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Accurate acquisition for the positions of the waterlines plays a critical role in coastline
extraction. However, waterline extraction from high-resolution images is a very challenging
task because it is easily influenced by the complex background. To fulfill the task, two types
of vision transformers, segmentation transformers (SETR) and semantic segmentation
transformers (SegFormer), are introduced as an early exploration of the potential of
transformers for waterline extraction. To estimate the effects of the two methods, we
collect the high-resolution images from the web map services, and the annotations are
created manually for training and test. Through extensive experiments, transformer-based
approaches achieved state-of-the-art performances for waterline extraction in the
artificial coast.
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INTRODUCTION

A coastline is the boundary between the dry and wet part in the coastal area when the high tide water
is in the mean level Toure et al. (2018). The coastline is a critical geographic information source, and
it is of great significance to autonomous navigation, coastal resource management, and protection of
the environment Liu et al. (2013). Coastline extraction is a very challenging problem because it is
obtained from a region not an instantaneous line. The waterline extraction is the precondition for
computing the natural coastline, so the waterline extraction is very important and meaningful. The
waterline is the instantaneous boundary between the land and sea. It can be extracted from the high-
resolution images without other tools. In the artificial coast, the waterline can be considered as the
coastline because the waterline is very slightly influenced by the tides.

With the development of satellite remote sensing technology, it supplies tons of high-resolution
images of the coastal area, and they can be used for waterline extraction Roelfsema et al. (2013).
Besides buying these remote sensing images directly from the remote sensing image providers, users
can obtain many satellite map images freely from the web map services. All these data can be used for
the waterline extraction.

The waterline extraction methods mainly include threshold segmentation methods, edge-based
methods, object-oriented methods, active contour method, conventional machine learning methods,
and deep learning methods. The threshold segmentation methods are intuitive methods that set a
threshold value according to the image intensity to segment the land and water. Guo et al. (2016)
proposed a method that utilized a normalized difference water index to segment water and land.
Chen et al. (2019) used the components of the tasseled cap transformation to extract waterline
information. Wernette et al. (2016) presented a threshold-based multi-scale relative relief method to
extract the barrier island morphology from high-resolution DEM. These methods are handy and
effective for the simple image segmentation task. In these methods, threshold selection is the key and
difficult problem. In addition, the methods cannot deal with the images with occlusions or a complex
background.
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The edge-based methods utilize the distinctive edge feature
from the abrupt transition. The common methods including
Sobel, Roberts (Yang et al., 2018), Laplacian, and Canny
operators (Lin et al., 2013; Paravolidakis et al., 2016; Ao et al.,
2017; Widyantara et al., 2017; Paravolidakis et al., 2018) can be
adopted to extract the waterline.Wang and Liu (2019) proposed a
robust ridge-tracing method utilizing the statistical properties of
the pixel intensities in the land and sea to detect the boundary.
These methods are easy to detect clear, continuous boundaries.
However, in the waterline images with a complex background,
they are greatly affected by noise. The continuity of the extracted
waterline is hardly guaranteed.

Object-oriented methods no longer use the pixel as the basic
processing unit; instead, they use an object composed of
homogeneous pixels (Gucluer et al., 2010; Rasuly et al., 2010;
Bayram et al., 2017). Ge et al. (2014) presented an object-oriented
multi-scale segmentation method using interpretation rule sets
for automated waterline extraction from remote sensing imagery.
Wu et al. (2018) used the object-oriented classification method to
extract the waterline from Landsat images of Shenzhen city.
These methods use higher level features to classify images,
which can reduce the impact of fine texture characteristics on
the results of image classification. However, in face of a large
amount of information in high-resolution images, object-
oriented classification methods may ignore some of the hidden
useful information, and it is difficult to achieve the desired
classification accuracy.

The active contour methods can achieve better results for
remote sensing images of waterlines with simple backgrounds,
strong contrast, and continuous boundaries. Cao et al. (2016)
proposed a new geometric active contour model for waterline
detection from SAR images, which is adaptive to the speckle
noises. Fan et al. (2016) proposed a level set approach with a
particle swarm optimization algorithm for waterline automatic
detection in SAR images. Elkhateeb et al. (2021) adopted a
modified Chan–Vese method for sea–land segmentation,
which is initiated by a superpixel-based fuzzy c-means
automatically. In the study by Modava and Akbarizadeh,
(2017), a waterline extraction method–based active contour for
SAR images is proposed, in which the initial contour is obtained
from a fuzzy clustering with spatial constraints. In the study by
Liu C et al., (2016), the waterline is extracted hierarchically by the
level set techniques from single-polarization and four-
polarization SAR images. Liu et al. (2017) integrated an edge-
based and a region-based active contour model in different scales
to fulfill the waterline detection from SAR Images. Due to the
characteristics of the active contour model method, the
application of this method is feasible for waterline images with
a simple background, strong contrast, and continuous
boundaries. However, the iterative method inevitably produces
a large amount of calculation, which restricts its efficiency.

Conventional machine learning methods distill useful
information and hidden knowledge based on a variety of data
to extract the waterline. Rigos et al. (2016) and Vos et al. (2019)
used a shallow neural network to extract the shoreline from
satellite images and video images, separately. Sun et al. (2019)
built a superpixel-based conditional random field model to

segment the sea and land area. Dewi et al. (2016) presented
fuzzy c-means methods to detect positions of the coastline and
estimate the uncertainty of the coastline change. Cheng et al.
(2016) proposed a graph cut method to segment the sea and land,
in which the seed points are achieved by a probabilistic support
vector machine. Compared with the traditional waterline
extraction method, the shallow neural network, clustering
analysis technology, fuzzy logic technology, and support vector
machine use intelligent means to find out frequent regular things
from a large number of data information effectively. These
methods can automatically and efficiently extract regular
objects. However, for more complex objects in high-resolution
images, the extraction accuracy is unsatisfactory. Some other
traditional methods, such as the polarization method (Nunziata
et al., 2016), wavelet transform method (Toure et al., 2018),
region growing method (Liu Z et al., 2016), and decision tree
algorithm (Wang et al., 2020) , are all influenced by noise and
cannot process the high-resolution images easily.

In these years, deep learning methods have been rapidly
developing with the quickly growing performance of computer
hardware. Different from traditional machine learning, it can
learn the characteristics of the target more accurately. Some
convolutional neural network (CNN) methods are naturally
introduced in waterline extraction by segmenting the land and
sea. In the study by Liu et al., (2019), a simple CNN with multi-
scale features and leaky rectified linear unit (leaky-ReLU)
activation function is used for waterline extraction. Liu W
et al. (2021) proposed an end-to-end lightweight multitask
CNN without downsampling to obtain lakes and shorelines
from remote sensing images. Shamsolmoali et al. (2019)
adopted a residual dense UNet to facilitate the hierarchical
features from the original images for sea–land segmentation.
Tsekouras et al. (2018) presented a novel Hermite polynomial
neural network to detect the shoreline at a reef-fronted beach.
Cheng et al. (2017a) proposed a local smooth regularized deep
CNN that can obtain the segmentation and edge results of the sea
and land simultaneously. Cheng et al. (2017b) employed a
multitasking edge–aware CNN for sea–land segmentation and
edge detection simultaneously. Cui et al. (2021) presented a scale-
adaptive CNN for sea–land segmentation, which fused multiscale
information and emphasized the boundaries’ features actively. A
sea–land segmentation approach utilizing the fast structured edge
network and the waterline database was taken from the study by
He et al., (2018). A novel UNet-like CNN was proposed for
sea–land segmentation, and the network can be deeper, and the
convergence can be faster based on local and global information
(Li et al., 2018). Erdem et al. (2021) proposed a majority voting
method based on different deep learning architectures to obtain
shorelines automatically. Lin et al. (2017) presented a multi-scale
end-to-end CNN for sea–land segmentation and ship detection,
which can increase the receptive field while maintaining fine
details. Even though the CNNs have achieved great performances,
the limited receptive field affected the performance because of the
structure of the CNN.

Transformers, as the most advanced methods in the semantic
segmentation, are migrated to compute vision tasks to solve the
problem of long-distance dependence by the self-attention
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mechanism, which is the core of transformers. It determines the
global contextual information of each item by capturing its
interaction amongst all items. A vision transformer (ViT) is
the first work that uses a pure transformer for image
classification, which proves that the transformer can achieve
the state-of-the-art (Dosovitskiy et al., 2021). It treats each
image as a sequence of tokens and then feeds them to
multiple transformer layers to make the classification.
Subsequently, the dual intent and entity transformer (DeiT)
(Touvron et al., 2021) further explores a data-efficient training
strategy and a distillation approach for ViTs. The pyramid vision
transformer (PVT) is the first work to introduce a pyramid
structure in a transformer, demonstrating the potential of a
pure transformer backbone compared to CNN counterparts in
dense prediction tasks (Wang et al., 2021). After that, methods
such as shifted windows (Swin) transformer (Liu Z et al., 2021),
convolution transformers (CvT) (Xu et al., 2021), and twin
transformer (Chu et al., 2021) enhance the local continuity of
features and remove fixed size position embedding to improve the
performance of transformers in dense prediction tasks.
Segmentation transformers (SETRs) adopt the ViT as a
backbone to extract features, achieving impressive performance
in segmentation (Zheng et al., 2021). Following it, semantic
segmentation transformers (SegFormer) achieved even better
results later (Xie et al., 2021).

Therefore, we use the most advanced transformer methods to
extract the waterline as an early exploration. This study mainly
focuses on the process of extraction of the waterlines for artificial
coasts and presents the early research for investigating the
potential of transformers in waterline extraction from very
high-resolution images.

The rest of the study has the following sections.Materials and
Methods suggests details about the dataset and methodology.

Results reports experimental results with a discussion. Finally, the
conclusion section concludes and discusses future research
directions.

MATERIALS AND METHODS

Dataset
For this research, we selected Tianjin, Zhoushan, Shanghai, and
Shenzhen four ports as research areas, which are shown in
Figure 1. The waterline images are collected from Mapbox
(Mapbox, 2021), Google Maps (Google Maps, 2021), and Bing
Maps (Microsoft, 2021) guided by OpenStreetMap (OSM) tiles.
The images are in 18 levels in the map, and the initial resolution is
256 × 256. The ground sampling distance (GSD) is about 0.48 m.
We combine each neighboring four tiles into a 512 × 512 image. A
total of 600 images are chosen as the initial data, and the ground
truths of waterlines are created by hand. We also augment it with
the random rotation, flip, scale, contrast, brightness, and
saturation to 6000 images. Among them, 3600 images are
considered as the training set, 1200 images and 1200 images
for validation and test, respectively. The images and
corresponding annotations are indicated in Figure 2. To
evaluate the effects of transformers, six CNN segmentation
methods are introduced in the experiments.

Methodology
SETR
SETR is an Encoder–Decoder architecture, as seen in Figure 3.
SETR adopted a high resolution of local features extracted by a
CNN and the global information encoded by transformers to
segment pixels in an image. Because of quadratic model
complexity of the transformer, flattening the whole image as a

FIGURE 1 | Research area.
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sequence makes a huge amount of computation. To speed up, an
image is divided into 256 even patches, and then, each patch is
flattened into a sequence for input separately.

All the sequences are entered into the pure transformer-based
encoder. Therefore, all the transformer layers have a global receptive
field, which improve the limited receptive field problem from the
CNN. There are 24 layers of transformers in the encoder, in which
there are multi-head self-attention (MSA), multilayer perceptron
(MLP), and layer normalization blocks residually connected.

The decoder is called the multi-level feature aggregation (MLA).
Some feature representations from the transformer layers are first
reshaped from 2D to 3D and then aggregated. A 3-layer convolution
network downsamples the features at the first and third layer. To
enhance the interactions of different levels of features, a top-down

aggregation design is introduced. The fused feature is obtained via
channel-wise concatenation after the third layer. At last, the outputs
are upscaled by bilinear operation to the original resolution.

SegFormer
The architecture of SegFormer is depicted in Figure 4. The
SegFormer consists of two main modules, encoder and
decoder. An image as the input is first divided into patches in
4 × 4. Then, these patches are imported to the hierarchical
transformer encoder to obtain multi-level features. These
multi-level features are passed to the MLP decoder to predict
the segmentation mask at a H/4 × W/4 × Ncls resolution, where
H,W,Ncls are the height, width of the image, and the number of
categories in the image, respectively.

FIGURE 2 | Dataset.

FIGURE 3 | Architecture of the SETR.
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In the encoder, an input image is one with a resolution of
H × W × 3, and Ci is the channel number in the feature map Fi.
A hierarchical feature map Fi with a resolution of
H/2i+1 × W/2i+1 × Ci is obtained after each transformer block,
where i ∈ {1, 2, 3, 4}, and Ci+1 is larger than Ci.

The transformer consists of efficient self-attention, Mix-FFN,
and overlap patch merging blocks. Efficient self-attention
improves the computational efficiency of the self-attention. In
the original multi-head self-attention process, each of the heads
has the same dimension N × C, where N � H × W is the length
of the sequence, and C is the channel number. The self-attention
is expressed as follows:

Attention(Q,K, V) � Softmax(QK⊤��
dh

√ )V. (1)

In the equation, dh is the dimension of the head. The
computational complexity of this process is O(N2). To
alleviate it, the sequence K is reduced with a reduction ratio R.
It is first reshaped into N/R×C·R and then simplified by a fully
connected layer. Therefore, the new K has dimensions N/R×C. As
a result, the complexity of the self-attention mechanism is
reduced from O(N2) to O(N2/R).

ViT uses positional encoding (PE) to express the location
information. It influences the test accuracy when the image
resolution is not the same with that in the training because
the positional code needs to be interpolated. To address it,
Mix-FFN considers the effect of zero padding to leak location
information, and a 3 × 3 convolution is used in the feed-forward
network (FFN). Mix-FFN can be formulated as follows:

xout � MLP(GELU(Conv3×3(MLP(xin))))+xin, (2)
where xin is the feature from the self-attention module. Mix-FFN
mixes a 3 × 3 convolution and an MLP into each FFN. The

Gaussian error linear unit (GELU) (Hendrycks and Gimpel,
2020) is an activation function. xout is the output of the Mix-FFN.

To preserve the local continuity around those patches, an
overlapping patch merging process is used. K is the patch size, S is
the stride between two adjacent patches, and P is the padding size.
K = 7, S = 4, P= 3, and K = 3, S = 2, P= 1 are set to perform
overlapping patch merging to produce features with the same size
as the non-overlapping process.

The SegFormer incorporates a lightweight decoder consisting
only of MLP layers. The proposed All-MLP decoder consists of
four main steps. First, multi-level features from the encoder go
through an MLP layer to unify the channel dimension. Then,
features are upsampled to 1/4th and concatenated together.
Third, an MLP layer is adopted to fuse the concatenated
features. Finally, another MLP layer takes the fused feature to
predict the segmentation mask.

The Proposed Method
In this section, we demonstrated a method used in the task of
waterline extraction. The workflow is shown in Figure 5. The
transformer first learns the coast features from the training
samples. This step is the most time-consuming since most
layers of the network are trained in this step. After the
learning step, parameters of the model are convergent, and it
can infer other new coast images for waterline extraction. Then, a
binary mask of the coast is obtained from each input image; the
waterline can be extracted from the mask easily. It is worth noting
that the contours of the coast at the edges of the image should be
excluded because this part is truncated when slicing image tiles.

Metrics
The proposed approaches are evaluated by precision, recall, F1-
score, and IoU.

FIGURE 4 | Architecture of the SegFormer.
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P � TP

TP + FP
, (3)

R � TP

TP + FN
, (4)

F1 � 2 × P × R

P + R
, (5)

IU � TP

TP + FP + FN
. (6)

Among them, the P and R stand for precision and recall,
respectively; the true positive (TP) stands for the rightly extracted
land area; the false positive (FP) represents the area mistaken as
the land; the false negative (FN) means omitted land pixels. In our
study, the reference land images are drawn manually. Precision
and recall are contradictory in most cases. To address this,
comprehensive metrics F1 (F1) and IoU (IU) are employed
commonly. Inference time is defined as the average
segmentation’s time using our test data. The floating-point
operations (Flops) represent the computation of the model,
and it is a metric for the computational complexity.

RESULTS

Experiment Setting
The proposed transformers were developed under
MMsegmentation (MMSegmentation, 2020) by PyTorch
(Paszke et al., 2017). Training and testing were performed
with eight NVIDIA TITAN Xp GPUs and one NVIDIA
TITAN Xp GPU, respectively. In our experimental dataset,
there are 3600 images for training, 1200 images for validation,
and 1200 images for testing. All the annotations are manually

annotated. The resolution of all images is 512 × 512. The SETR
uses a learning rate value of 10–3, the number of iterations is
160,000, and the weights are pretrained on ImageNet-21K. The
SegFormer was tested using a learning rate value of 10–6, the
number of iterations is 40,000, and the weights are pretrained on
ImageNet-1K. The other compared methods are all run in 40,000
iterations.

Experimental Results
Qualitative Results
The results of the eight methods are displayed in Figure 6. From
the results, we can see that PSPNet-UNet, DeepLabV3-UNet, and
SETR cannot obtain good results in Image 1, Image 4, and Image
6. A large area in the land is missed, and the fine dock structure is
not extracted in all the three methods. For the CNNmethods, the
methods with the ResNet101 backbone are better than the
methods with HRNet, and the methods with the UNet
backbone achieve the cheapest results. Only the methods with
ResNet101 and HRNet extract the small striped object in Image 6,
but no methods can avoid the influence of the ship. In Image 8,
only the FCN-ResNet101 and DeepLabV3-ResNet101 gain
terrific results. Other CNNs get a lot of false-positive or false-
negative parts. For the transformer methods, the SegFormer
achieves very nice results in all the images, especially for the
fine structures. In contrast, the SETR can also extract the large
object effectively in Image 3, but it struggles to the small and thin
objects in Image 6 and Image 8. Overall, DeepLabV3-ResNet101,
FCN-ResNet101, FPN-ResNet101, and SegFormer are all
outstanding, and PSPNet-UNet, DeepLabV3-UNet, and SETR
are relatively weak.

We can see in Figure 7, the SETR cannot extract the fine
objects in Image1, Image 3, and Image 4. The dock and
infrastructure are all not complete in the three images. It

FIGURE 5 | Workflow of the proposed method.
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hardly finds the land area near the boundary in Image 2 and
Image 3. The connection part in the dock is neglected, and the
shape of the harbor is not regular due to the incomplete extraction
in Image 2. There are missed land pixels near the frame in Image
3. For large objects, it can performwell, although the edges are not
kept fine in Image 1, Image 3, and Image 4.

Figure 8 depicts the results of SegFormer results. We can see
that it correctly segments nearly all the pixels. It can even keep the
details of objects well, especially in Image 1 and Image 3. The
spindly parts in Image 1 and Image 3 are all fine and

unmistakable. The integrity and differentiation are impressive.
The minor complaints are the small leaks near the edges in Image
1, Image 3, and Image 4 and the small holes in Image 2. The
SegFormer can extract the land features so good that the waterline
can be extracted completely and accurately.

Quantitative Results
All the experimental methods are reported in Table 1. For the
CNN methods, the models with ResNet101 achieved best results.
Among them, the DeepLabV3 is the best with 0.9056 in precision,

FIGURE 6 | Results of all methods in comparison.
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0.8814 in recall, 0.8674 in F1, and 0.8169 in IoU. The FCN
and FPN with the backbone of ResNet101 also reach or
approach 0.9 in precision, 0.88 in recall, 0.86 in F1, and
0.81 in IoU. By comparison, the methods with UNet get
lowest scores. PSPNet with UNet has the least scores, with
the precision 0.8298, F1 0.8333, and IoU 0.7632. The
performances of DeepLabV3 with UNet are slightly higher
than that of PSPNet with UNet. The FCN with HRNet48 is
moderate, which achieves 0.8964 in precision, 0.8766 in
recall, 0.8581 in F1, and 0.8052 in IoU.

For the vision Transformer methods, we can see that the
SegFormer reaches the precision 0.9121, recall 0.9104, F1-score
0.8883, and IoU 0.8439, respectively, which prove its accurate and
robust performance to segment the land and sea. SETR gets the
lowest scores in all metrics. The scores match the results in
Figures 6, 7; it cannot acquire the ideal land area, and the shapes
are very incomplete.

The floating-point operations (Flops) represent the model
complexity. Table 1 shows that the DeepLabV3 models occupy
more computing power, followed by SETR and PSPNet. The
FCN, FPN, and SegFormer use the least resource in all the
methods. Specially, the DeepLabV3-ResNet101 consume the
largest computing units, and the SegFormer is the most
resource-saving. For the inference time, except the FCN-
HRNet48 and SETR with 0.77 and 0.32, other methods are
all under 0.3 s. The FCN with ResNet101, FPN with

ResNet101, and SegFormer can even infer an image in 0.2 s.
FCN-ResNet101 is the fastest method in inference.

DISCUSSION

Performance Analysis of the Superior CNNs
In the six CNN methods, the networks with the backbone of
ResNet101 are the best extractors, and they occupy the top three
for accuracy. It is followed by the HRNet48, and the UNet is the
last. In ResNet101, the convolution layers are very deep, and the
features are connected with residual blocks. It can keep more
detail features and avoid gradient vanishing by this way.
Meanwhile, this ResNet101 uses dilated convolution to
increase the receptive field, which makes it more powerful.
The HRNet generates high-resolution and low-resolution
parallel subnetworks. It can merge the high-resolution features
and low-resolution features through the different stages by
connecting the multi-resolution parallel subnetworks.
Therefore, it can obtain rich high-resolution and low-
resolution representations. The best header is DeepLabV3
because it achieves the best scores when different methods use
the same backbone of UNet or ResNet101. In DeepLabV3, the
atrous spatial pyramid pooling (ASPP) adds a series of atrous
convolutions with different dilated rates to increase global
contextual information. Global average pooling (GAP) also

FIGURE 7 | Results of SETR.
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combines image-level features. These all make the DeepLabV3
outstanding.

Performance Analysis of the Superior
Transformer
In the two vision transformers, the SETR obtain F1 with 0.8018
and IoU with 0.7268, and the SegFormer achieves 0.8883 in F1-
score and 0.8439 in IoU. The SegFormer wins the SETR in
accuracy completely. It can also be seen from the Figures 7, 8,
the SETR cannot extract the integrated and continuous
structures in Image 2 and Image 3, and the SegFormer can
extract nearly the whole and accurate structures. In SETR, the
feature maps after the transformer layers are in the same size,

and in the SegFormer, it generates multi-level feature maps.
The different scales of feature maps include the high-
resolution coarse features and low-resolution fine-grained
features, so it can adapt to large and small object
extractions. At the same time, the decoder in the SegFormer
is made up of only MLP, which is lighter and has a larger
effective field than traditional CNN encoders. These all make
the SegFormer perform better than the SETR. On the other
side, the SETR has more computational complexity with 212.4
GFLOPs than the SegFormer with just 51.83 GFLOPs. The
huge amount of computation of the SETR is from the self-
attention in the transformer. Because the computational
complexity of self-attention is O(N2), N is the length of the
input sequence. The SegFormer uses the efficient self-attention

FIGURE 8 | Results of SegFormer.

TABLE 1 | Comparison for all the methods in metrics.

Method Backbone Flops (GFLOPs) Inference Time(s) Precision Recall F1 IoU

PSPNet UNet 197.76 0.25 0.8298 0.8782 0.8333 0.7632
DeepLabV3 UNet 203.43 0.25 0.8518 0.8703 0.8406 0.7719
FCN HRNet48 93.38 0.77 0.8964 0.8766 0.8581 0.8052
FCN ResNet101 76.07 0.08 0.8995 0.8814 0.8636 0.8113
FPN ResNet101 64.73 0.09 0.9010 0.8793 0.8637 0.8096
DeepLabV3 ResNet101 347.33 0.23 0.9056 0.8814 0.8674 0.8169
SETR T-Large 212.4 0.32 0.8244 0.8397 0.8018 0.7268
SegFormer MiT-B5 51.83 0.15 0.9121 0.9104 0.8883 0.8439
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which reduces the computational complexity by some
transforms. Therefore, the SegFormer is much easier to
compute.

The Most Robust Method
The top CNN DeepLabV3 and the transformer SegFormer are all
very competitive. However, the vision transformer SegFormer is
superior to DeepLabV3 in precision, recall, F1, and IoU. It also
has a smaller complexity and shorter inference time. The limited
receptive field in DeepLabV3 requires the ASPP module to
enlarge the receptive field, but the model inevitably becomes
heavy. The SegFormer benefits from the non-local attention in
transformers and enjoys a larger receptive field. The transformer
integrates with theMLP decoder an can produce both highly local
and non-local attention by adding fewer parameters. These all
make the SegFormer more efficient and lighter in waterline
extraction.

CONCLUSION

We propose a new method based on the vision transformers for
the waterline extraction by sea–land segmentation. Two
transformers, the SegFormer and SETR, are adapted to
segment and identify land pixels by a custom dataset from
satellite maps. The performances of the two transformers are
compared with other state-of-the-art CNN methods, PSPNet,
DeepLabV3, FCN, and FPN. The SETR with a pure transformer
structure, as an early comer to image segmentation, achieves a
nearly equivalent performance compared with the developed
CNN methods. More surprisingly, the latter method, the

SegFormer outperforms state-of-the-art CNN methods and
demonstrates an extraordinary ability to segment land pixels
under different conditions. For future work, we hope to
improve the method in accuracy and robustness, though it has
achieved a fairly good performance.
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