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Studies have shown that land and climate interact in complex ways through multiple
biophysical and biogeochemical feedbacks. In this interaction mechanism, the carbon
fixation effect among different land-use types and objective conditions among different
regions have significant gaps, leading to the heterogeneous impact of land-use on climate
change. This study takes temperature change as the observation index to reflect climate
change, and analyzes the process of land use type adjustment affecting vegetation cover
and climate change. Based on the data of 214 countries from 1990 to 2018, this paper
uses the spatial Durbin model with temperature lag to verify the heterogeneous impact of
land-use on climate change in two dimensions of land-use type (Agriculture, forestry and
their subdivision structure) and region (latitude and land-sea difference). The following
conclusions are drawn: 1) The impact of different land-use types on climate change is
heterogeneous. The impact of agricultural land on climate change is not significant, but the
increase of the forest land proportion will help to restrain the rise of national temperature. 2)
The impact of land-use on climate change has regional heterogeneity. There is
heterogeneity in the impact on climate change among sample countries of different
latitudes. The geographical differences make the mechanism of land-use affecting
climate change between island countries and mainland countries also have
heterogeneity, mainly in that island countries are not affected by the land-use structure
adjustment of neighboring countries. 3) A country’s climate change is affected by both its
own land-use structure and the land-use structure of neighboring countries, and the latter
is more critical. The conclusions in this study provide helpful supplementary evidence for
the importance of international climate cooperation and provide a reference for proposing
international initiatives to address climate change or establishing an international
convention to address climate change.
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1 INTRODUCTION

1.1 Literature Review
Global warming is a natural phenomenon that has been widely
confirmed by theory and reality. It not only endangers the balance
of the natural ecosystem, but also seriously threatens the survival
and development of human beings. The available literature
indicates that land and climate interact in complex ways
through multiple biophysical and biogeochemical feedbacks at
different temporal and spatial scales. This inevitably leads to an
important academic question worthy of discussion: does the
difference of land use types affect the mechanism of its impact
on climate change? And what impact will land use type
adjustment have on climate change? Given that no
observational information is available on how historical land-
use structure changes affect global and regional climate,
simulation experiments are generally used to estimate the
contribution of anthropogenic land cover changes to global
warming, including the biogeochemical and biophysical effects
of land affecting climate (Byrne and O’gorman, 2013; Sejas et al.,
2014; Wallace and Joshi, 2018; Allen et al., 2019). The
biogeochemical effect of land on climate refers specifically to
the process of regulating the carbon cycle due to net carbon
dioxide emissions (Avitabile et al., 2016), while the biophysical
effect of land on climate is mainly reflected in the influence of
surface characteristics such as surface albedo and surface
roughness on ground temperature, humidity, wind speed and
evapotranspiration (Ipcc et al., 2013; Forzieri et al., 2017).
Another crucial potential feedback from land to climate has to
do with the decay of permafrost. After climate warming leads to
the decay of glacial permafrost, the released carbon dioxide or
methane will cause additional greenhouse effects (Mcguire et al.,
2018). However, the extent of this feedback is still uncertain and
controversial. The impact of land surface changes on the local and
regional climate can be as significant as the impact of increasing
greenhouse gas emissions (Berckmans et al., 2019).

The path of land-use affecting climate change has been
supported by many empirical studies. Agricultural management,
agroforestry, and the resulting surface changes alter the global
carbon cycle and surface albedo, altering the Earth’s radiative
balance. This makes land-use change the second human source
of climate change after burning fossil fuels (Li F. et al., 2021; Yang
et al., 2021). Gries et al. (2019) study shows a significant positive
long-term equilibrium relationship between land-use change and
air temperature series, while there is an opposite short-term effect,
i.e., land-use change can lead to global warming, but the rising
temperature will reduce land-use change. Researchers discussed
the current three research challenges of land-use and land-cover
change in providing continuous and reliable time-series data,
considering overall and structural changes of land-use and
managing land allocation; they also proposed the direction for
improving the analysis on the terrestrial biospheremodels (Prestele
et al., 2017; Tong and Liu, 2020). Parks et al. (2020) indicates that
previous evaluations of climate connectivity underestimate climate
change exposure because they do not account for human impacts.
Human land-uses reduce climate connectivity across North

America. Cho and Mccarl, (2021) found that human land-uses
increase resistance to movement or alter movement routes and
thus influence climate connectivity across North America. Nong
et al. (2021) used satellite remote sensing and household survey
data to research changes in coastal agricultural land-use in
response to climate change in Vietnam. After evaluating more
than 7,000 research results, the Intergovernmental Panel on
Climate Change (IPCC) has confirmed that regional climate
change can be inhibited or enhanced through changes in land
cover status and land-use structure, but this is also affected by
factors such as seasonal and geographical distribution (Ipcc et al.,
2018).

Forest and agricultural land are the main factors in the path of
land-use affecting climate change, so they have become the focus
of previous researches and reflect a certain degree of
heterogeneity. According to the 2030 mitigation measures
pledged by countries in the Paris Agreement, the reduction of
deforestation and forest carbon sequestration, soil carbon
sequestration, agricultural management, and bioenergy are
explicitly mentioned because of the critical impact of land
cover and land-use structure on climate change. A large
number of studies have shown that deforestation will cause
surface and atmospheric temperature rise, and afforestation is
conducive to surface and atmospheric temperature drops.
Lejeune et al. (2018) found that historical deforestation
increased extreme hot temperatures in high and middle
latitudes. Studies in Africa, South America, and Southeast Asia
have found that deforestation can reduce evapotranspiration and
increase surface temperature (Lejeune et al., 2015; Spracklen and
Garcia-Carreras, 2015; Boone et al., 2016; Hartley et al., 2016;
Klein et al., 2017; Toelle et al., 2017; Wu et al., 2017). Examples of
West Africa, China, the Sahara Desert, and the Australian Desert
have confirmed the effect of large-scale afforestation on reducing
surface temperature (Abiodun et al., 2012; Ma et al., 2013;
Kemena et al., 2018; Haque and Rashid, 2019). Arora and
Montenegro, (2011) combined large-scale afforestation with
climate change scenarios and found that tropical afforestation
is more conducive to cooling climate than temperate
afforestation. These results indicate that the mechanism of
land-use structure influencing climate change has regional
heterogeneity due to latitude differences. Azadi et al. (2021)
discussed the relationship between climate change and
agricultural land conversion based on the data of countries in
different income groups, and they found that agricultural land
area in high-income countries is decreasing, but carbon dioxide
emissions are increasing, while in low-income countries,
agricultural land area has increased and carbon dioxide
emissions have decreased (Solana, 2020). Therefore, non-
agricultural land conversion may be one of the driving factors
of climate change, and land-use conversion is an essential source
of carbon dioxide emissions. It is consistent with the results
concluded by the United Nations Environment Programme
(UNEP) that Agricultural Land-use Change (ALC) can
increase CO2 emissions by disturbing soils and vegetation, and
deforestation is the primary driver, in particular when agriculture
is taken up (Kanter et al., 2013).
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It is worth noting that the impact of land-use on climate
change has spillover effect and spatial correlation. Abiodun et al.
(2012) found that deforestation sometimes did not lead to local
temperature increase but would lead to temperature increase in
neighboring countries, indicating a spatial correlation between
the impacts of deforestation and land-use structure change on
climate. IPCC also mentioned that some studies have shown that
changes in land cover or water available for irrigation will affect
the climate in areas hundreds of kilometers downwind, indicating
that the impact of land on climate change has a trans-regional
spillover effect (Ipcc et al., 2018).

1.2 Research Motivation and Hypothesis
Based on the literature review, it is not difficult to find that the
existing research on the mechanism of land-use and climate
change mostly takes individual countries or regions as the
research object. The representativeness and rationality of
sample selection need to be discussed, and the robustness
and generalization of the corresponding analysis conclusions
can be further optimized (Lehner et al., 2018; Lopez et al., 2018;
Tabari and Willems, 2018). In order to make up for this
deficiency, this study not only expands the sample value
range but also focuses on testing whether there is regional
heterogeneity in the impact of land-use on climate change.
Suppose the test confirms the existence of regional
heterogeneity in the impact of land-use on climate change. In
that case, it can confirm the deficiency of the conclusions of
existing literature based on the analysis of individual sample
country or region.

Firstly, different types of land-use may influence the
biogeochemical effects of land on climate change. The land is
considered to have a significant impact on climate change and the
greenhouse effect, including through the carbon sequestration of
plants attached to the land (Li et al., 2020), carbon dioxide release
through respiration by plants, animals, and microorganisms
(Collalti et al., 2020), and greenhouse gases released
permafrost temperatures rise (Brentrup et al., 2021). Land-use
type and land-use structure are key factors affecting climate
change and the greenhouse effect (Dirmeyer et al., 2010).
Intuitively, it is easy to understand that different land cover
types, such as forest and farmland, are different in the carbon
dioxide emission and absorption mode; their impact on the
carbon cycle and seasonal characteristics of climate change are
also different (Searchinger et al., 2018). Fujita et al. (2019)
distinguishes six land-use categories in Japan and projects
future trends of each land-use type under alternative climate
and population change scenarios. This study attempts to explore
the mechanism of land use type adjustment affecting temperature
change and climate change by affecting atmospheric carbon cycle.
Among them, land use type adjustment is the driving factor, and
land use type adjustment will change vegetation structure and
eventually affect atmospheric carbon cycle. Atmospheric carbon
cycle is the key factor affecting temperature change, and
temperature change is an important observation index
reflecting climate change. Different land-use types, such as
agricultural land and forest land, or arable land and
agricultural land attached with permanent perennial crops,

natural forest, and planted forest felled regularly, may have
different efficiency and seasonal characteristics of carbon
dioxide absorption and emission, which may lead to
heterogeneity of land-use impact on climate change. Thus, we
propose the first research hypothesis:

H1: The impacts of different land-use types on climate change
are heterogeneous.

Secondly, the differences in geographical distribution, latitude,
climate zone, and water cycle environment may also lead to the
heterogeneity of the biophysical effects of land on climate. From
the climate perspective, there are different temperature zones in
the world, such as those in high latitudes, middle latitudes, and
low latitudes. Countries with different temperature zones also
have vast differences in geographical environment, land
development degree, and vegetation distribution (Zhu et al.,
2021), so it is likely to produce regional heterogeneity in the
interaction mechanism between land and climate. The
biophysical effects of land on climate are different due to the
surface albedo (Dong et al., 2021), surface roughness (Li and Bo,
2019), atmospheric humidity (Byrne and O’gorman, 2018), wind
speed (Jeong and Sushama, 2019), and evapotranspiration
(Zhang et al., 2019). The geographical distribution
characteristics, latitude and the climatic zone characteristics,
the distribution of rivers and lakes, and the location from the
coastline of different regions may affect the size and direction of
the biophysical effects. Therefore, we put forward the second
research hypothesis:

H2: There is regional heterogeneity in the impact of land-use on
climate change.

In addition, the spatial correlation between land-use and
climate change also deserves attention. Considering that the
natural boundary of climate zones does not coincide with the
national boundary lines, and the cross-border interaction
between land and climate is almost inevitable (Hedlund
et al., 2018; Benzie and Persson, 2019), it is natural to think
that a country’s change in climate is affected not only by its
own land-use structure but also by the land-use types of
surrounding areas. Therefore, from the perspective of the
boundary of the actual national border, there should be
cross-regional spatial effects caused by land and climate
interaction. Suppose the impact of land-use on climate
change is heterogeneous due to the differences in land-use
types and regional distribution. In that case, we cannot help
but think about the conclusions of examining the impact of
land-use on climate change from a more macro perspective
transcends the existing national and regional boundaries.
Considering the spatial Durbin model used in this study, it
is helpful to study the spatial correlation of land impact on
climate change. Therefore, we propose the third research
hypothesis:

H3: The impact of land-use on climate change is spatially
correlated.
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It is conceivable that if the difference of land-use types causes
the heterogeneity of land impact on climate change, the
adjustment of land-use structure may substantially impact
climate change. Therefore, land-use planning can also be an
effective means to deal with climate change and the
greenhouse effect. The existence or otherwise of regional
heterogeneity is related to whether the national experience can
be used for reference and promotion without distinction. It has
essential reference values for strengthening the international
coordination on climate change.

The 26th United Nations climate change conference will be
held in Glasgow, United Kingdom, from November 1 to 12, 2021.
Countries worldwide will discuss cooperation to increase climate
action, build climate resilience and reduce carbon emissions to
deal with global climate change. The study on the transnational
impact of land-use and climate change can provide a valuable
reference for putting forward international initiatives to deal with
climate change or formulating international conventions to deal
with climate change.

The paper is structured as follows: the first section is the
introduction. Based on the introduction of empirical facts and the
summary of existing literature, the core question of this study is
put forward, that is, whether there is heterogeneity in the impact
mechanism of land on climate change due to different land-use
types and regions. The second section presents the data and
methods for the research. This part mainly includes the selection
of key indicators and descriptive statistical analysis, and the
introduction of the main research methods. Sections 3 and 4
build econometric models and conduct empirical analysis to
examine the main research objectives of this paper. The fifth
section outlines the research summary and implications.

2 DATA AND METHODS

2.1 Methodological Steps
The specific research objectives of this paper are mainly reflected
in the following aspects. First, based on extensive sample data,
this paper attempts to confirm that there is heterogeneity in the
impact of different land-use types on climate change. In this
study, land-use types are grouped into agricultural land (AL) and
forest land (FL) to investigate the impact heterogeneity of
different land-use types on climate change. Agricultural land is
further divided into arable land (AraL), land under permanent
crops (PCL), and land under permanent meadows and pastures
(PMPL), and forest land is subdivided into naturally regenerating
forest land (NRFL) and planted forest land (PFL). The specific
classification descriptions come from the database of the Food
and Agriculture Organization of the United Nations (https://
www.fao.org/faostat/zh/#data/RL). Second, the data based on
latitude grouping and geographic distribution feature grouping
attempts to confirm the regional heterogeneity of land-use impact
on climate change. In terms of sample selection, this study
analyzes the data of 214 countries around the world. It divides
the sample countries into two categories: countries of high,
middle, and low latitude and countries of island and
continent. On this basis, the regional differences of the effects

of land-use on climate change are investigated. Third, the spatial
correlation of land-use impact on climate change is confirmed
from multiple levels. The spatial correlation of land-use impacts
on climate change has been widely confirmed by the benchmark
model, the spatial Durbin model, and the models grouped by
land-use subcategories as well as sample country types.

Figure 1 illustrates this research’s methodological steps.

2.2 Data Sources
2.2.1 Dependent Variable
In this paper, the temperature anomaly is selected as the
dependent variable to represent climate change. Temperature
anomaly is one of the important variables used to measure
climate change in scientific research, which a large number of
climate studies has proved in the past (Huntingford and Cox,
2000; Lee and Ouarda, 2012; Bury et al., 2019). Compared with
other variables measuring climate change (such as the absolute
value of temperature), temperature anomaly has several
advantages. One is the comparability of data. If the ordinary
absolute value index is used to measure climate change, due to the
differences of original geographical environment in various
regions, there will be a false spatial spillover effect in spatial
econometrics, and this error is difficult to be eliminated by
control variables. The second is the availability of data.
Climate change research is one of the critical points of
environmental research. In the past, many kinds of indicators
have been used to explain, such as temperature, precipitation,
haze, and air pressure, but the temperature is always the main
factor and has generally recognized data sources. Given a large
number of national research samples in this paper, it is not easy to
find an appropriate and complete variable to explain climate
change, and the temperature anomaly meets these conditions.

FIGURE 1 | The methodological steps of this paper.
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The time and space dimensions are 1990–2018 and 214
countries, respectively, and they are the same for the
following independent variables and control variables. The
temperature anomaly data, published by the Food and
Agriculture Organization Corporate Statistical Database
(FAOSTAT), are updated annually according to the national
average land surface temperature change statistics. The data
currently released cover the period from 1961 to 2020. Statistical
data of monthly, seasonal, and annual mean temperature
anomalies, i.e., the baseline climatological temperature
changes corresponding to the period from 1951 to 1980, can
be obtained. The standard deviation of the temperature change
of the reference method can also be obtained. These data are
based on the public GISTEMP data, i.e., the Global Surface
Temperature Change data released by the National Aeronautics
and Space Administration Goddard Institute for Space Studies
(NASA-GISS). The GISS Surface Temperature Analysis
(GISTEMP) is an estimate of global surface temperature
change. Graphs and tables are updated around the middle of
every month using current data files from NOAA GHCN v4
(meteorological stations) and ERSST v5 (ocean areas). These
updated files incorporate reports for the previous month and
also late reports and corrections for earlier months. The
temperature anomaly data are from FAOSTAT, and there is
no missing or artificial supplement. Figure 2 shows the annual
average temperature anomalies of countries worldwide from
1990 to 2018 using the GeoDa software. In Figure 2, according
to the decile method, the color depth is used to represent the
distribution of temperature anomalies. The darker the color is,
the greater the temperature change is. It can be seen that the
temperature rise in northwest Africa, Europe and northern Asia
is large, while that in southern Africa, South America and
southern Asia is small.

2.2.2 Independent Variables
In this paper, the proportion of different land-use in different
countries is selected as the independent variable. Because of
large area differences among countries, simply using the
absolute value of land-use area can lead to strong data
discrete trend and large heteroscedasticity, which is not in
line with the overall goal of this paper to analyze the
heterogeneity of land-use types. Therefore, this paper selects
the ratio of land-use types to the total area of the country to
represent land-use, making the comparison among countries
more scientific and reasonable. The specific independent
variables are the proportion of agricultural area, which can
be decomposed into the proportion of arable land, the
proportion of permanent crops, and the proportion of
meadows and pasture land; as well as the proportion of
forest area, which can be decomposed into the proportion of
natural forest and the proportion of planted forest. The land-use
area data comes from the United Nations Food and Agriculture
Organization, with no missing and artificial supplements.

2.2.3 Control Variables
In this paper, six control variables are selected to control the
social factors that affect climate except for land-use. They are
GDP per land (100 USD/ha), population per land (1000 P/ha),
capital stock per land (10 USD/ha), industrial added value as a
percentage of GDP (%), CO2 emission per land (0.1 MM tons/
ha) and energy consumption per land (quad Btu/ha). The
above variables are ratios, and the reasons for selection are
the same as those for independent variables. In addition, the
first-order lag variable of temperature anomaly (°C) is
controlled to exclude the lag effect caused by the previous
year’s temperature. The above data are obtained from
PWT10.0, United States Energy Information (EIA), and

FIGURE 2 | Average temperature anomalies from 1990 to 2018.
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World Bank Database. A few missing data are supplemented by
interpolation (Liu et al., 2019; Tapver, 2019; Zawadzki, 2020; Li
et al., 2021a; Li et al., 2021b; Li et al., 2022a).

Table 1 lists the data sources of the major variables involved in
this study. Table 2 shows the descriptive statistics of major
variables in the study.

2.3 Modelling Procedures
A panel data model is suitable for the analysis of correlations
between observed samples in different periods (Li T et al.,
2021; Li et al., 2021c; Li et al., 2021d; Li et al., 2022b). In this
study, it is helpful to investigate the mechanism of land-use
affecting climate change in 214 sample countries over for
40 years. The First Law of Geography, according to Waldo
Tobler, (1970), is “everything is related to everything else, but
near things are more related than distant things”. Climate
change in adjacent areas is inherently related, and the change
of land-use structure in a particular area may directly or
indirectly affect the climate change in neighboring areas.
Therefore, it is necessary to study the possible spatial
spillover effects of land-use on climate change using the
spatial panel model (Zhong and Li, 2020).

The first step is to test the spatial correlation of temperature
changes. The most popular method to measure spatial
autocorrelation is Moran’s I:

I � Σn
i�1Σn

j�1wij(xi − �x)(xj − �x)
S2Σn

i�1Σn
j�1wij

# (1)

Where, S2 is the sample variance. wij is the element (i, j) of
spatial weight matrix, and Σn

i�1Σn
j�1wij is the sum of all spatial

weights.
In the second step, to compare with the spatial panel model, a

fixed panel data model without spatial effect is established:

TemChanit � α0 + α1TemChani,t−1 + α2ALit + α3FLit + αXit + πi + εit# (2)

In Eq. 2, the dependent variable TemChanit represents annual
temperature change; the independent variables ALit and FLit
represent the proportion of agricultural land and the proportion
of forest land; Xit represents the six control variables adopted,
including GDP per land, population per land, capital stock per
land, the proportion of industrial added value in GDP, total CO2
emissions per land, and total energy consumption per land. The
formula can be used to reflect the impact of land-use structure on
climate change without spatial effect. α1 represents the lag effect
of the temperature change in the last year on the temperature
change in the current period (Jia et al., 2021); α2 and α3
respectively describe the impact of agricultural land and the
forest land on temperature change. Ordinal fixed-effect panel
regression can reveal what conclusions will be obtained without
considering the impact of sample surrounding countries on local
countries. In addition, more importantly, by comparing the
goodness of fitting of empirical results with and without
spatial effect, this paper can better judge the optimal option of
the model.

According to IPCC and other literature (Abiodun et al., 2012;
Maimaitiyiming et al., 2014; Ipcc et al., 2018; Sayyadi et al., 2019),
land-use in neighboring countries may also affect climate change
in their own countries. Spatial Durbin model (SDM) is a
combined extension of spatial lag and spatial error term
model, which can be established by adding corresponding
constraints to spatial lag model and spatial error model. In

TABLE 1 | Variable data source.

Variable Abbr Source

Temperature change (temperature anomalies) Temchan FAOSTAT
The proportion of agricultural land AL FAOSTAT
The proportion of arable land AraL FAOSTAT
The proportion of land under permanent crops PCL FAOSTAT
The proportion of land under permanent meadows and pastures PMPL FAOSTAT
The proportion of forest land FL FAOSTAT
The proportion of naturally regenerating forest land NRFL FAOSTAT
The proportion of planted Forest land PFL FAOSTAT
GDP per land GDP PWT10.0
Population per land Pop PWT10.0
Capital stock per land Cap PWT10.0
Industrial added value/GDP per land Indus World Bank
Total CO2 emissions per land CO2 World Bank
Total energy consumption per land Energy EIA

TABLE 2 | Descriptive statistics.

Variable Unit Mean Max Min Std

Temchan °C 0.780 3.039 −1.371 0.569
AL prop 0.373 0.854 0.002 0.221
AraL prop 0.134 0.726 0 0.133
PCL prop 0.048 0.666 0 0.091
PMPL prop 0.190 0.832 0 0.187
FL prop 0.332 0.985 0 0.251
NRFL prop 0.302 0.984 0 0.248
PFL prop 0.029 0.335 0 0.056
GDP 100USD/ha 4.299 725.485 0 29.803
Pop p/ha 1.747 81.205 0.001 4.953
Cap 10USD/ha 1.534 294.825 0 12.127
Indus prop 26.791 213.690 0 15.434
CO2 MM tones/10ha 1.712 344.252 0 15.357
Energy quad Btu/ha 0.280 52.773 0 2.360
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fact, SDM is a spatial lag model (SAR) enhanced by adding spatial
lag variables. This is highly consistent with the spatial
autocorrelation of variables in this paper, and we can get more
effective conclusions. Therefore, In the third step, to demonstrate
whether there is spillover and spatial correlation between land-
use and climate change, this paper introduces the weighted term
of the spatial weighting matrix of each variable as the explanatory
variable and establishes a spatial Durbin model:

TemChanit � β0 + β1TemChani,t−1 + β2∑
n

j ≠ i

WTemChanit

+ β3∑
n

j ≠ i

WALit + β4∑
n

j ≠ i

WFLit + β5ALit + β6FLit

+βXit + πi + εit# (3)
In Eq. 3, Σn

j ≠ iW is the spatial weighting matrix. In this paper,
the Inverse Distance Spatial Weighting Matrix is adopted to
calculate the spatial weight (Getis and Aldstadt, 2004), that is,
the linear distance between each other is calculated according
to the longitude and latitude coordinates of the geographic
center of each country, and based on dimensionless processing,
the reciprocal is taken as the weight. If the linear distance
between the geographic centers of the two sample countries is
more than 20, then the weight is assigned to 0, that is, the two
sample countries are identified as non-neighborhood
relationship (the distance threshold is adjusted in the
robustness test later). The meanings of other variables in Eq.
3 are the same as those in Eq. 2. This equation can be used to
reflect the influence of land-use structure on climate change
when spatial effects are included. According to spatial
econometric theory, α1 represents the lag effect of the
temperature change in last year on the temperature change
in the current period; β2 represents the spatial spillover
intensity and direction of temperature change in
surrounding countries; β3 and β4, respectively describe the
intensity and direction of the impact of agriculture land and
forest land in surrounding countries on local temperature
change; β5 and β6 respectively describe the intensity and
direction of the impact of agriculture land and forest land in
local on temperature change.

After that, the robustness test, component heterogeneity and
regional heterogeneity test are carried out by using the model of
Eq. 3. In the robustness test, we adjust the bandwidth and type of
W, which is described in 3.3 Robustness Test. In the component
heterogeneity test, we adjusted the variablesAL and FL in Eq. 3 to
more subdivided land-use types.

In the regional heterogeneity test, we only change the number
of regression samples. In Section 4, the sample countries are
categorized into high latitude group (111 countries with
geographic center latitude higher than 60), middle latitude
group (75 countries with geographic center latitude between
30 and 60), and low latitude group (28 countries with
geographic center latitude lower than 30). The samples are
also divided into island countries (45 island countries) and
mainland countries (169 countries other than island countries)
according to whether they are islands.

From the temperature change indicator in the third row of
Table 3, we can see the heterogeneity of temperature change
among samples. After grouping by latitude, the average
temperature change of high latitude sample countries is
0.568°C; the average temperature change of middle latitude
sample countries is 0.908°C, and that of low latitude sample
countries is 0.747°C. In terms of land-sea difference, the average
temperature change of island countries is 0.612°C, while that of
non-island continent countries is 0.825°C.

After grouping by latitude, it shows significant differences in
land-use structure of sample countries in different groups in
Table 3. Taking agricultural land as an example, the proportion of
agricultural land in high-latitude countries is 24.8%, that in mid-
latitude countries is 45.1%, and that in low-latitude countries is
35.2%. In terms of forest land, the proportion of forest land in
high-latitude countries, mid-latitude countries and low-latitude
countries is 42.8%, 26.9% and 35.0%, respectively. Generally
speaking, high latitudes are cold, low latitudes are prone to
drought, and middle latitudes are more suitable for crop
growth. There are large coniferous forests and hot spot rain
forests in high and low latitudes, respectively, which are the areas
where natural forests are concentrated.

Considering that there is significant heterogeneity in the
degree of climate change and the type of land-use in the
sample countries after grouping, it is necessary to investigate
whether there is inter-group heterogeneity in the mechanism of
land-use impact on climate change.

3 HETEROGENEITY ANALYSIS BASED ON
THE DIFFERENCES OF LAND-USE TYPES

3.1 Spatial Autocorrelation Test of
Temperature Change
Before analyzing the spatial effect of land-use on climate change,
it is necessary to verify whether there is spatial autocorrelation of
climate change in each sample country. In this paper, according
to Eq. 1, the GeoDa software (GeoDa is a free software package
that conducts spatial data analysis, geo-visualization, spatial
autocorrelation, and spatial modeling) is used to establish the
spatial weighting matrix based on the longitude and latitude
distance (Anselin et al., 2006), and Moran’s I test (Moran’s I is a
measure of spatial autocorrelation developed by Patrick Alfred
Pierce Moran) is used to investigate the annual temperature
change of all samples based on the distance spatial weight
index (Moran, 1950; Li et al., 2007). The corresponding test
results are shown in Figure 3, where the range bandwidth in the
model is selected from 0–20.

As can be seen from Figure 3, the spatial distribution of
temperature changes in 214 countries over the past years is not
random, but shows significant spatial correlation on the whole,
and temperature changes have strong spatial dependence. The
results show that the global Moran’s I values are all positive,
between 0.236 and 0.615, and the Z-values are between 7.69 and
20.88, both of which pass the 1% significance test. Therefore, the
spatial distribution of the temperature change levels has a
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significant positive global spatial auto-correlation during the
study period, and the temperature change of the local country
will be affected by that of its neighboring countries. This analysis

conclusion is logical and in line with expectations. It is also
consistent with the annual mean temperature anomaly of all
countries in the world from 1990 to 2018 shown in Figure 2. The
division mode of climatic zones does not coincide with the actual
national boundaries, and the climate changes in adjacent areas are
bound to have a variety of relationships, thus the climate types,
direction, and degree of climate change are likely to be related.
Based on this, the spatial econometric model can be used for
model fitting and analysis after statistical testing.

3.2 Analysis of Benchmark Regression
Table 4 shows the regression results using the benchmark panel
model without spatial effect according to Eq. 2 to test the impact
of land-use on climate change. Because all empirical tests in this
paper consider the first-order lag factor of temperature change,
the actual regression sample is the 28-year data (i.e., 1991-2018)
of 214 countries.

According to Table 4, it can be found that after adding the lag
term TemChan_lag of the dependent variable TemChan, the

TABLE 3 | Variable grouping statistics.

Variable Items High latitude Middle latitude Low latitude Island countries Mainland countries

N - 812 2,175 3,219 1,305 4,901
Temchan Mean 0.568 0.908 0.747 0.612 0.825

Std 0.532 0.681 0.466 0.417 0.595
AL Mean 0.248 0.451 0.352 0.317 0.388

Std 0.175 0.215 0.215 0.210 0.221
AraL Mean 0.063 0.181 0.120 0.111 0.140

Std 0.061 0.132 0.136 0.112 0.137
PCL Mean 0.112 0.031 0.043 0.109 0.031

Std 0.184 0.050 0.066 0.135 0.065
PMPL Mean 0.072 0.238 0.188 0.096 0.215

Std 0.082 0.210 0.176 0.148 0.188
FL Mean 0.428 0.269 0.350 0.377 0.320

Std 0.259 0.212 0.263 0.267 0.246
NRFL Mean 0.394 0.216 0.337 0.338 0.292

Std 0.233 0.203 0.262 0.256 0.245
PFL Mean 0.034 0.051 0.013 0.039 0.026

Std 0.077 0.071 0.025 0.063 0.054

FIGURE 3 | Moran’s I and Z-Value evolution of annual temperature
change.

TABLE 4 | Panel regression results without spatial effect.

Items Temperature change

(1) (2) (3) (4)

AL 0.013 (0.42) 0.043 (1.38) −0.652***(-3.43) −0.684***(-3.62)
FL −0.054**(-2.13) −0.046*(1.81) −1.194***(-3.40) −1.149***(-3.29)
TemChan_lag 0.577***(53.45) 0.569***(52.19) 0.399***(32.38) 0.376***(30.26)
GDP - 0.003 (1.45) - 0.001 (0.23)
Pop - −0.008***(-2.85) - 0.141***(7.87)
Cap - 0.001 (0.23) - −0.002 (-0.32)
Indus - 0.001***(2.92) - −0.005***(-4.73)
CO2 - −0.001 (-0.23) - −0.007 (-1.08)
Energy - −0.013 (-0.38) - −0.055 (-1.18)
Cons 0.362*** 0.329*** 1.126*** 1.042***
FE No No Yes Yes
N 5,992 5,992 5,992 5,992
R-squared 0.3251 0.3288 0.1492 0.0328

Notes:*, **, *** stand for significant levels of 10%, 5% and 1% respectively, and the values in brackets are T-values.
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increase of the proportion of forest land has a significant effect on
reducing the national temperature in all the analysis models, but
in the analysis results of Columns (3) and (4) that control the
individual random effect, the coefficients of the forest land
proportion are larger and more significant. Under the
condition of not controlling the individual random effect, the
coefficients of the agricultural land proportion in Columns (1)
and (2) are positive but not significant. If the individual random
effect is controlled, the coefficients of agricultural land proportion
in Columns (3) and (4) are negative and significant, that is to say,
the increase of the proportion of the agricultural land will
significantly reduce the temperature level of the country.
Therefore, it can be seen that there are significant differences
in the impacts of the change of agricultural land and forestry land
on climate change, and the impacts of different land-use types on
climate change are heterogeneous.

In Columns (1) and (2) without individual random effect
control, the lag-term coefficient of the dependent variable
TemChanit is larger. In comparison, the coefficient of the
agricultural land proportion AL and that of the forest land
proportion FL are smaller. After controlling the individual
random effect, the coefficients (absolute value) of Al and FL
shown in Columns (3) and (4) are larger and significantly
enhanced. However, it is worth noting that after controlling
the individual random effect, the goodness of fitting R2 of the
model will decrease significantly.

In the control variables of Table 4, when individual countries
are not fixed, that is Column (2), the regression results largely
reflect the horizontal comparison between countries. The first-
order lag term of temperature change has a significant positive
effect on the current temperature change (α � 0.569, p � 0.00). A
country’s temperature change depends on various objective
conditions. They show strong rigidity in the process of change
with time, such as topography, climate zone, and land-sea
location. These factors are difficult to quantify and analyze,
and the first-order lag of temperature change can well
eliminate the influence of these factors. The effect of
population density on temperature change is significantly
negative (α � −0.008, p � 0.00). Throughout the world,
countries with high development levels usually have high
population density. These countries have gradually carried out
green economic transformation since modern times, which has
played a positive role in climate change. At the same time, climate
optimization has also siphoned population migration. The
proportion of industrial output value to temperature change is
significantly positive (α � 0.001, p � 0.00). In the horizontal
comparison among countries, the development of countries
with significant industrial ratios is bound to be accompanied
by the emission of a large number of greenhouse gases such as
carbon dioxide, which is bound to have a negative impact on the
climate. When the individual country is fixed, that is Column (4),
the regression results primarily reflect the vertical comparison
within the country. The first-order lag of temperature change also
has a significant positive impact on the current temperature
change (α � 0.376, p � 0.00), and there is a noticeable time
lag effect on the temperature change. The effect of population
density on temperature change is significantly positive

(α � 0.141, p � 0.00). At this time, the regression results
reflect that the increase of population density within the
country will increase local carbon emissions and increase the
temperature. The ratio of industrial output value to temperature
change is significantly negative (α � −0.005, p � 0.00). In the
development process of a country, the increase in the proportion
of industrial output value is often accompanied by industrial
upgrading and optimization of resource allocation. More efficient
and environmentally friendly technologies are gradually
popularized with the progress of the industry, and the climate
is improved.

3.3 Analysis of Spatial Durbin Model
Regression
Next, according to Eq. 3, the regression of the spatial Durbin
model is carried out to investigate the spatial correlation of land-
use impact on climate change. According to Table 5, after adding
the spatial weighting matrix, the fitting regression coefficients of
W × AL, W × FL and W × Temchan which reflect the spatial
interaction effect in the four columns are very significant, that is,
the impact of land-use on climate change has obvious spatial
correlation (Where “W” represents spatial weighting matrix,
“AL” represents agricultural land and “FL” represents forestry
land). Specifically, W × AL refers to the proportion of
agricultural land in adjacent areas; W × FL refers to the
proportion of forestry land in adjacent areas. In all models,
the adjustment of agricultural land proportion in adjacent
areas has a more significant impact on local climate change
than that of local agricultural land proportion, and the
significance is stronger. Similar conclusions exist in the
analysis of the proportion of forest land. The impact
coefficient of the adjustment of the forest land proportion in
adjacent areas represented by W × FL on the local temperature
change is greater than that of the adjustment of the local forest
land proportion represented by FL, and the former is more
significant.

Further observation shows that the impact of land-use on
climate is heterogeneous in land-use types, that is, there are
differences between the impact of domestic agricultural land
structure adjustment and the impact of forestry land structure
adjustment on its own temperature change. The same is true for
that of agroforestry structure adjustment in surrounding areas.
Specifically, first, in the analysis results shown in Column (4), the
impact of agricultural land on climate change is not significant. In
contrast, the increase of forestry land will significantly lead to the
decrease of temperature (each 1% increase in the proportion of
forestry land will reduce the temperature anomaly by 0.326°).
This shows that the heterogeneity of the impact of land-use types
on climate change exists. Second, the agricultural and forestry
land of surrounding countries will significantly reduce domestic
temperature. As we mentioned, the flow of carbon dioxide in the
atmosphere and the climate change in nature are not bound by
human society’s national boundaries. The adjustment of land-use
structure in neighboring countries will lead to adjusting
parameters in land and atmosphere feedback mechanism,
affect local carbon dioxide cycle and temperature, and affect
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local climate change. The analysis results in Table 5 well reflect
this phenomenon. Besides, the impact coefficient of the
proportion of agricultural land of surrounding countries on
the domestic temperature change (the coefficient is negative,
the absolute value should be taken for comparison) is always
greater than that of the proportion of forestry land of surrounding
countries on the domestic temperature change. This indicates
that the spatial spillover of land-use to climate change is also
heterogeneous due to the difference in land-use types.

In the control variables of Table 5, when individual countries
are not fixed, that is Column (2), the regression results reflect the
horizontal comparison between countries. After considering the
spatial effect, the first-order lag of temperature change still plays
a significant role in promoting the current temperature change
(β � 0.328, p � 0.00), and there is a noticeable time lag effect in
the temperature change. The effect of population density on
temperature change is significantly negative
(β � −0.018, p � 0.00), which is consistent with the
regression result without spatial effect, that is, in the
horizontal comparison between countries, the temperature
rise in areas with high population density is lower, which is
related to both green industrial transformation and the
orientation of population migration. After considering the
spatial effect, the impact of capital stock
(β � −0.006, p � 0.06) and industrial output value
(β � −0.001, p � 0.02) on temperature change is significantly
negative. Local economic development will drive the overall
level of the surrounding areas. There is a significant spatial
diffusion effect of energy utilization efficiency and innovative
green technology. Therefore, the countries around the region
have developed at the level of green production. Carbon dioxide
plays a significant role in promoting temperature change
(β � 0.009, p � 0.03), which is consistent with the nature of
greenhouse gases. When the individual country is fixed, that is
Column (4), the regression results reflect the vertical
comparison within the country. Time lag effect also exists in
temperature change (β � 0.150, p � 0.03). The proportion of

industrial output value to the current temperature change is
significantly negative (β � −0.002, p � 0.02), indicating that the
green production capacity of a country gradually increases in
the process of industrial development, which is consistent with
the regression result without spatial effect.

Compared with the empirical results without spatial effect, the
regression results of the spatial Durbin model may be more
reliable. First, from the model design perspective, factors
affecting climate change, such as carbon dioxide, will flow
between different regions, resulting in significant spatial
autocorrelation of temperature change at the geographical
level. Excluding the spatial effects will lead to the missing
variable deviation, and the result may be unreliable. Second,
From the perspective of fitting effect, the goodness of fit of the
regression results of the spatial Durbin model is much better than

TABLE 5 | The regression results of the spatial Durbin model.

Items Temperature change

(1) (2) (3) (4)

AL −0.051**(-2.18) −0.027 (-1.11) −0.165 (-1.27) −0.142 (-1.09)
FL −0.039*(-1.69) −0.063***(-2.66) −0.294 (-1.20) −0.326*(-1.73)
W × AL −0.460***(-12.59) −0.491***(-13.44) −0.976***(-3.54) −1.018***(-3.68)
W × FL -0.183***(-6.15) −0.182***(-6.01) −0.855**(-2.12) −0.855**(-2.12)
W × Temchan 0.642***(66.87) 0.650***(67.77) 0.756***(89.86) 0.753***(88.29)
TemChan_lag 0.336***(37.53) 0.328***(36.67) 0.152***(17.56) 0.150***(17.16)
GDP - 0.002 (1.44) - −0.000 (-0.02)
Pop - −0.018***(-8.33) - 0.001 (0.05)
Cap - −0.006*(-1.84) - 0.002 (0.51)
Indus - −0.001**(-2.36) - −0.002**(-2.40)
CO2 - 0.009**(2.23) - 0.001 (0.28)
Energy - −0.021 (-0.81) - −0.016 (-0.52)
FE No No Yes Yes
N 5,992 5,992 5,992 5,992
R-squared 0.6980 0.7099 0.2142 0.2258

Notes:*, **, *** stand for significant levels of 10%, 5% and 1% respectively, and the values in brackets are T-values.

FIGURE 4 | The spatial affecting mechanism of land-use on temperature
change.
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the regression results without spatial effect. Third, from the
perspective of empirical results, the empirical results in
Table 5 are more reasonable. Figure 4 comprehensively shows
the mechanism of the spatial affecting of land-use on the
temperature change, and within the dotted line is the
benchmark regression without spatial effect.

3.4 Robustness Test
Based on the spatial correlation test of land-use impact on climate
change, the robustness test is carried out to investigate the
influence of adjusting the distance bandwidth and the spatial
weighting matrix type on the robustness of the analysis
conclusion (Su et al., 2021). Table 6 shows all the empirical
estimation results of the robustness test. The specific settings and
analysis are described below.

The first is the robustness test of distance bandwidth. For the
theoretical model with spatial correlation analysis, the selection of
distance bandwidth determines the number of neighboring
countries, which may affect the test results of spatial effect. In
order to test whether the adjustment of the distance band affects
the robustness of the model analysis, the distance bandwidth is
expanded from 0–20 to 0–30 and 0–40, respectively, as shown in
Columns (1–3) of Table 6. At this time, the sample countries will
have more neighbors to be included in the spatial matrix. It can be
seen that the impact of land-use on climate change is not affected
by the setting of distance bandwidth, and the analysis conclusion
is robust.

The second is the robustness test of the contiguity spatial
weighting matrix. The spatial weighting matrix is the critical
parameter of the spatial panel data model. The setting method of

TABLE 6 | Results of robustness test.

A. Results of distance bandwidth adjustment

Items Temperature change

W: 0–20 W: 0–30 W: 0–40

(1) (2) (3)

AL −0.142 (−1.09) −0.070 (−0.53) −0.040 (−0.30)
FL −0.326*(−1.73) −0.281*(−1.74) −0.187 (−0.73)
W × AL −1.018***(−3.68) −1.351***(−4.37) -1.218***(-3.37)
W × FL −0.855**(−2.12) −1.116**(−2.45) −0.567*(−1.75)
W × Temchan 0.753***(88.29) 0.800***(89.97) 0.829***(87.56)
TemChan_lag 0.150***(17.16) 0.119***(13.42) 0.113***(12.25)
GDP −0.000 (−0.02) -0.000 (−0.15) −0.000 (−0.15)
Pop 0.001 (0.05) -0.014 (−1.14) −0.025*(-1.80)
Cap 0.002 (0.51) 0.003 (0.72) 0.004 (0.73)
Indus −0.002**(−2.40) -0.001**(−1.98) −0.001*(−1.95)
CO2 0.001 (0.28) 0.001 (0.24) 0.001 (0.30)
Energy −0.016 (−0.52) -0.004 (−0.13) 0.002 (0.08)
FE Yes Yes Yes
N 5,992 5,992 5,992
R-squared 0.2258 0.2541 0.2664

B. Results of spatial weighting matrix type adjustment

Items Temperature change

W: 0–20 (contiguity) W: 0–30 (contiguity) W: 0–40 (contiguity)

(4) (5) (6)

AL −0.152 (-1.11) −0.087 (−0.61) −0.059 (−0.40)
FL −0.393*(-1.69) −0.237*(−1.89) −0.100 (−0.36)
W × AL −1.323***(-3.96) −1.389***(−3.45) −1.836***(−3.47)
W × FL −1.312***(-2.71) -0.977*(−1.69) −0.411 (−0.55)
W × Temchan 0.743***(79.54) 0.772***(72.68) 0.770***(62.77)
TemChan_lag 0.152***(16.45) 0.129***(13.07) 0.131***(12.42)
GDP 0.000 (0.05) −0.000 (−0.12) 0.000 (0.10)
Pop 0.003 (0.24) −0.007 (−0.50) −0.013 (−0.91)
Cap 0.002 (0.35) 0.003 (0.57) 0.001 (0.26)
Indus −0.002**(-2.67) −0.002**(−2.19) −0.002**(−2.38)
CO2 0.001 (0.13) 0.000 (0.06) 0.001 (0.20)
Energy −0.009 (-0.28) −0.001 (−0.03) 0.002 (0.07)
FE Yes Yes Yes
N 5,992 5,992 5,992
R-squared 0.2354 0.2683 0.2759

Notes:*, **, *** stand for significant levels of 10%, 5% and 1% respectively, and the values in brackets are T-values.
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spatial weightingmatrix may affect the test results of spatial effect.
In this part, the contiguity weighting matrix is used for the
robustness test. The contiguity spatial weighting means that
there is a distance dummy variable, when the distance
between two samples is less than the set threshold, the
distance dummy variable between them is regarded as a
neighbor (i.e., 1); When the distance between them is greater
than the set threshold, this distance dummy variable is regarded
as not adjacent (i.e., 2). This setting is different from the direct
distance calculation between the two countries, but the general
idea is the same. The adjusted spatial weighting matrix in
combination with different distance band settings is used to
investigate the spatial correlation of land-use affecting climate
change, and the analysis results are shown in Columns (4–6) of
Table 6. As can be seen from the test results, adjusting the setting
of the spatial weighting matrix does not affect the robustness of
the analysis conclusion.

3.5 Additional Analysis: Heterogeneity
Based on the Differences in Components of
Land-Use Types
Considering that agricultural land can be divided into arable land,
land under permanent crops and meadows and pasture land, and
forest land can be divided into naturally regenerating forest land
and planted forest land, thus we can further investigate the impact
of land-use on climate change based on the subdivisions of
agricultural and forestry land.

According to Figure 5, it can be found that the impact of land-
use on climate change is still heterogeneous after land-use types
are subdivided in the spatial Durbin model. The size of circles in
Figure 5 is set according to the absolute values of the influence.
The red and blue arrows represent the heating and cooling effect,
respectively. The increase of arable land proportion (βAraL �

0.033) or meadows and pasture land proportion (βPMPL �
0.121) has a positive effect on temperature rise. In contrast,
the increase of land under permanent crops proportion (βPCL �
−0.285) or natural forest proportion (βNRFL � −0.028) or
planted forest proportion (βPFL � −0.085) has a negative
effect on climate change. However, the effect of arable land
proportion adjustment or planted forest land proportion
adjustment on climate change is not significant. Taking into
account the spatial correlation effect, the increase of arable land
(βW×AraL � −0.364), meadows and pasture land
(βW×PMPL � −0.413), and natural forest land (βW×NRFL �
−0.112) in the surrounding areas have a significant inhibitory
effect on the local greenhouse effect, while the increase of land
under permanent crops (βW×PCL � −0.089) or planted forest
land (βW×PFL � 0.082) has no significant effect on the local
greenhouse effect. It is worth noting that, in the case of
distinguishing the natural forest from the planted forest, the
increase of the proportion of planted forest has no significant
effect on temperature. The root cause may be that the planted
forest needs to occupy certain land resources, which may cause
the reduction of agricultural land or natural forest, and may need
to support large-scale human activities, so as to produce more
carbon emissions in the short term.

4 HETEROGENEITY ANALYSIS BASED ON
THE REGIONAL DIFFERENCES

This section examines the regional heterogeneity of the impact of
land-use on climate change. The general econometric model
heterogeneity analysis usually divides the samples into
developed and developing countries (Drissi and Boukhatem,
2020). In this paper, the biogeochemical and biophysical
effects of land-use on climate change may be heterogeneous
due to regional differences such as latitude, geographical
distribution and hydrological characteristics, and the
conclusions obtained by case studies of selected sample
countries in existing literature may have sample bias due to
regional heterogeneity. Next, the spatial Durbin model will be
used to test whether there is significant regional heterogeneity in
the impact of land-use on climate change.

Figure 6 shows the spatial Durbin model analysis results of the
impact of land-use on climate change for the whole sample, high-
latitude samples, middle-latitude samples, low-latitude samples,
island country samples and mainland country samples based on
Eq. 3. The part inside the dotted line is land-sea difference, and
the part outside the dotted line is latitude difference. The size of
pie charts in Figure 6 is set according to the absolute values of the
influence.

Latitude difference will cause the heterogeneous impact of
land-use on climate change. Taking the impact of agricultural
land proportion on temperature change as an example, the
increase of agricultural land proportion in high latitude
countries (βAL � −0.120) will significantly inhibit the rise of
regional temperature. In contrast, the increase of agricultural land
proportion in low latitude countries (βAL � −0.284) and middle
latitude countries (βAL � 0.104) has no significant impact on

FIGURE 5 | Spatial Durbin regression results of land type subdivision.
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regional temperature change. Suppose we observe the impact of
forest land on climate change. In that case, only the increase of
forest land proportion in middle latitude countries (βFL �
−0.296) will significantly inhibit the regional temperature rise.
In contrast, the increase of forest land proportion in high latitude
sample countries (βFL � −0.025) and low latitude sample
countries (βFL � 0.266) has no significant impact on the
temperature change. Focusing on the impact of the increase in
the proportion of agricultural land or forest land in neighboring
countries on the temperature change of a country, we can find
that the temperature change of high latitude sample countries
(βW×AL � −0.106, βW×FL � −0.045, but no significant) is not
affected by the land structure adjustment of surrounding areas.
In contrast, the increase in the proportion of agricultural land or
forest land in middle (βW×AL � −0.369, βW×FL � −0.319) and
low latitude samples (βW×AL � −0.629, βW×FL � −0.535) will
significantly inhibit the local temperature rise.

There is also heterogeneity in the impact of land-use
structure adjustment on climate change in island countries
and mainland countries. The increase in the proportion of
agricultural land in island countries and mainland countries
has no significant impact on the temperature change.
However, the increase in the proportion of agricultural land
in island countries will inhibit the temperature rise
(βAL � −0.071), while the increase in the proportion of
agricultural land in mainland countries will aggravate the
temperature rise (βAL � 0.034). Similarly, the increase of the
proportion of forest land in island countries will significantly
inhibit the increase of local temperature (βFL � −0.153). In
contrast, the increase of the proportion of forest land in
mainland countries will not significantly affect local
temperature changes (βFL � 0.034). If the spatial correlation
factor is included, the temperature change of island countries
is not affected by the adjustment of land-use structure in the
surrounding sample countries
(βW×AL � 0.056, βW×FL � −0.030, but no significant), and the
increase of agricultural land proportion or forestry land

proportion in the surrounding areas of mainland countries
will significantly inhibit the increase of local temperature
(βW×AL � −0.500, βW×FL � −0.196).

5 RESULTS AND DISCUSSION

On the basis of a comprehensive review of existing theories and
literature, this paper uses the Moran’s I test (Eq. 1), benchmark
model (Eq. 2) and spatial Durbin model (Eq. 3) to verify the
heterogeneity of land-use impact on climate change in the two
dimensions of type and region, based on the data of 214 countries
from 1990 to 2018. The following empirical results are drawn: 1)
According to the Moran’s I test results, we find that the
temperature change shows significant spatial correlation, that
is, it has a strong spatial dependence. 2) According to the
benchmark and spatial Durbin test results, we find there is
heterogeneity in the impacts of different land-use types on
climate change. On the one hand, the impact of agricultural
land on local climate change is small and not significant, but the
increase of the proportion of forestry land can significantly inhibit
the temperature rise in the local country. On the other hand, the
growth of agricultural and forestry land in neighboring countries
has significantly inhibited climate change in their own countries,
and the inhibitory effect is greater than the change of land
structure in their own countries. 3) The component
heterogeneity test shows that local proportion of land under
permanent crops and naturally regenerating forest land can
significantly inhibit temperature changes, while the inhibitory
effects of surrounding countries mainly come from arable land,
land under permanent meadows and pastures and naturally
regenerating forest land. 4) The regional heterogeneity test
shows that there is heterogeneity in the impact of land-use on
climate change between different latitudes and island and
mainland countries.

From the empirical results and analysis, several important
findings and implications can be summarized.

FIGURE 6 | Spatial Durbin regression results for regional heterogeneity analysis.
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First, the impacts of different land-use types on climate change
are heterogeneous. The impact of agricultural land on climate
change is small and not significant, but the increase of the
proportion of forestry land can significantly inhibit the
temperature rise in the local country. To some extent,
agricultural land comes from the conversion of forest land.
The conversion from forest land to agricultural land is actually
a carbon emission process because the forest has a much stronger
carbon sequestration capacity than farmland. The increase of
agricultural landmay be from converting non-agricultural land to
agricultural land, or from the conversion of forest land. Without
understanding the internal conversion mechanism, the data
shows that the increase of agricultural land and forest land
will inhibit the rise of temperature. In contrast, the inhibitory
effect of agricultural land is not significant, and the increase of
forest land has a greater inhibitory effect. This conclusion
provides experience for the land-use transformation now
needed to address climate change.

Second, the impact of land-use on climate change has regional
heterogeneity in the dimensions of latitude difference and land-
sea difference. In terms of latitude difference, what worth noting
is that, as shown in Table 3, the proportion of agricultural land in
high latitude sample countries, middle latitude sample countries
and low latitude sample countries is 24.8%, 45.1% and 35.2%,
respectively, of which the proportion of agricultural land in high
latitude countries is the lowest and significantly lower than that in
the other two groups of sample countries. The proportion of
forestry land in high latitude sample countries, middle latitude
sample countries and low latitude sample countries is 42.8%,
26.9% and 35.0%, respectively. Among them, the proportion of
forestry land in middle latitude sample countries is the lowest and
significantly lower than that in the other two groups of sample
countries. To a certain extent, this may explain why temperature
change is more sensitive to the change of agricultural land
proportion in high latitude countries and the change of
forestry land proportion in mid latitude countries. After all,
they have less basic shares, and their share change has a more
noticeable impact on the adjustment of local land-use structure.
In terms of land-sea difference, continent countries and
neighboring countries share a land climate cycle system. The
adjustment of land-use structure caused by the change of the
proportion of agricultural land or forest land in neighboring
countries will affect this system’s multiple biophysical and
biogeochemical effects. Logically, island countries have no de
facto neighbors, even if the geographical distance may be small.
After all, it is the sea that borders the island countries. This
conclusion provides a reference for the land-use policy of
countries in specific regions.

Third, climate change in a country is affected by its own land-
use structure and, more importantly, the land-use structure of
neighboring countries. This phenomenon is logically reasonable.
Temperature and climate change in nature are in an integrated
form, and carbon dioxide can freely flow across borders in the
atmosphere. Considering that the adjustment of agricultural or
forestry land-use within a sample country represents the
adjustment of land-use in a single country (which is much
smaller than the adjustment of land-use in neighboring

countries or regions) represents the whole world. Therefore, it
is reasonable that the adjustment of agroforestry land structure in
neighboring countries significantly affects the climate change of a
country so that the effect exceeds the effect of the adjustment of
local land-use structure. This conclusion reinforces the
importance of international cooperation on climate and
environment.

Admittedly, this study also has several shortcomings. 1)
Although the proposed heterogeneous impact of land-use type
provides a guideline for agroforestry climate policy, the impact is
dependent on the sample data and the mathematical reasoning
proof, lacking the in-depth natural science analysis. This issue
may limit the long-term validity of the results in the future and
merely reflect the facts of what happened in the past. In future
research, more datasets should be used to verify its effectiveness.
2) It should be noted that there are some large countries in the
sample (such as Russia, the United States, and China), and they
almost have no “neighbors” in the model. For a country with a
very large area, the distance between its geographical center and
its boundary is very far, so few neighbors are at the distance
threshold of 0–20. Even at the distance threshold of 0–30 and
0–40, these large countries have few neighbors. Therefore, in the
regression of the spatial Durbin model, the impact of land-use in
neighboring countries on their own climate change is hardly
considered. In fact, this is just in line with the actual situation.
When considering the relation of land-use and climate change,
countries with a large area have certain particularities. They have
a vast territory so that their climate change basically depends on
their own characteristics and is not affected by the small
neighboring countries. This means that future models should
strive to achieve the ability to identify specific samples. 3) The
main estimation method of spatial econometric model is MLE
(Maximum likelihood estimate), but the large sample theory of
MLE needs to be improved. Spatial metrology also requires
researchers to set a non-random spatial weight matrix (rather
than estimating this matrix based on data), so this spatial weight
matrix may not fully reflect the complex relationship between
different regions. 4) In the additional analysis, the proportion of
subdivided types of land will further decrease (the proportion of
arable land must be less than that of agricultural land, while the
proportion of natural forest land must be less than that of forest
land), and the direction of the transformation of different
subdivided types of land is unclear (the increase of planted
forest land may be at the cost of occupying wasteland or
arable land, or at the cost of occupying natural forest land).
Therefore, it is not easy to understand or explain the fitting model
results based on the data of subdivided land-use structure change.
It is necessary to further clarify the internal mechanism of land-
use subdivision type. We plan to examine these issues in the
future.

Overall, this study analyzes the impact of land-use on climate
change through quantitativemethods, and the relevant conclusions
can provide a reference for proposing international initiatives to
address climate change or establishing an international convention
to address climate change. From the perspective of land-use,
effective measures should be taken to prevent deforestation and
over-exploitation of agricultural land. From the perspective of
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location differences, countries with different geographical
distribution conditions should specify land and climate policies
according to local conditions. From the perspective of international
climate relations, it is necessary for all countries to abandon the
narrow thinking of “zero-sum game” and share more and play
more to the inhibitory effect of green land-use on global warming,
so as to realize the great ideal ofmutual benefit andwin-win results.
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