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Algal bloom in an inland lake is characterized by significant spatial and temporal dynamics.
Accurate assessment of algal bloom distribution and dynamics is highly required for tracing
the causes of and creating countermeasures for algal bloom. Satellite remote sensing
provides a fast and efficient way to capture algal bloom distribution at a large scale, but it is
difficult to directly derive accurate and quantitative assessment based on satellite images.
In this study, the Gini coefficient and Lorenz asymmetry coefficient were introduced to
examine the spatio-temporal algal bloom distribution of Chaohu Lake, the fifth largest
inland lake in China. A total of 61 remote sensing images from three satellite sensors,
Landsat, Gaofen, and Sentinel were selected to obtain algal bloom distributions. By
dividing remote sensing images into 0.01°*0.01° grid cells, the normalized difference
vegetation index (NDVI) for each grid cell was derived, forming a spatial and time series
database for quantitative analysis. Two coefficients, Gini coefficient and Lorenz asymmetry
coefficient, were used to evaluate the overall intensity, unevenness, and attribution of algal
bloom in Chaohu Lake from 2011 to 2020. The Gini coefficient results show a large variety
of algal bloom in the spatial and temporal scales of Chaohu lake. The lake edge and
northwestern part had longer lasting and more severe algal bloom than the lake center,
which wasmainly due to nutrient import, especially from three northwestern tributaries that
flow through the upstream city. The Lorenz asymmetry coefficient revealed the exact
source of the unevenness. Spatial uncertainties were mostly caused by the tiny areas with
high NDVI values, accounting for 53 cases out of 61 cases. Temporal unevenness in
northwestern and northeastern parts of the lake was due to the most severe breakout
occurrences, while unevenness in the lake center was mainly due to the large number of
light occurrences. Finally, the advantage of Gini coefficient and Lorenz asymmetry
coefficient are discussed by comparison with traditional statistical coefficients. By
incorporating the two coefficients, this paper provides a quantitative and
comprehensive assessment method for the spatial and temporal distribution of
algal bloom.
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1 INTRODUCTION

Algal bloom in water areas has been a critical worldwide
environment issue for the past several decades (Haag, 2007).
Many studies have tracked long-term algal bloom outbreaks of
various inland lakes in China (Wang et al., 2012; Yan et al., 2012;
Huang et al., 2015; Zhang et al., 2015; Kang et al., 2016), U.S.
(Hambright et al., 2010; Winston et al., 2014), India (Kamerosky
et al., 2015), Mexico (Stumpf et al., 2003), and Canada (Hecker
et al., 2012; Sorichetti et al., 2014). Since algal bloom is highly
sensitive to various factors such as nutrients, temperature, wind
speed, air pressure, and human controlling (Ahlgren, 1988;
Vedernikov et al., 2007; Klemencic and Toman, 2010; Ribeiro
et al., 2015; Wang et al., 2017), its spatial and temporal
distribution is characterized as highly uneven and fluctuating,
especially for inland lakes where the water flow and regeneration
rate are lower. Therefore, an accurate description of spatial and
temporal distribution is an important prerequisite for analyzing
and controlling algal bloom outbreaks.

Satellite remote sensing has significant advantages for its large-
scale and periodic observation, providing an efficient manner to
observe large-scale algal blooms. Since the 1990s, the Landsat
satellite has been used to monitor lake algal blooms and their
dynamics (Galat and Sims, 1990; Richardson, 1996). Today there
are several satellites that are widely used in algal bloom
observation, i.e., the Landsat satellite (Ho et al., 2019), Sentinel
satellite (Moita et al., 2016; Pirasteh et al., 2020), MODIS satellite
(Lu and Tian, 2012; Zhang et al., 2015), Gaofen satellite (Hu et al.,
2019), and GOCI satellite (Choi et al., 2014; Lou and Hu, 2014).
Algal bloom indicators derived from satellite remote sensing
bands include normalized difference vegetation index (NDVI)
(Van Der Wal et al., 2010; Lin et al., 2016), FAI (Hu, 2009; Zhang
et al., 2014; Page et al., 2018), Chla (Hu, 2009; Zhang et al., 2014;
Page et al., 2018; Guan et al., 2020; Pompeo et al., 2021), etc. On
this basis, various analyses are conducted on algal bloom
distribution from spatio-temporal (Lu and Tian, 2012; Zhang
et al., 2015; Page et al., 2018; Zabaleta et al., 2021) and vertical
(Bosse et al., 2019) points of view. In 2019, a global spatio-
temporal algal blooms analysis covering 71 large lakes from 33
countries based on Landsat five satellite images (Ho et al., 2019)
revealed that algal bloom in over 2/3 of lakes had been increasing
during the last 30 years. These studies show that the application of
satellite remote sensing is a useful and efficient way to observe,
track, and evaluate long-term and large-scale algal bloom
distribution.

Although remote sensing images inversion can display the
general coverage, severity, and evolution trend of algal bloom, the
evaluation of distribution based on numerous images, especially
for time series analysis, is subjective. Since algal bloom may grow
and fade rapidly, its characteristics may be highly diverse in a
couple of days (Lu and Tian, 2012; Zhang et al., 2020). Current
research focuses less on the quantitative assessment method of
algal bloom distributions. Using hotspots is one of the
quantitative assessment methods that has been applied in
spatial distribution analysis (Wei et al., 2021; Zabaleta et al.,
2021). Generally, a quantitative description of temporal and
spatial distribution of algal blooms is still lacking. Indices that

accurately and briefly abstract the key information of algal bloom
distribution features are highly needed. This requirement is more
important when incorporating long-term temporal analysis in
analysis.

In this paper, we focus on the assessment method of algal
bloom distribution of Chaohu Lake from 2011 to 2020. Two
indices, the Gini coefficient and Lorenz asymmetry coefficient,
which are originally proposed to assess citizen income inequality,
are applied to spatial and temporal distribution analysis of algal
bloom. These two indices have been adopted to analyze river flow
variability and biological species variability in previous studies
(Damgaard andWeiner, 2000; Zhen-Xiang et al., 2004; Jawitz and
Mitchell, 2011; Masaki et al., 2014; Zhang et al., 2020). It is
considered suitable to use these two indices to measure and
explain this variability. The Gini coefficient is used to measure
the spatial or temporal distribution inequality (unevenness) of
algal blooms, while the Lorenz asymmetry coefficient explains
whether the unevenness is caused by a small number of large
NDVI values or a large number of small NDVI values. To be
specific, for spatial analysis, the two coefficients indicate the
extent of lake-wide variability of algal bloom and which area
contributes to the unevenness; for temporal analysis, the two
coefficients indicate the temporal variability of algal bloom in
each grid cell, and which occurrences contribute most to the
unevenness.

The study site and data of Chaohu Lake are described in
section 2. The application of the Gini coefficient and Lorenz
asymmetry coefficient in assessing algal bloom spatial and
temporal distribution are explained in section 3. Section 4
presents the result of spatial and temporal distribution with
discussion. A conclusion is given in section 5.

2 STUDY AREA AND DATA

2.1 Chaohu Lake
Chaohu Lake (31°25’ ~ 31°42′N, 117°17’ ~ 117°50′E), located in
central-eastern China, is the fifth largest inland freshwater lake of
China. The lake covers an area of 780 km2, with a length of 55 km
in longitude and a width of 21 km in latitude (Shang and Shang,
2005). A total of 90% of the Chaohu Lake is supplied by surface
runoff (Yang et al., 2013), consisting of 10 major inflow-
tributaries entering the lake. The location and distribution of
Chaohu Lake is shown in Figure 1.

Algal bloom of Chaohu Lake has occurred almost every
summer in the past several decades (Shang and Shang, 2005).
Since the 1970s, with rapid industry and population
development, nutrients and organic matter such as nitrogen
and phosphorus in the lake have rapidly increased, resulting in
the frequent occurrence of algal bloom (Kong et al., 2013).
Satellite remote sensing data showed that algal bloom in
Chaohu Lake has broken out almost every year in the past
30 years, with an average annual outbreak frequency of six
times (Damgaard and Weiner, 2000). In the early 1980s, the
algal blooms were mainly distributed in the northwest and
northeast lake areas. During 1983–1990, the algal bloom
gradually moved to the lake center. In 1990, the algal bloom
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FIGURE 1 | Location and distribution of Chaohu Lake.

TABLE 1 | Parameters of Landsat satellite, GF-1 satellite, and Sentinel satellite.

Satellite Launch year Country Spatial resolutiona Repeat period (d)

Landsat-5 1982 U.S. 30/60 m 16
Landsat-7 1999 U.S. 15/30/60 m 16
Landsat-8 2013 U.S. 15/30/100 m 16
GF-1 2013 China 16 m 4
Sentinel-2A 2015 European Space Agency 10/20/60 m 10
Sentinel-2B 2017 European Space Agency 10/20/60 m 10

aSpatial resolution may vary in different bands.

TABLE 2 | Satellite images dates and sources .

Year Number of images Image date and source

2011 2 07/11a 09/14a

2012 4 06/20b 07/22b 08/07b 09/24b

2013 6 06/15c 07/09b 08/10b 08/18c 09/03c 09/19c

2014 5 07/21d 08/05c 08/15d 08/21c 09/04d

2015 3 08/31d 10/24d 10/27c

2016 3 06/14d 07/25c 09/12d

2017 2 08/25e 09/16d

2018 13 06/06e 06/12d 07/20d 07/24d 07/29d 09/4d 09/15d 09/19d 10/2d

10/03d 10/06d 10/27d 10/31d

2019 17 05/23d 06/14d 06/26e 07/07d 07/11e 07/20d 07/21e 08/01d 08/03c

09/19d 09/23d 09/29e 10/18d 10/29e 10/30d 10/31d 11/01c

2020 6 05/17c 08/01d 08/19e 08/24e 09/03e 09/19d

Sum 61

a: Landsat-5
b: Landsat-7
c: Landsat-8
d: GF-1;
e: Sentinel-2.
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occurred throughout the lake. From 1999 to 2017, algal bloom
began to shrink gradually, with most algal blooms
concentrated in the northwest lake area (Li S M, 2019). The
initial time of algal bloom outbreak in each year is gradually
getting earlier, and the duration is gradually increasing
(Damgaard and Weiner, 2000).

2.2 Data Sources
In this study, three types of satellite sensors, the Landsat 5/7/8
satellite, GF-1 satellite, and Sentinel-2 satellite are used to obtain
the algal distribution of Chaohu Lake. Table 1 lists the main
parameters of the three sensors. All candidate images from May
to October between the years 2011–2020 were examined, and
only cloud-free images with algal bloom areas greater than
50 km2 were considered. A total of 61 remote sensing images
were obtained with significant algal bloom coverage and almost
no cloud coverage. Table 2 shows the date and source of selected
images. The number of images varies widely from year to year due
to the different severity of algal bloom and image quality.

All the images were checked or preprocessed to make sure
atmospheric correction was applied. The aim of atmospheric
correction is to eliminate the influence of atmospheric and
illumination factors on the reflection of ground objects. In this
study, the Landsat-5, Landsat-7, and Landsat-8 data were L2
grade and corrected by the Landsat official production system
including radiometric and geometric correction (https://www.
usgs.gov/faqs/does-landsat-level-1-data-processing-include-
atmospheric-correction). The Sentinel-2 data (L2A level) used in
this paper were generated from 1C products based on scenario
classification and atmospheric correction algorithms. (https://
sentinels.copernicus.eu/web/sentinel/technical-guides/sentinel-
2-msi/level-2a-processing). The GF-1 data were pre-processed
using FLAASH mode in ENVI 15.3 software.

2.3 NDVI Indicator
Since green algae has similar spectral characteristics with terrestrial
vegetation, some indicators that reflect vegetation are widely adopted
to characterize algal bloom coverage of a water area, such as FAI and
NDVI (Zhu et al., 2020). In this study, due to the lack of short-wave
infrared band data in the GF-1 sensor, the NDVI index was adopted
as an indicator of algal bloom. The derivation of NDVI is:

NDVI � NIR − R

NIR + R
(1)

where NIR is the reflectance of the near-infrared band and R is
the reflectance of the red band. The NDVI value ranges from -1 to
1. Positive NDVI denotes the existence of algal bloom, and higher
NDVI indicates higher algal bloom severity. Bands of NIR and R
for each satellite used in this study are listed in Table 3.

3 MATERIALS AND METHODS

3.1 Extraction of Lake Cells
Although the distribution of algal bloom can be roughly seen
and analyzed from the NDVI distribution map of remote
sensing inversion, it is still very important to divide the lake
area into grid cells for quantitative assessment, because
appropriate cell division can facilitate further calculation
and make the spatial and temporal evaluation results
closer to the real value. Grid cell division has been used in
various spatial analyses for quantitative analysis. Masaki et al.
(2014) extracted major river channel cells to analyze the
variability of inflow regimes for different parts of rivers;
Guevara-Escobar et al. (2007) used grid-divided data to
evaluate rainfall distribution patterns; Raziei and Pereira
(2013) and Das et al. (2014) interpolated and gridded
rainfall distributions to 0.5°*0.5° and 1°*1° grid cells
respectively for spatial analysis. With this consideration,
the Chaohu Lake area was divided into equidistant grids
for quantitative spatial and temporal analysis. First, the
shape of Chaohu Lake was clipped using DEM contours.
To avoid the confusion of lake edge caused by water level
fluctuation, the DEM contour latitude was set slightly lower
than the normal water level. The clipped lake area was then
taken as the “uniform lake shape” for all images, assuring the
location of grids was consistent in every image. Second, the
lake area was divided by horizonal and vertical parallel lines
with 0.01° distance, generating 850 0.01°*0.01° grid cells. In
this way, the distribution of algal bloom was represented by
uniform grid data of mean NDVI. The grid data were
regarded as the regularized vector for quantitative spatial
and temporal analysis. Figure 2 shows an example of the
NDVI distribution from 2014.08.15 with grid cell division.

Based on grid cell division, spatial and temporal distribution
can be analyzed quantitatively and comprehensively. Figure 3
shows an illustration of the spatial and temporal analysis based on
grid cells. Spatial analysis is based on grid cells of each image,
while temporal analysis is derived by the NDVI time series of each
grid cell from different images.

3.2 Gini Coefficient and Lorenz Asymmetry
Coefficient
In this paper, the Gini coefficient and Lorenz asymmetry
coefficient are adopted to evaluate the shape of NDVI-area
curve. The advantage of such coefficients is that they can
describe not only the variability of NDVI over different areas
but also the attribution of variability. As mentioned above, the
algal bloom distribution, which is represented by NDVI, varies
largely in different areas and different years in Chaohu Lake. The
two indices help the interpretation of spatial and temporal
inequality of algal bloom. The Gini coefficient provides the
total inequality degree, while the Lorenz asymmetry coefficient
interprets whether the inequality is caused by high-NDVI
elements or low-NDVI elements. Considering these features of
indices, we attempted to give a comprehensive description and
attribution of algae distribution inequality.

TABLE 3 | NIR and R bands for Landsat-5, Landsat-7, Landsat-8, GF-1, and
Sentinel-2 satellites.

Landsat-5 Landsat-7 Landsat-8 GF-1 Sentinel-2

NIR Band 4 Band 4 Band 5 Band 4 Band 8
R Band 3 Band 3 Band 4 Band 3 Band 4
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3.2.1 Gini Coefficient
The Gini coefficient was first introduced by Corrado Gini in 1912
(Gini, 1912) to quantify inequality of household incomes. In the
past decades, the Gini coefficient has been extended to
environment sciences, such as inequality of plant species
distribution (Ma et al., 2006; Shi et al., 2012), precipitation
inequality (Shi et al., 2012), and river flow temporal
distribution (Masaki et al., 2014), etc. Hereafter, we apply the
Gini coefficient to spatial and temporal distribution inequality of
Chaohu Lake.

The Gini coefficient G is given by (Eytan, 1972; Kimura, 1994)

G � ∑n
i�1∑

n
j�1

∣∣∣∣∣yi − yj

∣∣∣∣∣

2n2 �y
(2)

where n is the number of individuals, yi is the income of
individual i, and �y is average income of all individuals. Note

that y1 ≤ y2 ≤. . .≤ yn. A higher Gini coefficient reflects a higher
income diversity, and vice versa. When applying the Gini
coefficient to assess the unevenness of algal bloom, n
represents the number of total grids, yi denotes algal bloom
amount which is represented by NDVI in grid i.

The Gini coefficient is more widely interpreted using a graphical
manner, known as the Lorenz curve. The Lorenz curve is obtained by
aggregating the percentage of individuals (horizonal axis) and the
percentage of incomes (vertical axis). In this study, the horizonal and
vertical axes of the Lorenz curve are the cumulative percentage of the
grid area and the cumulative percentage of algal blooms, as shown in
Figure 4. The graphical interpretation of the Gini coefficient is the
ratio of area A to the triangle (A + B) in Figure 4. Note that (A + B) =
1
2, and the relationship between G and A is:

G � A

A + B
� 2A (3)

FIGURE 2 | NDVI distribution with grid cell division from 2014.08.15.

FIGURE 3 | Illustration of spatial and temporal analysis based on grid cells.
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The slope of the Lorenz curve reveals the inequality degree of
algal bloom spatial distribution. Imagining a perfectly even
distribution of algal bloom where a 1% increase in area
corresponds to a 1% increase in algal cumulation, the Lorenz
curve is a line with slope 1 (y = x), which is called the “absolutely
equal line”. For unevenly distributed algal bloom area
distribution, the Lorenz curve is under the absolutely equal
line. The farther the Lorenz curve is from the y = x line, the
more uneven the algal bloom distribution is, and the higher the G
value is.

3.2.2 Lorenz Asymmetry Coefficient
Although the Gini coefficient presents an efficient indicator to
describe the unevenness of algae distribution, it also has some
limitations. Since G = 2A, it is possible that different Lorenz
curves may have the same Gini coefficient. Figure 5 shows NDVI
distributions from 2016.06.14 to 2018.09.19. Both Gini
coefficients are 0.12, however their algal bloom intensity and
distribution are quite diverse, also the shape of the Lorenz curves
is different. This indicates that the Gini coefficient is insufficient
to describe algal bloom distribution, and the Lorenz asymmetry
coefficient is then adopted.

The Lorenz asymmetry coefficient, denoted as S, is given by
(Damgaard and Weiner, 2000):

S � F + L (4)
δ � �x − xm

xm+1 − xm
(5)

F � m + δ

n
(6)

L � ∑m
i�1xi + δxm+1
∑n

i�1xi
(7)

wherem is the number of pixels with a value less than �x. In this paper,
x denotes NDVI series for each grid. The graphical explanation to F
and L is the x-coordinate and the y-coordinate of the point with slope
one of the Lorenz curve. If S = 1, the coordinate (F, L) lies exactly on
line x + y = 1. If S > 1, the coordinate (F, L) lies above line x + y = 1; if
S < 1, the coordinate (F, L) lies below line x + y = 1. Figure 6 shows
three types of Lorenz curve with S < 1, S = 1, and S > 1. Triangular
marks denote points with slope = 1. Note that S=F + L for the three
curves in Figure 6: 0.59 = 0.47 + 0.12, 1 = 0.56 + 0.44, 1.11 =
0.65 + 0.46.

FIGURE 4 | Sketch of the Lorenz curve and Gini coefficient.

FIGURE 5 | Example of images with the same G but different algal bloom distribution and Lorenz curve.
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The significance of the Lorenz asymmetry coefficient S is that
when S > 1, the inequality of algal bloom distribution is mostly
due to the small amount of high NDVI values, which is also
shown in the upper-right tail of the Lorenz curve; when S < 1, the
inequality of algal bloom distribution is mostly due to large
amounts of low NDVI values, which is shown in the lower-left
tail of the Lorenz curve; S = 1 denotes that both parts have the
same contribution to algal bloom inequality. Therefore, we can
infer from Figure 6 that algal bloom unevenness on 2018.10.31
was mostly due to large NDVI elements, and unevenness on
2020.08.01 was mostly due to small NDVI elements. This
provides clear notice about areas with great diversity, and, if

the diversity is due to large elements (S > 1), it is an explicit
warning of algal concentration.

4 RESULTS AND DISCUSSION

4.1 Spatial Distribution of NDVI in Chaohu
Lake
4.1.1 General Spatial Distribution Based onMeanNDVI
The 61 remote sensing images listed in Table 1 were processed to
obtain the NDVI distribution in grid cells. Figure 7 shows the
monthly maximum NDVI fromMay to October. It can be clearly
indicated that the algal bloom develops from May, reaching its
peak in September, and then slightly decreases in October. This
trend is highly accordant with the temperature trend of the
Chaohu Lake area. The algal bloom first concentrates at the
northwestern part of the lake (June), and then spreads to the lake
center (July and August) and the whole lake (September). Besides,
the lake edge and tributaries have relatively higher NDVI values
than the lake center, even in May when there is almost no algal
bloom throughout the lake. This indicates that algal bloom of
Chaohu Lake originates from the lakeside, and is mainly
imported from lake tributaries. The upper reaches of the three
northwestern tributaries, Nanfei river, Paihe river, and Shiwuli
river (Figure 1), flowing through Hefei City, which is the capital
city of Anhui province with a population over 5.7 million, brings
massive nutrients that trigger algal bloom at the northwestern
lake area. This inference is also proved in relative studies. It is
concluded that nutrient and climate conditions are two dominant
issues for algal blooms of Chaohu Lake (Li et al., 2019), while
Chen and Liu (2014) stated that tributaries bring 68.5% and
76.5% of nutrients (TN and TP) into Chaohu Lake; three
northwestern rivers: Nanfei river, Paihe river, and Shiwuli
river have the highest comprehensive pollution index among
all tributaries.

FIGURE 6 | Examples of Lorenz curves with different S values. Blue, red,
and green colors indicate results for algal bloom distribution on 08/01/2020,
09/04/2014, and 10/31/2018, respectively.

FIGURE 7 | Monthly maximum NDVI distribution of Chaohu Lake, 2011-2020.
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4.1.2 Gini Coefficient and Lorenz Asymmetry
Coefficient
1) Gini coefficient and Lorenz asymmetry coefficient results

TheGini coefficients (G) and Lorenz asymmetry coefficients (S) of
61 images are shown in Figure 8. G varies from 0.04 to 0.2, indicating
a diverse unevenness of algal bloom. There are 53 cases with S > 1,
accounting for 87% of the total 61 cases. Recalling that S implies the
source of unevenness, this reveals that the algal bloom unevenness of
Chaohu Lake is mostly due to the small amount of high NDVI value
areas, in other word, the tiny severe algal-concentrated areas.

2) Comprehensive discussion using mean NDVI and G

By coupling mean NDVI and G, we can categorize the spatial
distribution of algal bloom into four types: heavy and uneven type,
heavy and even type, light and uneven type, and light and even type.
Figure 9 shows the four types with representative examples for each
type. The heavy and even type and light and uneven type are in the
majority, accounting for 53 cases among all 61 cases. In addition, it

can be clearly found that G can be diverse in different cases even if
they have the same mean NDVI, and mean NDVI can be diverse in
different cases even if they have the same G. This demonstrates that
univariate assessment is insufficient to describe the distribution of
algal bloom. These four types of algal bloom distribution
characterized by mean NDVI and G are helpful in identifying the
distribution patterns of algal bloom and taking targeted measures.

3) Comprehensive discussion using mean NDVI, G, and S

In order to analyze the integrated assessment of mean NDVI, G,
and S, four distributionmaps are chosen from 61 images as examples:
1. minimum G (2014.08.21); 2. maximum G (2017.08.25); 3.
minimum mean NDVI value (2019.05.23); and 4. maximum
mean NDVI value (2019.10.29). Their NDVI distributions, Lorenz
curves, mean NDVI, G, and S are shown in Figure 10.

The lowest and highest G (Figure 10A) occurred on
2014.08.21 and 2017.08.25, respectively. The NDVI map from
2014.08.21 has only sporadic high NDVI cells, emerging with an
even algae distribution. In contrast, NDVI on 2017.08.25 is quite

FIGURE 8 | Gini coefficients and Lorenz asymmetry coefficients from 2011 to 2020.

FIGURE 9 | Four types of algal bloom characterized by mean NDVI and G with example images.
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diverse as the northwestern part of the lake and lake side had
significantly high NDVI, while NDVI in the lake center kept at a
low level. This diversity is the reason for the high G value.

Theminimum andmaximummeanNDVI, (Figure 10B) which is
−0.31 and 0.80, occurred on 2019.05.23 and 2019.10.29, respectively.
Note that theNDVI value rangeswithin [−1,1], thus an average of 0.80
in NDVI indicates severe algal bloom. Algae coverage on 2019.10.29
reached 69%, while on 2019.05.23 was only 10%. However, it is
interesting that their Gini coefficients are indeed the same although
the NDVI difference is huge, because the Gini coefficient is related to
the percentage quantiles but not the NDVI value itself.

Lorenz asymmetry coefficients (S) of the four cases are greater
than 1, revealing that the unevenness of the algal bloom
distribution of four cases is mainly due to the small amount of
large NDVI grid cells. S value on 2014.08.21 was the greatest
among the four images, revealing that the very small areas with
highest NDVI in the map, are the reason for unevenness. In
conclusion, mean NDVI, G, and S form a comprehensive
description indicator system describing the severity and spatial
distribution of algal bloom, thus providing an alternative way to
quantitatively assess multiple remote sensing images.

4.2 Temporal Analysis of Algal Bloom
4.2.1 General Temporal Distribution Based on
Frequency Analysis
By deriving the NDVI time series data of each grid cell, temporal
analysis is carried out to reveal the change trend of algal bloom
distribution for each grid cell. Here, the occurrence frequency map
that consists of the frequency of each grid is derived. The frequency of
grid i, Fi, is denoted by:

Fi � Ti

T
(8)

where Ti represents counts of images withNDVI >0 for grid i; T
represents the number of total images, which is 61 in this study.
NDVI >0 is regarded as the indication of algal bloom occurrence.
The frequency map is calculated and drawn, as shown in
Figure 11.

It is clearly indicated from Figure 11 that the northwestern part of
the lake and lake edge have significantly high frequency in algal
bloom. In addition, almost all tributary estuaries (tiny branches at the
lake sides) have amuch higher frequency than the lake center. Similar
conclusions are inferred in Zhang et al. (2015) and Liu et al. (2017)
where the northwestern part of the lake has the highest frequency of
algal bloomduring 2000–2013, and the primary source of algal bloom
is tributary and lakeshore imports.

In the northwestern part of the lake, algal bloom frequency
gradually decreases from the lake side to the lake center. By
reviewing NDVI distribution images, the reason is the
occasional spread of algal bloom from the lake side to the
lake center. Severe algal bloom may spread from the
northwestern lake edge to the lake center, and the nearby
northwestern lake area suffers.

4.2.2 Gini Coefficient and Lorenz Asymmetry
Coefficient
1) Gini coefficient and Lorenz asymmetry coefficient results

The Gini coefficients and Lorenz asymmetry coefficients for each
grid are shown in Figure 12A indicates that the Gini coefficient varies

FIGURE 10 | Examples of algae distribution with (A) maximum and minimum G, and (B) maximum and minimum mean NDVI.
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from 0.03 to 0.15 throughout the lake. In contrast with results of
mean NDVI and frequency, the lake edge, where both frequency and
mean NDVI are high, has the lowest G. This is because the lake edge
area has a “stable and high” NDVI value during 2011–2020, and a
stable NDVI levelmeans low variance and lowG. In contrast, the lake
center has a relatively mixed G value, which is due to a high variance
of NDVI values caused by occasional algal bloom occurrences.

Lorenz asymmetry coefficient S is divided and presented into two
categories: S > 1 and S < 1, shown in Figure 12B. It can be clearly
observed from Figure 12B that grid cells with S> 1 concentrate in the
northwestern and northeastern areas, with a total of 124 grid cells. It
means that the unevenness of these areas is due to the most severe
occurrences among the 61 occurrences. In other words, these areas
had a few extraordinarily severe algal bloom events, and these events
caused the distribution unevenness in the temporal dimension.

2) Discussion on the sources of unevenness with S > 1.

Areas with S > 1 are more concerning in this study, as they imply
the unevenness is due to high NDVI value occurrence which
indicates severe algal bloom occurrences. Therefore, for the 124
grid cells with S > 1, the occurrences that contribute most to the
unevenness of each grid cells are singled out. If one occurrence is
responsible for multiple grid cells, the frequency is recorded by
counts. We found that 39 occurrences were responsible for the
unevenness of S > 1, as shown in Figure 13. Let us only take the
occurrences with highest count for example, where the occurrence on
2019.10.29 involved 82 counts of all 124 grid cells. It implies that the
algal bloom event on 2019.10.29 was a significant outlier that was
responsible for the temporal unevenness of 2/3 grid cells. It is not
surprising because the occurrence on 2019.10.29 was also mentioned in
Figure 10B as the highest mean NDVI during 2011–2020. Also, this
event was reported by the Department of Ecology and Environment of
AnhuiProvince, anddescribed as a “partial bloom”, which ismuch rarer
andmore serious than “sporadic bloom” that often occurs (Department
of Ecology and Environment of Anhui Province).

It can be inferred from the above analysis that the Gini coefficient
combined with the Lorenz asymmetry coefficient is able to quantify
algal bloom distribution spatially and temporally and examine the
origination of unevenness by “overlapping” numerous algal bloom
events. Therefore, it provides a quantitative and useful guideline for
researchers and operators to rank or evaluate numerous algal bloom
occurrences over time, and track influence factors for algal blooms in
specific lake areas.

FIGURE 11 | Algal bloom frequency map for each grid cell (number of grid cells: 850).

FIGURE 12 | Map of (A) Gini coefficient and (B) Lorenz asymmetry
coefficient for each grid cell.
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4.3 Comparison of the Gini Coefficient and
Lorenz Curve With Other Statistical
Coefficients
Since the Gini coefficient and Lorenz curve are descriptions of
unevenness of distribution, there are some existing coefficients
that also describe the degree of data variations, such as variance

and standard deviation. As analyzed in Masaki et al. (2014) and
Milanovic (1997), the Gini coefficient is proportional to the
coefficient of variation and standard deviation. Also, the Lorenz
curve has similarities with cumulative distribution curve (CDF) in
statistics, but they have not been compared as far aswe know.Hereby,
the relationship and distinction between these variables are explored
using the dataset in this study.

FIGURE 13 | Counts of dates that contribute to unevenness of grid cells with S > 1.

FIGURE 14 | Relationships between (A). G ~ variance and (B). G ~ standard deviation of spatial distribution (sample size: 61).
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4.3.1 Comparison Between Gini Coefficient With Other
Statistical Coefficients
Fitting performance between G ~ variance and G ~ standard
deviation based on spatial and temporal results are derived and
shown in Figure 14 and Figure 15, respectively. The results show
that the Gini coefficients in this study also have fine relationships

with variance and standard deviation. The regression function
type is the same as the results from Masaki et al. (2014), that is, a
linear relationship between G and standard deviation, and
polynomial relationship between G and variance. Nevertheless,
the coefficient G has an outstanding feature over the other two
coefficients: the G value is normalized to [0,1] regardless of the

FIGURE 15 | Relationships between (A). G ~ variance and (B). G ~ standard deviation of temporal distribution (sample size: 850).

FIGURE 16 | Comparison between CDF curve and Lorenz curve.
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value of samples data, which allows it to be used as a universal
indicator for all cases.

4.3.2 Comparison Between Lorenz Curve With CDF
Curve
The CDF curve, which is derived by aggregating the NDVI value
in ascending order and its corresponding non-exceedance
probability, can also ascertain the variability of samples in the
form of curves. Here, the four NDVI distributions in Figure 10
are taken as a study example to compare the performances of
CDF and Lorenz curves. Figure 16 shows the results of CDF and
Lorenz curves for each distribution.

Figure 16 shows that both the CDF curve and Lorenz curve can
reveal the variability features of spatial distributions. However, the
CDF curve has similar limitations with variance and standard
deviation in that it is not a universal coefficient, for its vertical
axis (NDVI) varies with the NDVI values. The Lorenz curve,
however, has an axis of cumulative percentage that is restricted
within [0, 1]. Besides, the features of the Lorenz curve can be
interpreted by the Gini coefficient and Lorenz asymmetry
coefficient. By these two coefficients we can easily judge various
distributions without comparing the curves. However, it is not
convenient to compare various CDF curves as there is no such
scalar coefficient to describe curve features. Although the CDF curves
in Figure 16 are very diverse and it is easy to tell the difference, it
could be confusing in comparing various sample sets with similar
distributions. In conclusion, the Lorenz curve outperforms the CDF
curve in assessment analysis for its regularization and comparability.

5 CONCLUSION

This paper examined the characteristics of algal bloom distribution
between 2011 and 2020 using mean NDVI, Gini coefficient, and
Lorenz asymmetry coefficient of Chaohu lake, China. By dividing 61
remote sensing images into equidistant grid cells, statistical analysis
can be carried out based on grid cell data to explore spatial and
temporal distribution and trend in a quantitative way. Results suggest
that algal bloom is severe at the lake edge and northwestern part of
Chaohu Lake owing to tributary and lakeside nutrient imports.
Lorenz asymmetry coefficient is applied to detect the source of
unevenness, and the primary source of spatial distribution
unevenness is the small area with very high NDVI values.

Temporal analysis shows that the northwestern part and lake edge
has very high algal bloom frequency but low Gini coefficient,
indicating a stable and severe algal bloom situation. Lorenz
asymmetry coefficient reveals that unevenness in the 124 grid cells
concentrated in the northwestern and eastern parts of the lake is due
to the most severe algal bloom occurrences.

Analysis in this paper indicates that mean NDVI, Gini
coefficient, and Lorenz asymmetry coefficient can
comprehensively and quantitively describe the distribution
characteristics of lake algal bloom, while any single
coefficient is one-sided and insufficient to accurately depict
the distribution information. The algal bloom distribution
may be different even if they have the same mean NDVI or
Gini coefficient. The compound assessment method could allow
researchers to identify algal bloom distribution patterns as well
as sources to the unevenness. Possible extensions of this work
will include the analysis of connections between algal booms
and meteorological factors for the selected extreme occurrences,
and the application of the methodology to assessment in other
spatial distributions.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/supplementary material, further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

TZ wrote the paper and analyzed the results. CN and MZ
calculated the Gini coefficients and Lorenz asymmetry
coefficients, and concluded literature review for this paper. PX
designed the research idea and layout of paper.

FUNDING

This research was funded by the National Science and
Technology Major Project of China (grant no. 2017ZX07603-
002) and the Natural Science Fund of Anhui Province (grant nos.
2008085ME158 and 2008085ME159).

REFERENCES

Ahlgren, G. (1988). Phosphorus as Growth-Regulating Factor Relative to Other
Environmental Factors in Cultured Algae. Hydrobiologia 170, 191–210. doi:10.
1007/bf00024905

Bosse, K. R., Sayers, M. J., Shuchman, R. A., Fahnenstiel, G. L., Ruberg, S. A.,
Fanslow, D. L., et al. (2019). Spatial-temporal Variability of In Situ
Cyanobacteria Vertical Structure in Western Lake Erie: Implications for
Remote Sensing Observations. J. Great Lakes Res. 45, 480–489. doi:10.1016/
j.jglr.2019.02.003

Chen, Y.-Y., and Liu, Q.-Q. (2014). On the Horizontal Distribution of Algal-Bloom
in Chaohu Lake and its Formation Process. ActaMech. Sin. 30, 656–666. doi:10.
1007/s10409-014-0078-x

Choi, J.-K., Min, J.-E., Noh, J. H., Han, T.-H., Yoon, S., Park, Y. J., et al. (2014).
Harmful Algal Bloom (HAB) in the East Sea Identified by the Geostationary
Ocean Color Imager (GOCI). Harmful Algae 39, 295–302. doi:10.1016/j.hal.
2014.08.010

Damgaard, C., and Weiner, J. (2000). Describing Inequality in Plant Size or Fecundity.
Ecology 81, 1139–1142. doi:10.1890/0012-9658(2000)081[1139:diipso]2.0.co;2

Das, P. K., Chakraborty, A., and Seshasai, M. V. R. (2014). Spatial Analysis of
Temporal Trend of Rainfall and Rainy Days during the Indian Summer
Monsoon Season Using Daily Gridded (0.5° × 0.5°) Rainfall Data for the
Period of 1971-2005. Met. Apps 21, 481–493. doi:10.1002/met.1361

Department of Ecology and Environment of Anhui Province (2019). Monitoring
results of emergency prevention and control of cyanobacteria in Chaohu Lake
from October 28 to November 3, 2019. Available at: https://sthjt.ah.gov.cn/
public/21691/110831651.html (Accessed November 13, 2019) (In Chinese).

Frontiers in Environmental Science | www.frontiersin.org February 2022 | Volume 10 | Article 81090213

Zhou et al. Algal Distribution Assessment for Lakes

https://doi.org/10.1007/bf00024905
https://doi.org/10.1007/bf00024905
https://doi.org/10.1016/j.jglr.2019.02.003
https://doi.org/10.1016/j.jglr.2019.02.003
https://doi.org/10.1007/s10409-014-0078-x
https://doi.org/10.1007/s10409-014-0078-x
https://doi.org/10.1016/j.hal.2014.08.010
https://doi.org/10.1016/j.hal.2014.08.010
https://doi.org/10.1890/0012-9658(2000)081[1139:diipso]2.0.co;2
https://doi.org/10.1002/met.1361
https://sthjt.ah.gov.cn/public/21691/110831651.html
https://sthjt.ah.gov.cn/public/21691/110831651.html
https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Eytan, S. (1972). Relation between a Social Welfare Function and the Gini index of
Income Inequality. J. Econ. Theor. 4, 98–100. doi:10.1016/0022-0531(72)
90167-6

Galat, D. L., Verdin, J. P., and Sims, L. L. (1990). Large-scale Patterns of
Nodularia Spumigena Blooms in Pyramid Lake, Nevada, Determined from
Landsat Imagery: 1972?1986. Hydrobiologia 197, 147–164. doi:10.1007/
bf00026947

Gini, C. (1912). Variabilità e mutabilità. Contributo allo Studio delle Distribuzioni e
delle Relazioni Statistiche. Bologna: C. Cuppini

Guan, Q., Feng, L., Hou, X. J., Schurgers, G., Zheng, Y., and Tang, J. (2020).
Eutrophication Changes in Fifty Large Lakes on the Yangtze Plain of China
Derived from MERIS and OLCI Observations. Remote Sens. Environ. 246,
111890. doi:10.1016/j.rse.2020.111890

Guevara-Escobar, A., González-Sosa, E., Véliz-Chávez, C., Ventura-Ramos, E., and
Ramos-Salinas, M. (2007). Rainfall Interception and Distribution Patterns of
Gross Precipitation Around an Isolated Ficus Benjamina Tree in an Urban
Area. J. Hydrol. 333, 532–541. doi:10.1016/j.jhydrol.2006.09.017

Haag, A. L. (2007). Algal Bloom Again. Nature 447, 520–521. doi:10.1038/447520a
Hambright, K. D., Zamor, R. M., Easton, J. D., Glenn, K. L., Remmel, E. J., and

Easton, A. C. (2010). Temporal and Spatial Variability of an Invasive Toxigenic
Protist in a North American Subtropical Reservoir. Harmful Algae 9, 568–577.
doi:10.1016/j.hal.2010.04.006

Hecker, M., Khim, J. S., Giesy, J. P., Li, S.-Q., and Ryu, J.-H. (2012). Seasonal
Dynamics of Nutrient Loading and Chlorophyll A in a Northern Prairies
Reservoir, Saskatchewan, Canada. J. Water Resource Prot. 04, 180–202. doi:10.
4236/jwarp.2012.44021

Ho, J. C., Michalak, A. M., and Pahlevan, N. (2019). Widespread Global Increase in
Intense lake Phytoplankton Blooms since the 1980s. Nature 574, 667–670.
doi:10.1038/s41586-019-1648-7

Hu, L., Zeng, K., Hu, C., and He, M.-X. (2019). On the Remote Estimation of Ulva
Prolifera Areal Coverage and Biomass. Remote Sensing Environ. 223, 194–207.
doi:10.1016/j.rse.2019.01.014

Hu, C. (2009). A Novel Ocean Color index to Detect Floating Algae in the Global
Oceans. Remote Sensing Environ. 113, 2118–2129. doi:10.1016/j.rse.2009.05.012

Huang, C., Shi, K., Yang, H., Li, Y., Zhu, A.-x., Sun, D., et al. (2015). Satellite
Observation of Hourly Dynamic Characteristics of Algae with Geostationary
Ocean Color Imager (GOCI) Data in Lake Taihu. Remote Sensing Environ. 159,
278–287. doi:10.1016/j.rse.2014.12.016

Jawitz, J. W., and Mitchell, J. (2011). Temporal Inequality in Catchment Discharge
and Solute export. Water Resour. Res. 47, W00J14. doi:10.1029/2010wr010197

Kamerosky, A., Cho, H., and Morris, L. (2015). Monitoring of the 2011 Super Algal
Bloom in Indian River Lagoon, FL, USA, Using MERIS. Remote Sensing 7,
1441–1460. doi:10.3390/rs70201441

Kang, L., He, Q.-S., He, W., Kong, X.-Z., Liu, W.-X., Wu, W.-J., et al. (2016).
Current Status and Historical Variations of DDT-Related Contaminants in the
Sediments of Lake Chaohu in China and Their Influencing Factors. Environ.
Pollut. 219, 883–896. doi:10.1016/j.envpol.2016.08.072

Kimura, K. (1994). A Micro-macro Linkage in the Measurement of Inequality: Another
Look at the Gini Coefficient. Qual. Quant. 28, 83–97. doi:10.1007/bf01098727

Klemencic, A. K., and Toman, M. J. (2010). Influence of Environmental Variables
on Benthic Algal Associations from Selected Extreme Environments in Slovenia
in Relation to the Species Identification. Period. Biol. 112, 179–191. doi:10.4028/
www.scientific.net/AMM.481.235

Kong, X.-Z., Jørgensen, S. E., He, W., Qin, N., and Xu, F.-L. (2013). Predicting the
Restoration Effects by a Structural Dynamic Approach in Lake Chaohu, China.
Ecol. Model. 266, 73–85. doi:10.1016/j.ecolmodel.2013.07.001

Li, S. M., Song, K. S., Liang, C., and Gao, J. (2019). Analysis on Spatial and
Temporal Character of Algae Bloom in lake Chaohu and its Dring Factors
Based on Landsat Imagery. Resouces Environ. Yangtze Basin 28, 1205–1213.

Lin, Y., Ye, Z., Zhang, Y., and Yu, J. (2016). Spectral Feature Analysis for
Quantitative Estimation of Cyanobacteria Chlorophyll-A. Int. Arch.
Photogramm. Remote Sens. Spat. Inf. Sci. XLI-B7, 91–98. doi:10.5194/
isprsarchives-xli-b7-91-2016

Liu, C., Zhang, L., Fan, C., Xu, F., Chen, K., and Gu, X. (2017). Temporal
Occurrence and Sources of Persistent Organic Pollutants in Suspended
Particulate Matter from the Most Heavily Polluted River Mouth of Lake
Chaohu, China. Chemosphere 174, 39–45. doi:10.1016/j.chemosphere.2017.
01.082

Lou, X., and Hu, C. (2014). Diurnal Changes of a Harmful Algal Bloom in the East
China Sea: Observations from GOCI. Remote Sensing Environ. 140, 562–572.
doi:10.1016/j.rse.2013.09.031

Lu, C., and Tian, Q. (2012). Extracting Temporal and Spatial Distributions
Information about Algal Glooms Based on Multitemporal Modis. Anim.
Genet. 46, 220–223. doi:10.5194/isprsarchives-xxxix-b7-131-2012

Ma, Z., Shi, J., Wang, G., and He, Z. (2006). Temporal Changes in the Inequality of
Early Growth of Cunninghamia Lanceolata (Lamb.) hook.: A Novel
Application of the Gini Coefficient and Lorenz Asymmetry. Genetica 126,
343–351. doi:10.1007/s10709-005-1358-y

Masaki, Y., Hanasaki, N., Takahashi, K., and Hijioka, Y. (2014). Global-scale Analysis on
Future Changes in Flow Regimes Using Gini and Lorenz Asymmetry Coefficients.
Water Resour. Res. 50, 4054–4078. doi:10.1002/2013wr014266

Milanovic, B. (1997). A Simple Way to Calculate the Gini Coefficient, and Some
Implications. Econ. Lett. 56, 45–49. doi:10.1016/s0165-1765(97)00101-8

Moita, M. T., Pazos, Y., Rocha, C., Nolasco, R., and Oliveira, P. B. (2016). Toward
Predicting Dinophysis Blooms off NW Iberia: A Decade of Events. Harmful
Algae 53, 17–32. doi:10.1016/j.hal.2015.12.002

Page, B. P., Kumar, A., and Mishra, D. R. (2018). A Novel Cross-Satellite Based
Assessment of the Spatio-Temporal Development of a Cyanobacterial Harmful
Algal Bloom. Int. J. Appl. Earth Obs. Geoinf. 66, 69–81. doi:10.1016/j.jag.2017.11.003

Pirasteh, S., Mollaee, S., Fatholahi, S. N., and Li, J. (2020). Estimation of
Phytoplankton Chlorophyll-A Concentrations in the Western Basin of Lake
Erie Using Sentinel-2 and Sentinel-3 Data. Can. J. Remote Sensing 46, 585–602.
doi:10.1080/07038992.2020.1823825

Pompêo, M., Moschini-Carlos, V., Bitencourt, M. D., Sòria-Perpinyà, X., Vicente,
E., and Delegido, J. (2021). Water Quality Assessment Using Sentinel-2 Imagery
with Estimates of Chlorophyll a, Secchi Disk Depth, and Cyanobacteria Cell
Number: the Cantareira System Reservoirs (São Paulo, Brazil). Environ. Sci.
Pollut. Res. 28, 34990–35011. doi:10.1007/s11356-021-12975-x

Raziei, T., and Pereira, L. S. (2013). Spatial Variability Analysis of Reference
Evapotranspiration in Iran Utilizing fine Resolution Gridded Datasets. Agric.
Water Manag. 126, 104–118. doi:10.1016/j.agwat.2013.05.003

Ribeiro, F., Gallego-Urrea, J. A., Goodhead, R. M., Van Gestel, C. A. M., Moger, J.,
Soares, A. M. V. M., et al. (2015). Uptake and Elimination Kinetics of Silver
Nanoparticles and Silver Nitrate byRaphidocelis Subcapitata: The Influence of
Silver Behaviour in Solution. Nanotoxicology 9, 686–695. doi:10.3109/
17435390.2014.963724

Richardson, L. L. (1996). Remote Sensing of Algal BloomDynamics: New Research
Fuses Remote Sensing of Aquatic Ecosystems with Algal Accessory Pigment
Analysis. Bioscience 46, 492–501.

Shang, G.-p., and Shang, J.-c. (2005). Causes and Control Countermeasures of
Eutrophication in Chaohu Lake, China. Chin. Geograph. Sc. 15, 348–354.
doi:10.1007/s11769-005-0024-8

Shi, W. L., Yang, Q. K., Li, X. F., Chen, A., and He, X. J. (2012). Study on Temporal
Inequality of Precipitation in the Loess Plateau Based on Lorenz Curve. Agric.
Res. Arid Areas 30, 172–177. doi:10.3969/j.issn.1000-7601.2012.04.031

Sorichetti, R. J., Mclaughlin, J. T., Creed, I. F., and Trick, C. G. (2014). Suitability of
a Cytotoxicity Assay for Detection of Potentially Harmful Compounds
Produced by Freshwater Bloom-Forming Algae. Harmful Algae 31, 177–187.
doi:10.1016/j.hal.2013.11.001

Stumpf, R. P., Culver, M. E., Tester, P. A., Tomlinson, M., Kirkpatrick, G. J.,
Pederson, B. A., et al. (2003). Monitoring Karenia Brevis Blooms in the Gulf of
Mexico Using Satellite Ocean Color Imagery and Other Data. Harmful Algae 2,
147–160. doi:10.1016/s1568-9883(02)00083-5

Van Der Wal, D., Wielemaker-Van Den Dool, A., and Herman, P. M. J. (2010).
Spatial Synchrony in Intertidal Benthic Algal Biomass in Temperate Coastal
and Estuarine Ecosystems. Ecosystems 13, 338–351. doi:10.1007/s10021-010-
9322-9

Vedernikov, V. I., Bondur, V. G., Vinogradov, M. E., Landry, M. R., and Tsidilina,
M. N. (2007). Anthropogenic Influence on the Planktonic Community in the
basin of Mamala Bay (Oahu Island, Hawaii) Based on Field and Satellite Data.
Oceanology 47, 221–237. doi:10.1134/s0001437007020099

Wang, S., Zhang, M., Li, B., Xing, D., Wang, X., Wei, C., et al. (2012). Comparison
of Mercury Speciation and Distribution in the Water Column and Sediments
between the Algal Type Zone and the Macrophytic Type Zone in a
Hypereutrophic lake (Dianchi Lake) in Southwestern China. Sci. Total
Environ. 417-418, 204–213. doi:10.1016/j.scitotenv.2011.12.036

Frontiers in Environmental Science | www.frontiersin.org February 2022 | Volume 10 | Article 81090214

Zhou et al. Algal Distribution Assessment for Lakes

https://doi.org/10.1016/0022-0531(72)90167-6
https://doi.org/10.1016/0022-0531(72)90167-6
https://doi.org/10.1007/bf00026947
https://doi.org/10.1007/bf00026947
https://doi.org/10.1016/j.rse.2020.111890
https://doi.org/10.1016/j.jhydrol.2006.09.017
https://doi.org/10.1038/447520a
https://doi.org/10.1016/j.hal.2010.04.006
https://doi.org/10.4236/jwarp.2012.44021
https://doi.org/10.4236/jwarp.2012.44021
https://doi.org/10.1038/s41586-019-1648-7
https://doi.org/10.1016/j.rse.2019.01.014
https://doi.org/10.1016/j.rse.2009.05.012
https://doi.org/10.1016/j.rse.2014.12.016
https://doi.org/10.1029/2010wr010197
https://doi.org/10.3390/rs70201441
https://doi.org/10.1016/j.envpol.2016.08.072
https://doi.org/10.1007/bf01098727
https://doi.org/10.4028/www.scientific.net/AMM.481.235
https://doi.org/10.4028/www.scientific.net/AMM.481.235
https://doi.org/10.1016/j.ecolmodel.2013.07.001
https://doi.org/10.5194/isprsarchives-xli-b7-91-2016
https://doi.org/10.5194/isprsarchives-xli-b7-91-2016
https://doi.org/10.1016/j.chemosphere.2017.01.082
https://doi.org/10.1016/j.chemosphere.2017.01.082
https://doi.org/10.1016/j.rse.2013.09.031
https://doi.org/10.5194/isprsarchives-xxxix-b7-131-2012
https://doi.org/10.1007/s10709-005-1358-y
https://doi.org/10.1002/2013wr014266
https://doi.org/10.1016/s0165-1765(97)00101-8
https://doi.org/10.1016/j.hal.2015.12.002
https://doi.org/10.1016/j.jag.2017.11.003
https://doi.org/10.1080/07038992.2020.1823825
https://doi.org/10.1007/s11356-021-12975-x
https://doi.org/10.1016/j.agwat.2013.05.003
https://doi.org/10.3109/17435390.2014.963724
https://doi.org/10.3109/17435390.2014.963724
https://doi.org/10.1007/s11769-005-0024-8
https://doi.org/10.3969/j.issn.1000-7601.2012.04.031
https://doi.org/10.1016/j.hal.2013.11.001
https://doi.org/10.1016/s1568-9883(02)00083-5
https://doi.org/10.1007/s10021-010-9322-9
https://doi.org/10.1007/s10021-010-9322-9
https://doi.org/10.1134/s0001437007020099
https://doi.org/10.1016/j.scitotenv.2011.12.036
https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Wang, L., Wang, X., Jin, X., Xu, J., Zhang, H., Yu, J., et al. (2017). Analysis of
Algae Growth Mechanism and Water Bloom Prediction under the Effect of
Multi-Affecting Factor. Saudi J. Biol. Sci. 24, 556–562. doi:10.1016/j.sjbs.
2017.01.026

Wei, X. D., Wang, N., Luo, P. P., Yang, J., Zhang, J., and Lin, K. L. (2021).
Spatiotemporal Assessment of Land Marketization and its Driving Forces for
Sustainable Urban-Rural Development in Shaanxi Province in China.
Sustainability 13, 7755. doi:10.3390/su13147755

Winston, B., Hausmann, S., Scott, J. T., and Morgan, R. (2014). The Influence of
Rainfall on Taste and Odor Production in a South-central USA Reservoir.
Freshw. Sci. 33, 755–764. doi:10.1086/677176

Yan, Q., Li, Y., Huang, B., Wang, A., Zou, H., Miao, H., et al. (2012). Proteomic Profiling
of the Acid Tolerance Response (ATR) during the Enhanced Biomethanation Process
from Taihu Blue Algae with Butyrate Stress on Anaerobic Sludge. J. Hazard. Mater.
235-236, 286–290. doi:10.1016/j.jhazmat.2012.07.062

Yang, L., Lei, K., Meng, W., Fu, G., and Yan, W. (2013). Temporal and Spatial
Changes in Nutrients and Chlorophyll-α in a Shallow lake, Lake Chaohu,
China: An 11-year Investigation. J. Environ. Sci. 25, 1117–1123. doi:10.1016/
s1001-0742(12)60171-5

Zabaleta, B., Achkar, M., and Aubriot, L. (2021). Hotspot Analysis of Spatial
Distribution of Algae Blooms in Small and Medium Water Bodies. Environ.
Monit. Assess. 193, 221. doi:10.1007/s10661-021-08944-z

Zhang, Y., Ma, R., Duan, H., Loiselle, S. A., Xu, J., and Ma, M. (2014). A Novel
Algorithm to Estimate Algal Bloom Coverage to Subpixel Resolution in Lake
Taihu. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sensing 7, 3060–3068. doi:10.
1109/jstars.2014.2327076

Zhang, Y., Ma, R., Zhang, M., Duan, H., Loiselle, S., and Xu, J. (2015). Fourteen-
Year Record (2000-2013) of the Spatial and Temporal Dynamics of Floating

Algae Blooms in Lake Chaohu, Observed from Time Series of MODIS Images.
Remote Sensing 7, 10523–10542. doi:10.3390/rs70810523

Zhang, Y., Luo, P., Zhao, S., Kang, S., Wang, P., Zhou, M., et al. (2020). Control and
Remediation Methods for Eutrophic Lakes in the Past 30 Years. Water Sci.
Technol. 81, 1099–1113. doi:10.2166/wst.2020.218

Zhen-Xiang, H., Pei, Q., Cheng-Jiang, R., Min, X., and Mopper, S. (2004). Lorenz
Curve and its Application in Plant Ecology. J. Nanjing For. Univ. 28, 37–41.
doi:10.17521/cjpe.2004.0086

Zhu, Y. H., Luo, P. P., Zhang, S., and Sun, B. (2020). Spatiotemporal Analysis of
Hydrological Variations and Their Impacts on Vegetation in Semiarid Areas
from Multiple Satellite Data. Remote Sensing 12, 4177. doi:10.3390/rs12244177

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Zhou, Ni, Zhang and Xia. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Environmental Science | www.frontiersin.org February 2022 | Volume 10 | Article 81090215

Zhou et al. Algal Distribution Assessment for Lakes

https://doi.org/10.1016/j.sjbs.2017.01.026
https://doi.org/10.1016/j.sjbs.2017.01.026
https://doi.org/10.3390/su13147755
https://doi.org/10.1086/677176
https://doi.org/10.1016/j.jhazmat.2012.07.062
https://doi.org/10.1016/s1001-0742(12)60171-5
https://doi.org/10.1016/s1001-0742(12)60171-5
https://doi.org/10.1007/s10661-021-08944-z
https://doi.org/10.1109/jstars.2014.2327076
https://doi.org/10.1109/jstars.2014.2327076
https://doi.org/10.3390/rs70810523
https://doi.org/10.2166/wst.2020.218
https://doi.org/10.17521/cjpe.2004.0086
https://doi.org/10.3390/rs12244177
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles

	Assessing Spatial and Temporal Distribution of Algal Blooms Using Gini Coefficient and Lorenz Asymmetry Coefficient
	1 Introduction
	2 Study Area and Data
	2.1 Chaohu Lake
	2.2 Data Sources
	2.3 NDVI Indicator

	3 Materials and Methods
	3.1 Extraction of Lake Cells
	3.2 Gini Coefficient and Lorenz Asymmetry Coefficient
	3.2.1 Gini Coefficient
	3.2.2 Lorenz Asymmetry Coefficient


	4 Results and Discussion
	4.1 Spatial Distribution of NDVI in Chaohu Lake
	4.1.1 General Spatial Distribution Based on Mean NDVI
	4.1.2 Gini Coefficient and Lorenz Asymmetry Coefficient

	4.2 Temporal Analysis of Algal Bloom
	4.2.1 General Temporal Distribution Based on Frequency Analysis
	4.2.2 Gini Coefficient and Lorenz Asymmetry Coefficient

	4.3 Comparison of the Gini Coefficient and Lorenz Curve With Other Statistical Coefficients
	4.3.1 Comparison Between Gini Coefficient With Other Statistical Coefficients
	4.3.2 Comparison Between Lorenz Curve With CDF Curve


	5 Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References


