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Soil aggregate is extremely important for soil health and sustainable land management.
Overgrazing has caused serious degeneration of grassland in the past decades and how
to restore the degraded soil through grazing management is urgently needed. In this
research, we investigated effects of long-term grazing exclusion and short-term rotational
grazing with different grazing intensities on aggregate stability in the upper 10 cm of soil at
two grazing sites in Xilinhot, Inner Mongolia. Treatments included long-term (34 years)
exclusion, moderate-term (21 years) exclusion, and continuous grazing at adjacent
reference plots. In addition, effects of rotational grazing under different grazing intensity
[i.e., no grazing (0 days/month), light grazing (3 days/month), moderate grazing (6 days/
month) and high grazing (12 days/month)] were investigated after 5 years. Stability of
aggregate fractions were determined using wet sieving. Our results showed that the stable
aggregates fraction were significantly increased under grazing exclusion for both fine
(0.25–1mm) and coarse (1–2mm) size fractions. At the rotational grazing site, stability of
fine aggregates was significantly enhanced under grazing compared with no grazing, while
there was little influence on stability of coarse aggregates. Our results showed that grazing
exclusion significantly increased soil aggregate stability and the peak appeared in
moderate-term exclusion, meanwhile, rotational grazing had little influence on
aggregate stability. We suggest that rotational grazing rather than long-term grazing
exclusion is a better way for soil aggregate stability and soil health, and current grazing
prohibition policies may need to be adjusted.
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INTRODUCTION

The steppe in arid and semi-arid of northern China is among the largest remaining natural grassland
in the world (Kawamura et al., 2005). However, overgrazing has caused serious grassland soil
deterioration in the past decades (Tong et al., 2004). Researchers have shown that grazing exclusion is
effective to restore the degraded grassland soil (Mekuria et al., 2007; Cheng et al., 2011). Recently,
several policies (e.g., Prohibiting Grazing Policy and Returning Grazing Lands to Grasslands) were
implemented to restore the degraded grassland in northern China. When grazing is excluded, as the
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input of organic matter increases, it may have a beneficial effect
on soil organic carbon (SOC) and physical structure, but
excessive litter accumulation on the surface soil immobilizes
organic carbon (Reeder and Schuman, 2002) and inhibits
plant growth (Xiong and Nilsson, 1999; Dong et al., 2021). So,
long-term absence of grazing may inhibit important ecosystem
functions. The positive effects of controlled livestock grazing and
prohibiting grazing on grassland ecosystems are widely reported,
however, its potential negative effects on soil quality is rarely
mentioned in Inner Mongolia.

Rotational grazing, also known as multi-paddock grazing, has
been proposed as a potential alternative grazing management
option to maintain ecosystem sustainability and enhance
grassland productivity (Sanjari et al., 2010; Teague et al., 2011).
Compared with continuous grazing, rotational grazing provides a
short period of high intensity grazing, followed by a long recovery
period, which is particularly important for herbs (Teague et al.,
2011), and which could supply higher forage production (Gourlez
et al., 2018). Rotational grazing has been well studied in Oceania
andNorth America andwas found to be valuable in practice (Sovell
et al., 2000; Chan et al., 2010; Sanjari et al., 2010). In Inner
Mongolia, however, previous studies are more focused on
continuous grazing or seasonal grazing (e.g., Steffens et al.,
2008; Kölbl et al., 2011; Reszkowska et al., 2011). The influence
of rotational grazing has received little attention resulting in limited
information about the effects of rotational grazing on soil in Inner
Mongolia. Aggregate stability is of special importance for soil
health and the stability of the SOC pool (Herrick et al., 2001),
as it determines soil’s resistance to degradation and erosion (Six
et al., 2000). Moreover, increased aggregate stability reduces SOC
loss by hindering microbe accessibility and increasing interaction
between mineral surfaces and SOC (Wu et al., 2012).

In this study, we assess the impact of 1) 34- and 21-years
grazing exclusion vs ambient grazing and 2) 5 years rotational
grazing with different grazing intensities on grasslands soils of
Inner Mongolia on aggregate stability. The goal of this research is
to evaluate the effect of grazing exclusion and rotational grazing

on soil aggregate stability. We hypothesize that rotational grazing
enhances aggregate stability, while both long-term grazing
exclusion and continuous grazing tend to exert negative
effects. This research will provide theoretical basis for
grassland management and grazing system arrangements.

METHOD AND MATERIALS

Site Description and Experimental Design
The Exclusion Site and Rotational Grazing Site are both located in
Xilinhot, Inner Mongolia (Figure 1). The climatic condition is a
semiarid temperate continental climate, with more than 60% of
precipitation occurring from July to September. Soils are
classified as Kastanozem (IUSS Working Group, 2014).

The Exclusion Site (ES) is located near the Inner Mongolia
Grassland Ecosystem Research Station (IMGERS, 43°38′ N,
116°42′ E). The mean annual precipitation and mean annual
temperature are about 343 mm and 0.7°C, respectively (Steffens
et al., 2008). In 1983, a fenced area of 24 ha was set up to exclude
grazing (long-term exclusion, LTE). In 1996, an additional fenced
area of 2 ha was established adjacent to the former (medium-term
exclusion, MTE). The area outside the fences had continuous free
grazing by sheep from local herdsmen (ambient grazing, AG)
(Kölbl et al., 2011). The grassland was moderately to heavily
degraded. At the time of sampling, in autumn 2017, the plots had
been enclosed 34 and 21 years, respectively.

The Rotational Grazing Site (RGS) is located at the Xilinhot
National Climate Observatory (44°08′ N, 116°20′ E). The mean
annual precipitation and mean annual temperature are about
281 mm and 2.4°C, respectively. For the rotational grazing
experiment, fenced plots with four treatments according to
grazing gradients were set up in 2012, with three replications
for each treatment. Since 2013, the grazing experiment has been
conducted in growing season (i.e., from June to September). Each
plot covers an area of 1.44 ha (120m × 120 m) where 28 sheep
grazed for 0 days (no grazing, NG), 3 days (light grazing, LG),

FIGURE 1 | Location of the two experimental sites.
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6 days (moderate grazing, MG) and 12 days per month (high
grazing, HG), respectively (Figure 2). The unfenced (free
grazing) area keeps continuous free grazing with low intensity.
Soil samples were collected in July 2017, the 5th year of grazing
experiment.

An overview of belowground biomass and soil characteristics
tested by related researchers at the same experimental plots is
shown in Table 1.

Soil Sampling and Pretreatment
At each plot, five points were chosen randomly and the distance
between each two points was greater than 15 m. About 250 g soil
from 0 to 10 cm was sampled at each point using a small spade
and the five soil samples were bulked prior to drying and further
treatment. After air-drying for 2 weeks, the soil samples were
sieved at 2 mm. All samples were stored at room temperature
until analysis.

Aggregate Stability
About 200 g air-dried soil was added to a set of nested sieves with
sieve openings of 1 and 0.25 mm, respectively, to obtain aggregate

fractions of 1–2 mm (coarse aggregates), 0.25–1 mm (fine
aggregates).

The aggregate content was calculated according to:

%A � ma

m
(1)

where %A is the percentage of coarse/fine aggregate in bulk soil,
ma is the mass of coarse/fine aggregate, m is the total mass of all
size fractions.

Aggregate stability of the coarse and fine aggregate fractions
was determined using wet sieving (Five Star Scientific, Twin Falls,
United States). Both aggregate size classes (4 g), placed on the
sieve (mesh 0.25 mm), were pre-moistened with distilled water
for 5 min. Next, the sieve moved up and down for 3 min (stroke is
1.3 cm, at about 34 strokes/min), while immersed in a container
with 80 ml distilled water. Unstable aggregates disintegrated and
were collected in the container. Subsequently, the container with
distilled water was replaced with a container having 80 ml
dispersing solution (2 g L−1 sodium hexametaphosphate
(NaPO3)6). The material remaining on the sieve was wet-
sieved, while immersed in (NaPO3)6 solution, until only roots

FIGURE 2 | Experimental design at the rotational grazing site (NG: No grazing. LG: Light grazing. MG: Moderate grazing. HG: High grazing. Others: Other
experiments which were not relevant to this research. Ambient grazing: Free ambient grazing).

TABLE 1 | Vegetation and soil characteristics (0–20 cm) at grazing exclusion sites and rotational grazing sites.

Exclusion site Rotational grazing site

Long-term
exclusion

Medium-term
exclusion

Ambient
grazing

Ref No
grazing

Light
grazing

Medium
grazing

High
grazing

Ref

Belowground biomass
(g/m2)

1,386.69 A 1,459.88 A 1,299.32 B Shi, (2016) 1,366.0 b 1,594.0 a 1,229.7 b 1,311.2 b Shi,
(2016)

Bulk density (g/cm3) 1.20 B 1.23 B 1.43 A Wang,
(2010)

1.22 — — — Xie,
(2018)

SOC (g/kg) 16.6 B 18.6 A 12.2 C Liu, (2016) 17.91 a 17.85 a 16.98 a 18.22 a

Note: Different letters represent significant differences at p < .05.
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and mineral particles >0.25 mm were left on the sieve. The
(NaPO3)6 container (with accumulated sediment from the
stable aggregates, now disintegrated in the (NaPO3)6 solution)
and the distilled water container (with unstable aggregates) were
dried in an oven (at 65°C, for about 20 h) after which, the weights
were determined. More details about the procedure are presented
in Kemper and Rosenau (1986).

The aggregate stability of both the coarse and fine fractions
was calculated according to:

%WSA � ws

ws + wus
× 100% (2)

where %WSA is the percentage of water stable aggregate in coarse/
fine aggregate size fractions, ws is the mass of coarse/fine stable
aggregate, wus is the mass of coarse/fine unstable aggregate.

The percentage of both the coarse and fine water stable
aggregate in bulk soil was calculated according to:

%WSAB � %WSA × %A (3)
where %WSAB is the percentage of coarse/fine water stable
aggregate in bulk soil.

Statistics
Statistical analyses were done using R version 3.4.5. To compare
the significance of differences between different treatments,
Duncan’s multiple comparison (significance level p < .05) was
calculated using Agricolae package (De Mendiburu, 2014).

RESULTS

At the exclusion site, after 34- and 21-years grazing exclusion, the
fraction of coarse aggregate was significantly greater in the
exclusion than under ambient grazing. On the contrary, the

TABLE 2 | Percentage of aggregate content at grazing exclusion site and rotational grazing site.

Exclusion site Rotational grazing site

Long-term
exclusion

Medium-term
exclusion

Ambient
grazing

No
grazing

Light
grazing

Medium
grazing

High
grazing

Fine aggregate/% of bulk soil 39.13 C 43.46 B 50.74 A 12.97 a 14.72 a 15.07 a 14.43 a
Coarse aggregate/% of bulk
soil

15.18 A 15.32 A 11.84 B 4.07 b 5.51 a 4.43 ab 4.20 b

Note: Different letters represent significant differences at p < .05.

FIGURE 3 | Aggregate content and aggregate stability (mean ± SD) in response to grazing exclusion in the fine fraction (A–C) and the coarse fraction (D–F).
Different letters represent significant differences at p < .05. NOTE: LTE: Long-term exclusion; MTE: Medium-term exclusion; AG: Ambient grazing. %A: the percentage of
coarse/fine aggregate in bulk soil; %WSA: the percentage of water stable aggregate in coarse/fine aggregate size fractions; %WSAB: the percentage of coarse/fine
water stable aggregate in bulk soil.
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fraction of fine aggregates decreased significantly by 22.89 and
14.34%, respectively, compared with ambient grazing (Table 2;
Figure 3A). Rotational grazing had little influence on aggregate
content except that light grazing enhanced the content of coarse
aggregate (Table 2; Figure 4A).

Aggregate stability of both size fractions increased significantly
after 34- and 21-years of grazing exclusion as compared to
continuous grazing (Figures 3B,E). There was no significant
difference in the percentage of stable aggregates (i.e., %WSA)
in the fine size fractions between long-term exclusion and
medium-term exclusion (Figures 3B,C). Yet, the stability of
the coarse fraction was significantly greater under medium-
term than under long-term grazing exclusion (Figure 3E).
Meanwhile, the difference between the percentage of stable
aggregates (i.e., %WSAB) in the coarse fractions was not
significant (Figure 3F).

Relative to no grazing, rotational grazing significantly enhanced
the fine aggregate stability (i.e., %WSA) irrespective of grazing
density (Figure 4B) and further increased the proportion of fine
stable aggregates (i.e., %WSAB) in the bulk soil (Figure 4C). On the
other hand, in the coarse size fraction, the aggregate stability (i.e., %
WSA) decreased significantly under light grazing compared to no
grazing (Figure 4E), however, light grazing enhanced the percentage
of coarse aggregate in the bulk soil (i.e., %A), as a result, the
proportion of coarse stable aggregates in the bulk soil (i.e., %
WSAB) did not change (Figure 4F and Eq. 3).

DISCUSSION

Effect of Grazing Exclusion on Grassland
Soil
Our results showed that, both medium-term and long-term grazing
exclusion significantly increased the number of soil aggregates and
the soil aggregate stability. Grassland soil is tightly related to plant
productivity (Wang, 2010). Increased above- and belowground
biomass, mainly functioning as plant litter inputs, may have
multiple beneficial effects on soil physical and chemical
properties (McSherry and Ritchie, 2013) in semi-arid grassland
(Steffens et al., 2011). Previous researches showed that aggregate
stability was highly related to root activity (Obia et al., 2016), and that
soil organic matter (SOM) might function as a binding agent in the
formation of aggregates (Bronick and Lal, 2005). Belowground
biomass and SOC at long-term and medium-term exclusion were
significantly higher than that at ambient grazing at the end of the
2016 growing season (Table 1). Higher primary productivity
produces more root exudates (Wilson et al., 2018) and enhances
aggregate stability. Combined with destruction of soil structure by
livestock trampling in ambient grazing, which resulted in a negative
effect on soil physical and chemical properties (i.e., higher bulk
density, lower aggregate stability and SOC content; Table 1)
(Steffens et al., 2008).

It is worth to note that, although livestock exclusion is commonly
found to be positive to soil aggregate stability in Inner Mongolia (Su

FIGURE 4 | Aggregate content and aggregate stability (mean ± SD) in response to rotational grazing in the fine fraction (A–C) and the coarse fraction (D–F).
Different letters represent significant differences at p < .05. NOTE: NG: No grazing; LG: Light grazing; MG: Medium grazing; HG: High grazing. %A: the percentage of
coarse/fine aggregate in bulk soil; %WSA: the percentage of water stable aggregate in coarse/fine aggregate size fractions; %WSAB: the percentage of coarse/fine
water stable aggregate in bulk soil.
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et al., 2005; Steffens et al., 2008; Kölbl et al., 2011), our results suggest
that coarse aggregate stability shows a non–linear response to the
length of exclusion period (Figure 3E). Specifically, we found that
there was a peak in coarse aggregate stability after medium-term
exclusion, whereas these properties declined in long-term exclusion
experiments. Wu et al. (2008) found that aboveground biomass and
SOC were the highest after 24 years of grazing exclusion (although
not significant when compared with 28 years grazing exclusion and
ambient grazing). This was because excess litter accumulating on the
ground might influence plant growth, and litter accumulation
decreased rainfall infiltration resulting in reduced soil water
availability (Wu et al., 2008). In addition, Reeder and Schuman
(2002) suggested that the accumulation of litter on the soil surface
might restrict litter decomposition and thus C cycling and nutrient
turnover in the ecosystem. Lower SOC content in long-term
exclusion site [See (Dong et al., 2021)] decreased aggregate
stability, and lower proportions of aggregate-occluded SOC in
turn enhanced the risk of organic matter degradation and further
decreased the aggregate stability (Wu et al., 2012).

Effect of Rotational Grazing on Grassland
Soil
Our results showed that rotational grazing significantly increased the
fine aggregate stability but had little influence on stability of coarse
aggregates with the exception of a significant reduction under light
grazing (Figure 4E). Due to the increased belowground biomass (see
Table 1), light grazing significantly increased the total content of
coarse aggregates in bulk soil, but it had little influence on the
percentage of coarse stable aggregates in the bulk soil (Figure 4F).
The reason might be that light grazing increased the unstable coarse
aggregates rather than stable coarse aggregates, then, the percentage
of coarse stable aggregates was relatively decreased (Figure 4E). By
contrast, medium and high grazing did not increase the percentage
of coarse aggregates (Table 2 and Figure 4D). This might be because
higher grazing pressure under medium and high grazing also
accompanied by more disturbances especially trampling, which
could crush the aggregates. As a result, medium and high grazing
offset the increased aggregates stimulated by grazing. Our result is
consistent with Wang et al. (2020) who also found light grazing
promoted the formation of coarse aggregates and higher grazing
intensity caused the disintegration of soil aggregates. Our results also
showed that coarse aggregate stability was lower than fine aggregate
stability (Figures 3B,E, Figures 4B,E). Puget et al. (1998) showed
that coarse aggregates (>1mm) were more sensitive to grazing
interference. As a result, more coarse aggregates were crushed by
trampling, which might offset the enhancement of belowground
biomass increase and lead to no increase in coarse aggregate stability
(Wu et al., 2012).

In addition, rotational grazing did not result in significant
differences between grazing intensities. Badgery et al. (2017)
found that rotational grazing supported 7–22% higher stocking
rate compared with continuous grazing. This was supported by
Fang and Xie’s earlier findings at the same study site suggesting that
rotational grazing had a slight influence on aggregates and organic C
content (Fang, 2017; Xie, 2018). Considering that grassland had
higher capacity under rotational grazing than continuous grazing of

herbivores (Gourlez et al., 2018), even high grazing in this study was
still within the carrying capacity of the ecosystem. This may suggest
that grassland under rotational grazing has a higher resistance to the
impact of grazing. In general, our results provided some evidence
that rotational grazing, at least in a short-term, has little, if not
positive, influence on aggregate stability.

CONCLUSION

Our results showed that grazing exclusion significantly increased soil
aggregate stability, compared with continuous grazing. However, the
peak appeared in moderate-term exclusion, whereas long-term
exclusion tended to decrease these indicators compared with
moderate-term exclusion (although the differences were not
significant in some indicators). To restore the degenerated
grassland, 2 decades of grazing exclusion was the best period.
Five years of rotational grazing increased fine aggregate stability.
Rotational grazing intensities had slight impact on soil. We suggest
that a sustainable utilization (e.g., rotational grazing) rather than
long-term exclusion is a better way to maintain soil health and
livelihoods of the local herdsmen.
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