
the necessity for intercalibration of different satellite instruments
and measurements (Moesinger et al., 2020).

Long-Term Carbon Stock Predictions
Simulated dryland vegetation carbon stocks varied between LSMs
and decreased on average between 1901 and 2018 (Figures 6, 7)
because reductions mainly due to land-use change exceeded the
gains caused by CO2 fertilization, while climate change had
minimal effect in most models (Supplementary Figure S13).
Dryland soil carbon stocks increased since 1970 despite being
negatively impacted by land-use change in drylands such as the
conversion of native woodlands to pasture and cropland which
are often associated with degradation and can lead to decreased
carbon input into soils (Cowie et al., 2011) (Supplementary
Figure S14). These reductions in soil carbon from land-use
change were counteracted by inputs from increased vegetation
productivity due to CO2 fertilization (Figures 6, 7, and
Supplementary Figure S15) (Walker et al., 2021), resulting in
soil carbon dominating the increasing trend in LSM simulated
dryland ecosystem carbon storage (Figure 6). However, current
ecosystem models are considered to poorly capture the complex
interactions between CO2 fertilization and soil organic carbon stocks
(Terrer et al., 2021). With a lack of long-term observations, it is
difficult to be confident in the role of dryland soils in climate-carbon
feedbacks. This highlights the need for longer-term observational
efforts to be able to verify these model estimates. Furthermore, we
found large differences in the change in modelled carbon stocks of
dryland ecosystems over centennial timescales between the different
LSMs (Figures 6, 7). This level of disagreement in the change in
carbon stocks when hindcast using relatively well-constrained
climatology, CO2 concentrations and land use is concerning
because it undermines confidence in prognostic applications of
these LSMs to even more uncertain future scenarios.

Improving Process Representations in
Modelled Drylands
Fire is a critical process in many, but not all, dryland ecosystems,
responsible for maintaining a stable ecological state in savanna
ecosystems and is a major cause of carbon release (Bond et al.,
2005; Lasslop et al., 2020). Land surface models increasingly
include explicit representation of fire, including six of the twelve
models considered here. Our analysis of these simulations found
that the models with explicit fire did not show systematically
better agreement with either GPP or AGC retrieved from remote

sensing (Table 1). We found little systematic relationship
between observed burn frequency and GPP residuals, although
some models (JULES and CLASS-CTEM, ORCHIDEE-CNP, and
OCN) did overestimate GPP in more frequently burned areas
(Supplementary Figure S11). There was generally no relation
between observed burn frequency and AGC residuals, apart from
JULES and CLASS-CTEM which overestimated biomass in more
frequently burned regions (Supplementary Figure S12). These
results are consistent with the fire model intercomparisons
(FireMIP), which found that while explicit fire substantially
improved model-data correspondence in some regions
(especially in functional drylands in South America that are
excluded by our climatic definition of drylands) it worsened
correspondence in other regions (Hantson et al., 2020).
Vegetation models which lack explicit representation of fire
contain compensatory biases which partially account for the
effects of fire (Burton et al., 2019; Rabin et al., 2017). “LSMs
that represent fires still do so insufficiently. For example, fire-
enabled LSMs were not able to capture the global trend in burnt
area (Andela et al., 2017). Uncertainties also remain regarding
remote sensing observations with commonly used 500 m spatial
resolution fire products significantly underestimating area burnt
and fire carbon emissions (Ramo et al., 2021). Improvements to
the representation of fire in LSMs are both needed and
anticipated as better remotely-sensed fire products become
available and we learn more about the compensatory biases
present within current LSMs (Burton et al., 2019; Hantson
et al., 2020; Lasslop et al., 2020).”

Simulations of terrestrial ecosystem processes in these LSMs
struggle to capture many aspects of carbon dynamics in
ecosystems that are subjected to severe water stress (Harper
et al., 2020; MacBean et al., 2021). Limitations in model
simulations of plant responses to water availability have been
highlighted byMacBean et al. (2021) and Harper et al. (2020). For
example, the plant functional types simulated in most models do
not represent the ecophysiological adaptations present in most
dryland vegetation communities (such as stomatal control and
drought phenology), and simulated soils and rooting schemes are
usually too shallow for these ecosystems. Furthermore, most
LSMs have poor or no representation of biological soil crusts
which are increasingly recognised to play critical roles in drylands
including contributing ~0.6 Pg yr−1 of C to global net primary
productivity (Chamizo et al., 2012; Rodriguez-Caballero et al.,
2018). This is likely a reflection of a historical emphasis/bias of
models to temperate forest phenology combined with a lack of
empirical data. Differences in simulated vegetation dynamics also
lead to erroneous estimates of fractional cover in key areas.

There are other processes thought to be important in drylands
that LSMs do not represent. For instance, solar radiation
interacting with plant litter causes photodegradation that emits
gaseous carbon. Empirical evidence from decomposition (Austin
& Vivanco, 2006; Day et al., 2018, 2019; Méndez et al., 2019;
Berenstecher et al., 2020) and eddy covariance (Rutledge et al.,
2010; Adair et al., 2017) studies suggests that photodegradation
accounts for somewhere between 10% and 50% of gaseous carbon
emissions in the semiarid ecosystems that dominate IAV and
trends in dryland carbon dynamics (Poulter et al., 2014; Ahlström
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et al., 2015). Photodegradation is therefore an important aspect of
carbon emission in seasonally arid ecosystems that is not
currently represented in LSMs, despite their inclusion of
insolation and litter pools. As the simulated long-term trends
in ecosystem carbon stocks are dominated by cSoil (including
litter) (Figures 6, 7), explicit representation of photodegradation
would improve simulations of carbon dynamics in drylands.

CONCLUSION

The potential significance of drylands for the global carbon budget
highlights the need for an improved understanding of how well
LSMs simulate the carbon dynamics of these ecosystems.
Comparing LSM simulations to two satellite-derived products
revealed that these correspond reasonably well in terms of spatial
patterns and interannual variability of dryland productivity but
disagree regarding the distribution and changes in biomass.
While the satellite-derived products used for this evaluation have
their own limitations and uncertainties, many relating to the historic
lack of observations in drylands, their synoptic coverage is suitable
for global assessments of LSMs. The current limitations in how
LSMs represent carbon allocation and release in dryland ecosystems
in particular should be addressed through improved process
representations. This includes refining existing processes such as
plant responses to water availability, addressing compensatory biases
in fire-enabled models, and representing photodegradation of litter
that is an important pathway of carbon release in semiarid
ecosystems. The increasing trend in dryland carbon storage
simulated by the LSMs is dominated by increasing soil carbon;
however, this change is very poorly constrained by empirical
observations and needs to be addressed by future site-scale
evaluations. This highlights both the need for longer-term
observational efforts to be able to constrain and verify these
model predictions but also that we should remain cautious in
interpreting this element of LSM predictions as to the role of
drylands in explaining trends in the global carbon cycle.
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