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Accurately quantifying the diffusive flux of CH4 between sediments and the overlying water
column is crucial when constructing CH4 budgets in lakes and reservoirs. Although a
variety of ex situ and in situ techniques exist for determining this flux, no reviews have
provided a comprehensive, comparative overview of these approaches or discussed
implications of measurement method on flux estimation. Here, we critically reviewmethods
applied in 163 peer-reviewed studies to estimate diffusive CH4 fluxes from lake sediments,
including sediment incubations, benthic chambers, and modeling approaches applied in
the sediment or water column. For each method, we summarize the approach, discuss
limitations and advantages, and summarize published comparisons between different
methods. In addition, we examine how method limitations have likely shaped knowledge
gaps in current understanding of lake CH4 dynamics. Finally, we call for the development
and application of new methods, along with additional testing and intercomparison of
existing methods, in order to advance understanding of lake CH4 fluxes.
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1 INTRODUCTION

Lakes and reservoirs are collectively responsible for an estimated 9%–27% (70–175 Tg) of global
methane (CH4) emissions annually (Rosentreter et al., 2021). The majority of CH4 in these
ecosystems is thought to be produced in sediments (Peeters et al., 2019), where high organic
carbon availability and anoxic conditions favor methanogenesis (Bastviken, 2009). Methane in
sediments can then cross the sediment-water interface (SWI) via diffusion or ebullition (bubbling)
into the water column, from whence it may ultimately reach the atmosphere. Typically, up to 50% of
CH4 emissions from lakes and reservoirs occurs via diffusion rather than ebullition (Bastviken et al.,
2004; Bastviken et al., 2008; Deemer et al., 2016). Although bubbling from sediments is certainly an
important pathway for CH4 transport (DelSontro et al., 2010; Beaulieu et al., 2016), here we focus on
the diffusive flux of CH4 from sediments, which is a critical component of understanding lentic
greenhouse gas cycling and emissions.

Methane diffusion from lake and reservoir sediments is highly variable in both space and time. In
a synthesis of measurements from 23 lakes and reservoirs, diffusive CH4 fluxes across the SWI varied
up to three orders of magnitude across and within systems (Adams, 2005). The wide variability in
rates is due, in part, to physical and biological factors that influence rates of CH4 production
(methanogenesis) and oxidation (methanotrophy) within sediments, as well as controls on the
diffusive transport of CH4 out of sediments. For example, greater sediment CH4 production rates
have been linked to higher lake productivity (West et al., 2016; D’Ambrosio and Harrison, 2021),
warmer temperatures (Duc et al., 2010), organic matter availability (Berberich et al., 2019; Praetzel
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et al., 2020), and anoxic conditions above and within sediments
(Liikanen and Martikainen, 2003; Huttunen et al., 2006).
Methane oxidation, which can consume significant amounts of
CH4 at the SWI or deeper in the sediment profile, is controlled by
the availability of CH4 and electron acceptors such as oxygen,
nitrate, iron oxides, manganese oxides, and sulfate (Kuivila et al.,
1988; Clayer et al., 2016; van Grinsven et al., 2020). The diffusive
release of CH4 out of sediments is, in turn, influenced by the net
supply of CH4 (i.e., production—oxidation), and can be affected
by conditions and processes above sediments such as the CH4

concentration in water overlying sediments, oxidation at the
sediment surface (Bosse et al., 1993; Rolletschek, 1997), near-
bed turbulence (D’Ambrosio, 2022), surface waves (Hofmann
et al., 2010), and sediment resuspension (Bussmann, 2005).

The wide range of methods used to measure the CH4

diffusion from sediments may play an important role in the
large variability in reported fluxes. Approaches such as
sediment incubations, sediment models, and water column
models have differing spatiotemporal resolutions, sampling
requirements, and limitations, all of which influence resulting
flux measurements. Although explicit comparisons of multiple
approaches for measuring CH4 emission across the air-water
interface have been extensive (St. Louis et al., 2000; Schubert
et al., 2012; Deemer et al., 2016), there is no similar synthesis of
methods for measuring for CH4 diffusion across the SWI. A
critical examination of methodologies used to estimate this
flux is needed to: 1) understand the advantages and
disadvantages of current approaches; 2) recognize how
limitations of common techniques shape gaps in our
current view of CH4 dynamics in lakes and reservoirs; and
3) identify future method developments needed to advance
understanding of the supply and transport of CH4 in lacustrine
systems.

Here, we critically review methodologies from 163 studies
reporting CH4 diffusive flux and/or methanogenesis in lake or
reservoir sediments (references provided in the Supplementary
Data File). From these studies, we classify typical methods for
measuring this flux into three broad categories: sediment
incubations and benthic chambers, modeling approaches
applied in the sediment, and modeling approaches applied in
the water column. We summarize each approach, describe the
utility, advantages, and disadvantages for each, and examine
previous studies explicitly comparing measurements from
multiple techniques. Finally, we discuss how existing
approaches have shaped knowledge gaps in lacustrine CH4

cycling, and we provide recommendations for future
methodological developments needed to improve the
quantification of sediment CH4 flux and its role in lake and
reservoir carbon budgets.

2 METHODOLOGIES

2.1 Sediment Incubations & Benthic
Chambers
2.1.1 Approach Summary
Sediment incubations have historically been the most common
approach for estimating diffusive CH4 fluxes from lake sediments
(Figure 1). Incubation-based estimates can be categorized as ex
situ sediment incubations, typically performed in the lab, or in
situ incubations, usually performed by deploying benthic
chambers to the lakebed.

Ex situ incubations are the most common and measure CH4

flux in vitro from intact sediment cores, subcores, or sediment-
water slurries (Figure 1). Intact cores can be collected via piston,
gravity, or box coring, and may be segmented into smaller

FIGURE 1 | Number of studies measuring sediment methanogenesis and/or the flux of CH4 from sediments. Broad subcategories of methodology are shown in
legend. Ten sediment incubation studies are excluded from the plot because incubation subtype could not be determined, however they are included in the
Supplementary Data File of references (Supplementary Table S1).
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subcores prior to incubation (Mudroch and MacKnight, 1991).
Slurries are subsampled from a core or sediment grab and then
homogenized prior to incubation, often through mixing with lake
water or deionized water. Sediment cores, subcores, or slurries are
placed in incubation chambers, such as acrylic tubes for cores
(Sturm et al., 2014) or glass vials for subcores or slurries (Wagener
et al., 1990), then sealed with gastight stoppers. Vial headspaces
above sediments may be filled partially or completely with lake
water or deionized water. Anoxic or oxic conditions are then
established in the chambers prior to incubation, depending on the
study objectives. Anoxic incubations are often flushed and
evacuated with an inert gas (e.g., N2 or He; Liikanen et al.,
2002a; Praetzel et al., 2020), whereas oxic incubations use air
(Sweerts et al., 1991; Chmiel et al., 2016). Incubations usually take
place either in a temperature-controlled water bath (Kelly and
Chynoweth, 1981) or at in situ depth in the water column
(Algesten et al., 2005). Core incubation chambers are often,
although not always, equipped with a magnetic stirrer that
gently mixes water above the core without disturbing the SWI
(Frenzel et al., 1990; Leal et al., 2007). Some core incubations also
use constant flow-through systems that pump lake water from an
outside reservoir into the overlying water of cores. This maintains
oxic or anoxic conditions throughout the incubation and prevents
the accumulation or depletion of compounds that may alter CH4

production or consumption rates (Liikanen et al., 2002d;
Bussmann, 2005).

A small subset of incubations is performed in situ using a
benthic chamber approach (sometimes called a static chamber;
Figure 1). Benthic chambers are open-bottomed boxes or
cylinders constructed of acrylic, steel, or plastic, and are
implanted several centimeters into the sediment for in situ
incubation (Viollier et al., 2003). Chambers can be installed
manually with scuba divers (Duchemin et al., 1995) or using a
benthic lander, which is designed to implant the chamber
remotely after being lowered to a lake bottom (Devol, 1987;
Kuivila et al., 1988; Urban et al., 1997; Maerki et al., 2009).
Chamber designs often include pumps or paddles that
continuously circulate water within a chamber throughout the
incubation (Devol, 1987; Colas et al., 2021).

Incubation duration varies substantially, in part as a function
of technique. Ex situ incubations typically last days (Jones et al.,
1982; Hershey et al., 2015) to weeks (Liikanen et al., 2002b; Dan
et al., 2004); however some can last months (Martinez-Cruz et al.,
2017; Valle et al., 2018) to years (Nozhevnikova et al., 2007;
Isidorova et al., 2019). Benthic chamber deployments are usually
shorter, lasting from hours to a day (Kuivila et al., 1988; Urban
et al., 1997). Incubations are generally sampled at multiple time
points to determine CH4 concentrations, with the rate of change
in concentrations over time used to calculate fluxes. For ex situ
incubations, headspace gas or water overlying sediment can be
sampled using syringes, or flow from an external reservoir may be
used to push water out of the incubation chamber to be sampled.
For benthic chambers, samples of water are extracted either
manually via tubing/pumps to the surface (Yavitt et al., 1992;
Duchemin et al., 1995) or automatically with programmable
syringes (Devol, 1987; Kuivila et al., 1988; Urban et al., 1997;
Maerki et al., 2009).

Samples collected during incubations are analyzed for CH4

concentration using gas chromatography or laser absorption
spectrometry. Samples in the gas phase can be analyzed
immediately. Samples in liquid phase are first prepared using
headspace equilibration, a technique which injects an inert
gaseous headspace (often ultrapure helium), and then agitates
the water in order to equilibrate dissolved CH4 with the gaseous
phase prior to analysis (McAullife, 1971; Magen et al., 2014).
Henry’s law is then used to determine the amount of CH4

originally present in the liquid phase.
The rate at which CH4 is produced in the incubation over time

is used to estimate sediment diffusive flux. In benthic chambers,
intact core, and some subcore incubations, the production rate is
typically expressed in areal units (i.e., CH4 produced per m2 of
core horizontal cross-sectional area incubated) and therefore
assumed to be equivalent to diffusive CH4 flux across the SWI
(JSWI). In slurry and some subcore incubations, production rates
are typically measured in gravimetric or volumetric units
(i.e., CH4 produced per liter or gram of dried sediment).
Volumetric or gravimetric production rates can be converted
to a flux by assuming rates are constant over a specified sediment
depth of active methanogenesis (zact), then multiplying by the
sediment bulk density (ρ). In some cases, one point measurement
of CH4 production is assumed to be representative of the active
zone of methanogenesis in the sediment profile (Figure 2A; West
et al., 2016; Berberich et al., 2019). In other cases, vertical changes
in methanogenesis are accounted for by integrating
measurements of gravimetric or volumetric CH4 production
made at multiple depths throughout the sediment profile
(Figure 2B; Murase and Sugimoto 2002; Liu et al., 2019).

2.1.2 Approach Advantages
Incubations and benthic chambers provide a highly controlled,
customizable environment for researchers to manipulate
environmental conditions, and thus they are often used to
evaluate drivers of CH4 processing (Table 1). For example,
previous incubation studies have investigated how sediment
CH4 flux and/or methanogenesis rates respond to shifting
temperatures (Zeikus and Winfrey, 1976; Duc et al., 2010),
nutrient concentrations (Stadmark and Leonardson, 2007;
Rodriguez et al., 2018), organic matter deposition (West et al.,
2012; Grasset et al., 2018), oxygen availability (Liikanen et al.,
2002c; Liikanen and Martikainen, 2003), and supply of electron
acceptors likely to be involved in CH4 oxidation (Karvinen et al.,
2015; Rissanen et al., 2017). These experimental manipulations are
impractical or impossible to apply in most benthic chamber
experiments, yet they are important for identifying which
environmental drivers exert control on methanogenesis and
methanotrophy within lake sediments (Bastviken, 2009; Borrel
et al., 2011). Additionally, incubations are unique in that they
can be used to partition out gross rates of CH4 production and
oxidation, rather than net rates. This is usually done by injecting
the incubation with isotopically-labeled methanogenic or
methanotrophic substrate (e.g., 14C-labeled acetate/bicarbonate
or 14CH4, respectively) and tracking the radioactivity and
concentration of CH4 in the incubation over time (Kuivila
et al., 1989; Nüsslein et al., 2001; Pimenov et al., 2010).
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Incubations are also popular in part due to their simplicity,
reproducibility, and relatively simple sampling requirements.
Benthic chambers and/or ex situ incubation containers are
generally constructed from low-cost materials and incubations
can be repeated with sediments from (or at) multiple sampling
locations, time points, and study systems (Table 1). Furthermore,
CH4 flux from an incubation can be determined from just a few
samples of CH4 concentrations over time, typically just a few
hours to a day, or less. Other approaches, such as water column
models (Section 2.3), often require significantly more data such
as sediment ebullition estimates, temperature profiles in the water
column, and/or CH4 oxidation measurements.

Lastly, although here we focus on methods for measuring CH4

diffusion from sediments, an advantage of incubations is that
some set-ups can be modified to measure diffusion and ebullition
simultaneously (Liikanen et al., 2002c). While a full discussion of

these incubation designs is beyond the scope of this review, the
capacity to measure diffusive and ebullitive flux from sediments
can be advantageous given bubbling is an important CH4

transport pathway in many lakes and reservoirs (DelSontro
et al., 2011, 2015).

2.1.3 Approach Limitations
An important limitation of incubations and benthic chambers is
that they provide a spatiotemporal snapshot of CH4 diffusion
from sediments. Rates from this method are relevant to the
sediment incubated, which typically has a surface area of a few
square centimeters to a square meter or less (Figure 3).
Assumptions that flux estimates based on incubations are
applicable lake-wide are questionable, given previous work has
found significant differences in sediment CH4 production and
fluxes between profundal and littoral sites (Liikanen et al., 2003;

FIGURE 2 |Multiple approaches for measuring diffusive flux from sediments (JSWI ) using point measurements of methanogenesis (R) or CH4 concentrations (Csed )
in the sediment column. Points indicate discrete measurements taken at depths z, with zact denoting the sediment depth below which methanogenesis is considered
negligible. The SWI is where z = 0. Note that all axes are not drawn to scale. Below each panel, the equation for flux is shown, with ρ indicating sediment bulk density, ϕ
sediment porosity (Eq. 1), and Ds sediment diffusivity (Eq. 1). (A) Converting one measurement of CH4 production into flux by assuming methanogenesis is
constant with depth. (B) Determining flux by integrating a vertical profile of CH4 production measured at multiple depths. An arbitrary vertical profile is shown as an
example. (C) Determining flux with a diffusion model (Fick’s first law, Eq. 1).

TABLE 1 | Summary of procedures, recommended applications, and limitations of each method used to measure diffusive CH4 flux from lake sediments.

Methodology Procedure Recommended Applications Limitations

Sediment incubations &
benthic chambers

Measure CH4 accumulation or consumption in
benthic chambers or ex situ incubations of intact
cores, subcores, or sediment slurries

- Evaluate effects of potential drivers on relative
rates of sediment flux

- Possible stimulation/inhibition of
methanogenesis/methanotrophy

- Compare relative fluxes between multiple sites or
time periods

- Sediment disturbance artifacts
- Isolation from water column and
BBL processes, altered physical
mixing

Sediment models Estimate flux using profile of CH4 concentrations in
sediment column

- Diffusion models: Fast, simple flux estimates to
compare across study sites or time periods

- Error associated with concentration
gradient estimation near SWI

- Diffusion-reaction models: Depth-specific
information on zones of sediment
methanogenesis & methanotrophy

- Excludes sediment surface
processes

- Sediment disturbance artifacts

Water column models Estimate flux based on CH4 concentration profiles in
the water column

- Mass balance models: Construct lake-wide CH4

budget
- Little information on drivers behind
CH4 dynamics

- Advection-diffusion-reaction models: Examine
long-term (e.g., seasonal) changes in lake-wide
CH4 cycling

- Assumptions of spatial
homogeneity

- Potentially data-intensive
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Li et al., 2021) or between locations with different organic matter
inputs (Berberich et al., 2019; Praetzel et al., 2020). Rate estimates
based on incubations also represent a flux averaged only over the
incubation duration, usually hours or days (Figure 3).
Incubations therefore do not generally account for temporal
shifts across seasons (Nüsslein and Conrad, 2000; Itoh et al.,
2015) or during lake stratification and mixing (Liikanen et al.,
2002b; Vachon et al., 2019). Additionally, volumetric or
gravimetric CH4 production rates measured in incubations are
often converted into a flux by assuming rates are constant over a
specified active layer depth (Figure 2A). This assumption runs
counter to many studies demonstrating that methanogenesis
changes significantly with lake sediment depth (Chan et al.,
2005; Lofton et al., 2015; Yang et al., 2017; Praetzel et al., 2020).

Ex situ incubations and benthic chambers also largely
isolate sediments from lake-scale processes that may
influence flux across the SWI (Table 1). For example,
internal waves can drive fluctuations in turbulence and
mixing in the boundary layer overlying sediments
(Henderson, 2016). These fluctuations in near-bed
conditions have been demonstrated to influence fluxes of
oxygen, nitrate, and CH4 across the SWI on hourly to daily
time scales (Lorke et al., 2003; Brand et al., 2008; Bryant et al.,
2010; D’Ambrosio, 2022). Internal waves can also drive redox
changes at the SWI, which may influence within-sediment
rates of methanogenesis and methanotrophy (Frindte et al.,
2013; Frindte et al., 2015). The effects of such boundary layer
and surface sediment dynamics on flux are not considered
within traditional incubation setups. Furthermore, although
surface waves and sediment resuspension have also been tied
to variations in diffusive CH4 release from lake sediments
(Bussmann, 2005; Hofmann et al., 2010), only one study has
simulated the effects of resuspension in their incubation
microcosm design (Bussmann 2005).

For ex situ incubations specifically, sampling artifacts from
sediment collection and preparation are important to consider
(Table 1). Previous work has posited that sediment slurrying can

stimulate methanogenesis (Kelly and Chynoweth, 1980; Frenzel
et al., 1990) or inhibit methanotrophy (Su et al., 2019) compared
to in situ rates (Table 1). In contrast, intact and subcore
incubations avoid slurrying in order to preserve sediment
layering and structure, in part because methanogenesis and
methanotrophy change significantly with sediment depth
(Chan et al., 2005; Martinez-Cruz et al., 2018). However, in
gas-rich sediments, stratigraphy can be significantly disturbed
by core sampling due to changes in hydrostatic pressure and
temperature during core withdrawal (Dück et al., 2019b). It is
similarly challenging to collect cores in soft-bottom sediments
without altering sediment structure (Blomqvist, 1991). Given
these limitations, incubations are best suited for measuring
relative (rather than absolute) rates of diffusive CH4 release
from sediments (Table 1).

Lastly, fluxes estimated with incubations are sensitive to
incubation duration because conditions within the chamber
can change over time. For example, oxygen may be depleted
over the course of benthic chamber incubations (Duchemin et al.,
1995), which may affect rates of CH4 production and oxidation
given the sensitivity of methanogens and methanotrophs to
oxygen availability (Borrel et al., 2011; Thottathil et al., 2019).
Such oxygen depletion can be avoided by limiting the duration of
benthic chamber deployments (Urban et al., 1997) and by
monitoring oxygen concentrations in benthic chambers. For ex
situ incubations, an initial lag phase of CH4 production may also
occur as methanogens or methanotrophs acclimate to vial
conditions and/or compete with other microorganisms present
(Torres et al., 2011; Grasset et al., 2021). However, lag phases are
not observed in all incubations (Chan et al., 2005; Valle et al.,
2018; Li et al., 2020). Furthermore, CH4 production may decrease
over time in long-term incubations (Isidorova et al., 2019), likely
due to the gradual depletion of methanogenic precursors such as
acetate. Consequently, ex situ incubations that are shorter than a
typical lag phase or long enough to deplete methanogenic
substrates may underestimate rates of CH4 release from
sediments.

FIGURE 3 | Conceptual map showing the typical temporal and spatial resolution of common methodologies included in Figure 1. Temporal resolution represents
the typical time period over which measurements from each method are made or averaged over. Spatial resolution indicates the spatial scale over which measurements
from each method are made or averaged across within an individual lake basin.
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2.2 Sediment CH4 Models
2.2.1 Approach Summary
Modeling CH4 in the sediment column is a common method for
estimating CH4 flux across the SWI of lakes and reservoirs
(Figure 1). Sediment models for estimating CH4 fluxes across
the SWI can be considered as falling into one of two main
categories: 1) diffusion models, which estimate CH4 flux solely
based on molecular diffusion; and 2) diffusion-reaction models,
which also account for the effects of microbial reactions and/or
bioirrigation on CH4 flux (Figure 1). In the former case, flux is
estimated between two discrete depths in the sediment column
using Fick’s first law of diffusion (Figure 2C):

J � −ϕDs
dCsed

dz
(1)

where J is CH4 flux in the sediment, ϕ is sediment porosity, Ds is
diffusivity of CH4 in the sediment, and dCsed

dz is the CH4

concentration gradient across sediment depth z (Berner,
1980). For J to be representative of flux across the SWI
(JSWI), the CH4 concentration gradient should be measured as
close to the SWI as possible. Sediment porosity is either measured
directly or estimated based on literature values, which typically
range from 0.8 to 0.99 in lake sediments (Frenzel et al., 1990;
Carignan and Lean, 1991; Langenegger et al., 2019). Sediment
diffusivity Ds is determined by correcting the molecular
diffusivity of CH4 in pure water at in situ temperature (D0)
for sediment tortuosity using the relationship Ds = Doϕ

2.
Another approach corrects diffusivity using the relationship
Ds = Do

Θ2, where tortuosity (Θ2) is estimated as a function of
sediment porosity (Lerman, 1979; Berner, 1980). Lastly, the
diffusivity of low-solubility compounds such as CH4 may be
increased by the presence of gas voids in the sediment column; in
these cases, D0 can be corrected for sediment porosity and
volumetric water content (Wc) using the relationship Ds =
Do

W7/3
c

ϕ2
(Flury et al., 2015).

Beyond molecular diffusion considered in Eq. 1, processes
such as bioirrigation or microbial reactions may also affect CH4

distribution in sediments. A more comprehensive diffusion-
reaction model can account for how these processes work in
concert with molecular diffusion to influence CH4 concentrations
in the sediment. Normally, such a diffusion-reaction model is
applied at many discrete vertical layers in the sediment column,
rather than the two discrete depths considered in the diffusion
model of Eq. 1. First, the effect of molecular diffusion on CH4

distribution throughout the sediment column is considered,
according to Fick’s second law of diffusion:

dCsed

dt
� d

dz
(ϕDs

dCsed

dz
) (2)

where t is time. Second, an additional term R is commonly
included to account for how net microbial CH4 production
and/or oxidation in each sediment layer affect the distribution
of CH4 (Rahalkar et al., 2009; Clayer et al., 2018):

dCsed

dt
� d

dz
(ϕDs

dCsed

dz
) + R (3)

R can be solved for numerically or analytically. A popular
approach involves using differential equation-solving software,
such as PROFILE (Berg et al., 1998) or REC (Lettmann et al.,
2012), to numerically solve for R in each layer, given inputs of
measured sediment CH4 concentration profiles.

In some cases, an additional term is added to Eq. 3 to account
for the effects of bioirrigation on CH4 transport (Bartosiewicz
et al., 2016, 2021; Clayer et al., 2016). Bioirrigation and
bioturbation describe how biologically driven water circulation
through sediments and sediment mixing, respectively, affect
solute transport between sediment porewater and the overlying
water (Kristensen et al., 2012). Burrows serve as conduits between
the sediment porewater and the overlying water, creating a
concentration gradient that drives additional diffusive
transport of CH4:

dCsed

dt
� d

dz
(ϕDs

dCsed

dz
) + ϕα(C0 − Csed) + R (4)

where α is the intensity of bioirrigation and C0 is the CH4

concentration measured at the SWI. Estimates of α for CH4 in
lake sediments can be made based on sediment diffusivity, depth
below the SWI, and the radius of the tubes formed by burrowing
animals (Boudreau, 1984; Clayer et al., 2016). Lastly, assuming
steady state conditions reduces Eq. 4 to:

0 � d

dz
(ϕDs

dCsed

dz
) + ϕα(C0 − Csed) + R (5)

From Eq. 5, there are multiple routes to calculate a flux across
the SWI. Both PROFILE and REC solve for a depth profile of R in
volumetric units, which can be depth-integrated into an flux
across the SWI (Figure 2B; Norði et al., 2013; Bartosiewicz et al.,
2016; Clayer et al., 2016). Alternatively, another technique
assumes a constant rate for R in between the SWI and the
lower end of the diffusion-reaction zone in the sediment
column (zmax, i.e., where the porewater CH4 concentration
remains unchanged with depth). Using these assumptions, Eq.
3 can be solved analytically for flux across the SWI (Epping and
Helder, 1997; Müller et al., 2003):

JSWI � ϕ
���������������
2RDs(C0 − Cmax)

√
(6)

where Cmax is the CH4 concentration at zmax based on measured
porewater CH4 concentration profiles (Pasche et al., 2011; Müller
et al., 2012; Steinsberger et al., 2017, 2019).

All sediment models covered here require measurements of
CH4 concentrations in the sediment porewater, which can be
obtained a variety of ways. The simplest technique is collecting an
intact sediment core, subsampling into core slices by depth, then
measuring CH4 concentration in each subsample using
headspace equilibration (Section 2.1.1). Another technique
measures CH4 concentrations using a small probe inserted at
various depths in the sediment core (Bussmann and Schink,
2006). Here, methane from the sediment diffuses across the
permeable membrane of a probe inserted at a specific
sediment depth, and a constant flow of carrier gas to the
probe flushes the CH4 to a gas chromatograph for
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determination of concentration. Other approaches rely on the
extraction of sediment porewater, which can be analyzed for CH4

concentration with headspace equilibration (Section 2.1.1).
Porewater can be extracted with squeezers, metal or plastic
devices that use pistons or gas pressure to compress sediment
and force out interstitial porewater. Porewater from different
depths in a core may be extracted using squeezers on various core
subsections (Reeburgh, 1967) or by using squeezers built to
compress entire cores and fitted with ports at various
sampling depths (Jahnke, 1988). A recently developed
technique involves using a modified squeezer to subsample
sediment from different depths into copper tubing, then
centrifuging aliquots from the tubes to extract the porewater
(Tyroller et al., 2016). Alternatively, small, porous Rhizon tubes
can be inserted into different depths of the sediment. Porewater is
then drawn into the tubes using suction from an attached vacuum
pump, syringe, or evacuated test tube. Rhizons were originally
developed for use in terrestrial soils, but have subsequently been
adapted to sample porewater in saturated sediments from aquatic
systems (Seeberg-Elverfeldt et al., 2005).

Porewater may also be sampled without collecting a core by
deploying a “peeper” directly into the sediment (Hesslein, 1976).
Peepers are acrylic samplers containing an array of small wells
spaced several centimeters apart in the vertical. Sampling wells
are filled with anoxic water and covered with a permeable
membrane made of cellulose-acetate or polysulfone. Peepers
are typically left in the sediment for several weeks to
equilibrate via dialysis, then sampled and analyzed for CH4

using headspace equilibration.

2.2.2 Approach Advantages
Sediment models are highly customizable depending on the lake
system and level of sampling effort required. For example, a
simple diffusion model (Eq. 1) to estimate flux requires sample
collection as basic as measuring one CH4 concentration gradient
close to the SWI. Due to these relatively simple data
requirements, sediment diffusion models are often employed
as a fast, easy way to compare fluxes across multiple lakes
(Adams, 2005; Huttunen et al., 2006), sampling sites (Zhang
et al., 2020; Li et al., 2021), or time periods (Table 1; Rolletschek
1997).

In contrast, more sophisticated diffusion-reactionmodels (Eqs
3–5) can be constructed to account for the effects of microbial
CH4 production, oxidation, bioturbation, and/or bioirrigation on
CH4 transport out of sediments. Although these more
comprehensive models require detailed sampling of CH4

concentrations in the sediment column, their implementation
can be made easier with freely available software used to solve the
differential equations involved, such as PROFILE or REC (Berg
et al., 1998; Lettmann et al., 2012). Diffusion-reaction models also
can be used to solve for depth profiles of methanogenesis and
methanotrophy in the sediment, which are powerful tools for
examining the locations, controls, and microbial communities
involved in CH4 supply and transport (Table 1). For example,
comparing rates of CH4 production and oxidation in the
sediment profile with observed fluxes across the SWI can

highlight the importance of methanotrophy in substantially
reducing CH4 release into the hypolimnion (Koschorreck
et al., 2008; Rahalkar et al., 2009; Norði et al., 2013).

2.2.3 Approach Limitations
Estimates from sediment modeling rely on porewater CH4

concentrations (Eq. 1), which are the net result of
equilibration with the surrounding sediment column and
overlying water. Measurements are therefore only
representative of the sediment sampled (usually centimeters to
a meter or less) and its close surroundings (likely several meters;
Figure 3). Accordingly, assumptions that measurements from
sediment models characterize fluxes lake-wide should be
interpreted with caution, given the significant spatial
variability in sediment CH4 dynamics across different sites
within the same lake (Section 2.1.3).

Moreover, flux estimates from sediment models should be
considered an average across weeks to months (Figure 3), the
time scale on which equilibration of CH4 concentrations in
sediments typically occurs (Harper et al., 1997). Therefore,
similar to incubations, these estimates do not account for
short-term fluctuations in processes that may influence CH4

diffusion across the SWI (Section 2.1.3). Unless modeling is
repeated across multiple dates and sites, changes across seasons
due to changing temperature, deposition of organic matter, or
other environmental factors (Thebrath et al., 1993; Murase and
Sugimoto, 2002; Yang et al., 2018) are also not considered. This
seasonal variability may be particularly pronounced in lakes that
thermally stratify and develop seasonal hypolimnetic hypoxia, as
the resulting shifts in oxygen availability to surface sediments can
profoundly influence sediment CH4 oxidation and flux (Liikanen
et al., 2003).

Typical techniques for measuring CH4 concentrations in
porewater, required for sediment modeling, also come with
logistical hurdles and sampling artifacts (Table 1). Peepers can
be challenging to deploy, since they require 1–3 weeks for
equilibration and may need to be installed by scuba divers
(Hesslein, 1976; Bufflap and Allen, 1995). Gas loss is a
common sampling artifact during sediment core collection
(Paull et al., 2000), peeper extraction (Adams, 2005), and
headspace equilibration (Tyroller et al., 2016), resulting in
underestimated CH4 concentrations (and therefore inaccurate
gradients). Exposure of sediment cores and/or peepers to oxygen
during collection (Bufflap and Allen, 1995) is another potential
problem that may stimulate methanotrophy and therefore
influence sampled concentrations. Applying noble gas tracer
(Tyroller et al., 2016) or freeze coring (Dück et al., 2019a)
methods to analyze CH4 concentrations in sediments may
address some of these sampling artifacts.

In particular, sediment diffusion models (Eq. 1) are inherently
limited by the spatial resolution of porewater sampling. The CH4

gradient used in Eq. 1 should be measured as close to the SWI as
possible, because CH4 concentrations can change rapidly within
just a few millimeters of the sediment surface (Bussmann and
Schink, 2006). However, accurately sampling CH4 concentrations
close to the SWI can be challenging with conventional porewater
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measurement techniques (Table 1). For example, peeper
samplers are typically limited to a vertical resolution of a
centimeter or more (Harper et al., 1997), making it difficult to
accurately measure steep gradients near the SWI. Furthermore,
the surface sediments where CH4 gradients are steepest can be
inadvertently lost when using some conventional coring
techniques (Shirayama and Fukushima, 1995; Ostrovsky,
2000), especially in soft, unconsolidated sediments (Blomqvist,
1991). To resolve this issue, CH4 gradients at the SWI are
sometimes calculated based on concentrations in the rest of
the porewater profile using linear regression or exponential
models (Schubert et al., 2011; Maeck et al., 2013; Zhang et al.,
2020). Alternatively, a CH4 gradient measured between the
overlying water and the uppermost sampled point in the
sediment profile may be a suitable substitute for the SWI
gradient (Klump et al., 2009).

2.3 Water Column Modeling
2.3.1 Approach Summary
The diffusion of CH4 from sediments is an important component
of manymodels simulating CH4 dynamics in all or part of the lake
water column. Many water columnmodels rely on other methods
described in this paper, such as incubations or sediment modeling
(Sections 2.1, 2.2), to estimate the flux of CH4 across the SWI and
use the measured value as model input. In this section, we focus
on water column modeling approaches that estimate CH4

diffusive flux from sediments through mathematical
expressions within the model structure, rather than previously
described methods. These water column models can be classified
into two groups: 1) mass balances used to calculate CH4 mass
quantities in the water column; and 2) advection-diffusion-
reaction models used to simulate CH4 concentrations in the
water column (Figure 1).

Mass balances are the most common water column model
used to quantify CH4 diffusion from sediments (Figure 1).
Researchers applying a mass balance approach create a
conceptual model of the sources, sinks, and transformations
affecting the mass of CH4 present in the water column. Most
often, this mass balance is focused on the lake hypolimnion

during thermal stratification. The exchange of gases and solutes
between the epilimnion and hypolimnion is significantly slowed
throughout the stratification period, often resulting in CH4

accumulation below the thermocline (Eckert and Conrad,
2007). The hypolimnion during stratification can therefore be
thought of as a largely closed system with sediments as the
primary source of accumulating CH4. As an example, a simple
conceptual model outlining the sources, sinks, and
transformations of CH4 in the lake hypolimnion during
thermal stratification is shown in Figure 4. Using this model,
a mass balance can be used to link the observed rate of change in
the mass of dissolved CH4 in the hypolimnion over time
(ΔMCH4) to the diffusive flux of CH4 from sediments (JSWI):

ΔMCH4 � JSWI +Diss − Fout − Oxhypo (7)
whereDiss is the rate of dissolution from CH4 bubbles present in
the hypolimnion, Fout is the CH4 flux out of the hypolimnion
across the thermocline, andOxhypo is the rate of CH4 oxidation in
the hypolimnion. JSWI can therefore be mathematically solved for
by determining all the other terms in Eq. 7 expressed in units of
flux (e.g., mmol m−2 d−1).Diss is typically calculated as a function
of ebullition measured from inverted funnel traps (Addess and
Effler, 1996; Vachon et al., 2019). Fout can be estimated with
Fick’s first law applied across the thermocline (Kelly et al., 1988):

Fout � −Kz
dCwc

dz
(8)

whereKz is the eddy diffusivity within the thermocline and dCwc
dz is

the CH4 concentration gradient across the thermocline. Kz is
often estimated by measuring heat exchange between the
epilimnion and hypolimnion (Powell and Jassby, 1974; Addess
and Effler, 1996; Matthews et al., 2005). Incubations are often
used to quantifyOxhypo (Rudd et al., 1974; Bastviken et al., 2008).
However, some researchers simplify Eq. 7 by assuming Diss
(Rudd and Hamilton, 1978), Fout (Bédard and Knowles, 1991),
and/or Oxhypo (Vachon et al., 2019) are small enough to be
considered insignificant in their lake system.

The ΔMCH4 term is determined by tracking the increasing
mass of dissolved CH4 in the hypolimnion throughout the

FIGURE 4 | Example mass balance model of a lake hypolimnion. Note arrows are not drawn to scale. See text for details (Section 2.3).
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stratification period. Typically, the hypolimnion is divided into
horizontal layers, and CH4 concentrations are monitored over
time at a point within each layer. Water samples are collected
periodically from each layer, usually with a Van Dorn sampler or
tubing attached to a pump at the surface, then analyzed for CH4

concentrations using gas chromatography or laser absorption
spectrometry. Assuming each layer is horizontally well-mixed,
ΔMCH4 can therefore be determined over time interval Δt:

ΔMCH4 �
Δ(∑Cwc,iVi)
AhypoΔt

(9)

where Ahypo is the sediment surface area below the hypolimnion,
Vi is the volume of hypolimnion layer i, and Cwc,i is the measured
CH4 concentration in layer i of the water column.

A small subset of water column models that include a term for
diffusive CH4 flux from sediments are advection-diffusion-
reaction models. We will provide a brief overview here,
however readers are referred to previous detailed descriptions
for a full discussion of these models (Durisch-Kaiser et al., 2011;
Tan et al., 2015; Stepanenko et al., 2016; Sabrekov et al., 2017;
Schmid et al., 2017). These models consider how molecular
diffusion affects CH4 transport in the water column, similar to
how diffusion and diffusion-reaction models in the sediment
consider the effects of molecular diffusion in the sediment profile
(Section 2.2.1). However, unlike sediment models, advection is
often included as an important term influencing CH4 transport in
the water column. The diffusive flux of CH4 from sediments is
usually included as a reaction term within the advection-
diffusion-reaction model and can be solved for in multiple
ways. In models that contain separate modules for the
sediment and the water column, flux can be calculated using
empirical relationships between methanogenesis and easily-
measured sediment characteristics, such as temperature, labile
carbon content, and/or pH (Stepanenko et al., 2011; Tan et al.,
2015; Sabrekov et al., 2017). Methanogenesis rates can then be
depth-integrated to estimate of flux out of sediments (Figure 2B).
In models that only contain a water column module, flux can be
parameterized by comparing observed and modeled CH4

concentration profiles in the water column (Durisch-Kaiser
et al., 2011; Schmid et al., 2017).

2.3.2 Approach Advantages
Water column models are useful for determining the flux of CH4

across the SWI without relying on direct measurements of CH4

concentrations within the sediment porewater. Accordingly, these
models avoid potential artifacts when sampling sediments for CH4,
such as the escape of gases, loss of surface sediments, or oxygen
exposure during sediment collection (Section 2.2.3). Water column
models also provide flux estimates integrated over space and time
(Figure 3), which can be advantageous when researchers are more
concerned with observing system-wide CH4 dynamics than
quantifying small-scale processes within the sediment or at the
SWI (Table 1). For example, coupling CH4 mass balance
information from the hypolimnion with monitoring of surface
emissions can track whether CH4 released from sediments is
ultimately stored, oxidized, or emitted (Matthews et al., 2005;

Bastviken et al., 2008). Furthermore, some water column models
can simultaneously determine the contribution of diffusion and
ebullition to flux from lake sediments (Tan et al., 2015;
Stepanenko et al., 2016), which can be advantageous in systems
where bubbling is significant. For example, by modeling CH4

concentrations in the water column of Lake Kinneret, authors
determined that ebullition was the primary pathway for surface
CH4 emission and that methanotrophs oxidized the vast majority
of dissolved CH4 in the water column (Schmid et al., 2017).

Another advantage of water column models is that they are
highly customizable. On one hand, more terms could be added to
the mass balance represented by Eq. 7 as needed, such as source
terms for water column CH4 production (Donis et al., 2017;
Günthel et al., 2020) and/or release from CH4 seeps (Schmid
et al., 2007; Bornemann et al., 2016). However, more complicated
models may require more sampling effort (Table 1). For example,
advection-diffusion-reaction models of CH4 concentrations in
the water column typically require more data than mass balances,
such as meteorological information (Tan et al., 2015) and/or
detailed temperature profiles (Sabrekov et al., 2017). On the other
hand, modeling and sampling effort can sometimes be
significantly simplified, for example in lakes where the last
three terms in Eq. 7 can be considered negligible. In these
cases, a mass balance can be performed with only lake
bathymetry information and multiple hypolimnetic CH4

concentration profiles measured throughout lake
stratification (Eq. 9).

2.3.3 Approach Limitations
When using water column models, it is important to consider the
desired temporal resolution for model output. Water column
models can be run on a range of time steps from minutes to
months (Figure 3), depending on the level of data input and
amount of computational time available. Many models also often
assume spatial homogeneity of CH4 fluxes from sediments
(Table 1). For example, mass balances similar to Eqs 7–9
typically provide no information on the flux of CH4 from
sediments not in contact with the hypolimnion, such as
shallow littoral regions that can be significant sources of CH4

in many lakes and reservoirs (Encinas Fernández et al., 2016).
Nevertheless, Eqs 7–9 can be adjusted for use in other layers of
the water column in order to estimate the diffusive CH4 flux from
sediments lake-wide (Strayer and Tiedje, 1978) or specifically
from sediments in contact with the epilimnion and/or
metalimnion (Bastviken et al., 2008).

In contrast, advection-diffusion-reaction models applied in
the water column focus on the basin-wide distribution of CH4,
and therefore some do consider spatial heterogeneity in flux. For
example, researchers applying an advection-diffusion-reaction
model in the water column of Lake Kuivajärvi estimated CH4

release from sediments for five different depth zones (littoral to
profundal) throughout a 6 month period (Stepanenko et al.,
2016). Similarly, some advection-diffusion-reaction models
account for how methanogenesis rates may vary spatially
across sediment layers due to changing substrate quality and
quantity (Tan et al., 2015). However, others assume CH4 diffusion
from sediments is spatiotemporally constant throughout the entire
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lake (Durisch-Kaiser et al., 2011), which is not the case in many lakes
and reservoirs (Bastviken et al., 2008; Berberich et al., 2019).

Water column models are also limited in their ability to
determine drivers of diffusive CH4 flux from sediments
(Table 1). Mass balances say little about the possible controls
on flux unless they are combined with other data, such as organic
carbon deposition rates, temperature profiles, or oxygen
concentrations. Similarly, advection-diffusion-reaction models
in the water column often rely on model parameterization or
empirical equations to calculate flux across the SWI, neither of
which directly link CH4 dynamics to causal drivers. In contrast,
other methodologies (such as incubations performed under
different experimental conditions) can directly test how CH4

flux changes with shifting environmental variables.

3 METHODOLOGICAL COMPARISONS

As described above, each method for measuring the diffusive
flux of CH4 from lake sediments has particular advantages,
limitations, and capacities to answer scientific questions about
lacustrine CH4 cycling. When choosing which method is
appropriate for one’s work, previous studies explicitly
comparing results from multiple approaches are
informative. Careful method intercomparisons are useful in
that when results from different approaches are comparable,
they can build confidence in our ability to estimate CH4 fluxes.
Alternatively, when method intercomparisons reveal vastly
divergent flux estimates across different techniques, they
can highlight whether certain approaches are associated
with systematic biases and indicate important areas for
further investigation. Examples of such comparison studies
are limited, comprising just 13% of our dataset (Figure 5;
Section 4.4). In this section, we focus on this small subset of
comparative studies to highlight a few important insights into
the implications of method choice for the estimation of
sediment CH4 fluxes.

3.1 Sediment Diffusion Models and Surface
Sediment Processes
Previous comparisons of incubations and diffusion models
applied in the sediment (Fick’s first law, Eq. 1) emphasize the

challenge of accurately measuring processes near the SWI.
Compared to sediment incubations, sediment diffusion models
are reported to sometimes overestimate (Sweerts et al., 1991;
Sinke et al., 1992; Li et al., 2018) and sometimes underestimate
(Frenzel et al., 1990; Thebrath et al., 1993) the diffusive flux of
CH4 from sediments. The discrepancy between incubation and
diffusion model-based estimates may stem from several causes.
For example, sediment concentration profiles cannot capture how
rapid processes at the sediment surface may influence flux (Urban
et al., 1997) and (Table 1). Sediments near the SWI are often an
important location for sediment CH4 oxidation (Frenzel et al.,
1990; Schubert et al., 2011; Hershey et al., 2014) or
methanogenesis (Winfrey and Zeikus, 1979; Liikanen et al.,
2002b; Dan et al., 2004), driving rapid changes in CH4

concentrations within just a few millimeters or centimeters of
the SWI (Bussmann and Schink. 2006). These concentration
changes may be unresolvable by the limited spatial resolution
of porewater samples (Harper et al., 1997), resulting in
measurement error for sediment diffusion model-based
estimates (Table 1). In contrast, incubation using benthic
chambers or intact cores measure CH4 accumulation above
the SWI, and therefore they incorporate the potential effects of
rapid surface processes on flux. Intact core incubations or benthic
chambers may therefore be preferable to a sediment diffusion
modeling approach in systems where significant CH4 processing
in the sediment occurs within several millimeters of the SWI.

3.2 Incubation Effects on Microbial Rates
Comparisons between sediment incubations and other
approaches suggest that incubations may overestimate fluxes
by stimulating methanogenesis and/or inhibiting
methanotrophy. For example, in Lake Constance, sediment
fluxes based on slurry incubations were 3–4 times larger than
estimates from sediment diffusion modeling (1,400 and 369 μmol
CH4 m−2 d−1, respectively; Frenzel et al., 1990). In a eutrophic
maar lake, incubation-based sediment fluxes (16 mmol CH4

m−2 d−1) were about tenfold higher than sediment diffusion
model estimates (1.5 mmol CH4 m−2 d−1; Fahrner et al., 2008).
Similarly, other studies report larger estimates of CH4 diffusive
fluxes from incubations than hypolimnetic mass balances. In
Frain’s Lake and Third Sister Lake, flux estimates based on
incubations performed between 0 and 20 cm sediment depth
were 2–5 times higher than flux estimates based on a

FIGURE 5 | Matrix showing number of studies that have compared multiple methodologies for calculating the diffusive flux of CH4 from sediments. Blue boxes
show number of existing studies, with lighter blue indicating fewer studies and darker blue indicating a larger number of studies. Asterisk indicates that there are n = 4
studies, not shown in the matrix here, that compared fluxes between two subtypes of sediment models (diffusion and diffusion-reaction models). All comparative studies
are identified in the Supplementary data file (Supplementary Table S1).
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hypolimnetic mass balance (Kelly and Chynoweth, 1980).
Incubations measured a sediment flux of 2,600 µmol CH4

m−2 d−1 in the profundal zone of Blelham Tarn, 2–10 times
higher than flux estimates from a hypolimnetic mass balance
(235–1,244 μmol CH4 m−2 d−1; Jones and Simon 1981). The
overestimation of methanogenesis by sediment incubation has
also been noted in studies of other flooded soils (Blodau and
Moore, 2003), where some incubation-based rates of CH4

production in peatland soils were found to be more than
10 times larger than estimates from sediment modeling.
Sediment collection and handling prior to incubation may
disturb sediment microstructure, possibly stimulating
methanogenesis by providing better contact for methanogens
to access substrate (Kelly and Chynoweth, 1980). Incubation
preparation (e.g., sediment slurrying or headspace flushing)
may also stimulate CH4 production by degassing or diluting
compounds that would otherwise inhibit methanogens (Kelly and
Chynoweth, 1980).

Larger sediment fluxes as a result of stimulated
methanogenesis may be further compounded by the possible
inhibition of CH4 oxidation by sediment slurrying, which may
destroy aggregates important for methanotrophs and their
syntrophic partners (Su et al., 2019). Methanotrophy is also
positively correlated with CH4 availability (Thottathil et al.,
2019), so degassing during sediment core sampling or
incubation preparation could slow CH4 oxidation compared to
in situ rates. The possible effects of incubation onmethanogenesis
and methanotrophy suggests that this approach may be more
suitable for comparing relative rather than absolute fluxes.

3.3 Comparing CH4 Flux & CH4 Production
Comparing fluxes across methods also highlights the difference
between measurements of CH4 flux and CH4 production.
Confusingly, these terms are sometimes used interchangeably
in the literature, despite the fact that the former technically refers
to the rate of CH4 transport across a plane (e.g., the SWI) and the
latter represents a rate of methanogenesis. The confusion in
terminology is further compounded by the fact that CH4

production rates measured at discrete depths throughout the
sediment profile can be depth-integrated into a flux out of
sediments (Figures 2A,B). Previous studies have reported
similar estimates of depth-integrated CH4 production from
sediment diffusion-reaction modeling (Eqs 3–5) and flux
across the SWI from sediment diffusion models (Eq. 1;
Bartosiewicz et al., 2016; Steinsberger et al., 2019). However,
other studies have noted a mismatch between estimates of CH4

diffusion based on sediment diffusion models and depth-
integrated methanogenesis based on sediment diffusion-
reaction models, attributing the difference to some produced
CH4 being oxidized anaerobically (Norði et al., 2013) or forming
bubbles (Adler et al., 2011) in the sediment profile before it could
diffuse into the water column. Others have calculated sediment
ebullition specifically as the difference between depth-integrated
methanogenesis and the diffusive CH4 flux across the SWI
(Langenegger et al., 2019).

Depth-integrated production also may not accurately
represent flux if the sampling spatial resolution is too coarse

to capture significant changes in methanogenesis within the
sediment profile (Figure 2B). Methanogenesis can double or
triple within just a few centimeters in the sediment column of
some lakes (Chan et al., 2005; Yang et al., 2017), yet depth
integration often assumes CH4 production is constant across
sediment layers ranging in thickness from 3 to 5 cm (Bretz and
Whalen, 2014; Berberich et al., 2019) to 20 cm or more (West
et al., 2016). In these cases, depth-integrated production may be
significantly different from flux. The possibility of
misrepresenting flux by depth-integrating methanogenesis
rates further underscores the advantage of approaches that
measure the release of CH4 from sediments without sampling
sediments directly, such as benthic chambers.

3.4 Sediment Depth Matters
Lastly, considering what sediment depths are characterized by a
method is important when comparing techniques. The majority
(60%) of incubation studies in our dataset base sediment CH4 flux
or production measurements on samples taken from a sediment
depth ≤20 cm. This is important because when using methods
reliant on sediment sampling, such as sediment modeling or some
incubations, fluxes may be underestimated if sampling excludes
depths with significant methanogenesis. For example, Kelly and
Chynoweth (1980) reported fluxes measured with core
incubations sectioned from 0 to 3 cm in the sediment column
were 2–4 times lower than fluxes measured with cores sectioned
from 0 to 20 cm. Although the authors attribute the stark
difference in fluxes to a possible artificial stimulation of
methanogenesis in deeper layers of incubated sediment
(Section 3.2), there are multiple examples in the literature of
active and significant methanogenesis deep in the sediment
profile. Production rates from 25 to 30 cm in the sediment
profile of oligotrophic Lake Constance were observed to be
almost as high as those from surface sediments (Rothfuss
et al., 1997). Similarly, methanogenesis from 90 to 130 cm in
the sediments of mesotrophic Lake Ätäskö were comparable to
rates observed at 10–30 cm (Rissanen et al., 2017), and the highest
methanogenesis rates were observed below 50 cm in cores from a
thermokarst lake (Heslop et al., 2015) and an acidic lake
(Koschorreck et al., 2008).

Taken together, these examples suggest that the common
assumption of negligible methanogenesis in deep sediments is
incorrect, at least some of the time. Highly organic-rich
sediment columns (e.g., those within thermokarst lakes)
may exhibit significant methanogenesis beyond surface
sediments, whereas sandy, porous sediment columns may
not have the carbon stores to support such microbial
activity deeper in the profile. Alternatively, highly acidic or
basic lakes may contain surface sediments with a pH that
inhibits methanogenesis; yet methanogens may be active
deeper in the sediment profile where conditions are more
favorable. The control that sampled sediment depth exerts
on flux estimates from some ex situ approaches highlights the
advantage of methodologies that consider the entire sediment
column in their measurements, such as in situ methods or
techniques that estimate flux based on water column
measurements.
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4 RECOMMENDATIONS & FUTURE
DIRECTIONS

The strengths and limitations of each method for measuring
diffusive CH4 flux from sediments should influence one’s choice
of approach for different research applications. Thus far, we have
focused on limitations of individual methods (Section 2) or
between pairs or small groups of methods (Section 3). Here,
we take a broader perspective to 1) discuss how limitations across
the full suite of approaches have shaped gaps in current
understanding of lacustrine CH4 cycling; and 2) recommend
future methodological developments needed to address
these gaps.

4.1 Short-Term Temporal Variability
Little is known about short-term (sub-hourly) variation in
diffusive CH4 fluxes from sediments, largely because most
available approaches operate on hourly to monthly or seasonal
time scales (Figure 3). A better characterization of short-term
variability is necessary for identifying the implications of
temporal resolution on measured fluxes. For example, previous
studies have stressed the possibility of under- or over-estimating
surface emissions from reservoirs and impounded rivers due to
inadequate sampling frequency (Maeck et al., 2014; Wik et al.,
2016; Harrison et al., 2017; Marcon et al., 2019). No similar
studies exist for CH4 diffusion from lake sediments, despite recent
evidence that diffusive flux can change significantly within hours
(D’Ambrosio, 2022). Advancing understanding of short-term
variability would therefore be instructive when determining
the appropriate method and sampling frequency for future work.

Flux gradient approaches are promising, emerging tools for
characterizing short-term variability in CH4 fluxes. Such methods
can be applied to measure fluxes on a time scale of minutes to
hours across the lake bottom boundary layer (BBL), a region of
the water column extending up to several meters above the
lakebed and a zone where currents are affected by friction
with sediments (Henderson, 2016). Although flux measured in
the BBL is not technically equivalent to flux across the SWI,
estimates from the BBL are valuable because they quantify the
rate at which CH4 is transported from sediments into the lake
interior, from which it may ultimately be emitted to the
atmosphere. Using a flux gradient technique, flux estimates are
made in situ by combining measurements in the BBL of vertical
concentration gradients, turbulent mixing, and temperature
stratification (McGillis et al., 2011). Recently, the method has
been adapted for use in a lake BBL for the first time (D’Ambrosio,
2022), whereas previous applications have focused on fluxes of
momentum, oxygen, or total alkalinity in marine BBLs
(Reidenbach et al., 2006; McGillis et al., 2011; Turk et al.,
2015; Takeshita et al., 2016). This methodological
advancement allowed for the estimation of CH4 fluxes on an
hourly basis within the BBL of a eutrophic reservoir, revealing
significant sub-daily variations in CH4 transport (D’Ambrosio,
2022).

The development of other techniques that operate on a short
temporal scale would also be helpful, such as eddy correlation
(eddy flux) techniques that have already been developed for fluxes

of other dissolved gases such as CO2 and O2 across the SWI (Berg
et al., 2013; Kokic et al., 2016). Unfortunately, eddy flux
techniques require in situ concentration measurements with a
temporal resolution <1 s (Donis et al., 2015), which are beyond
the capability of dissolved CH4 instruments at present; response
times for aqueous CH4 sensors are, at this writing, limited to
12 s–40 min response times (Damgaard and Revsbech, 1997;
Webb et al., 2016; Xiao et al., 2020). The development of
aqueous CH4 sensors with faster response times would
facilitate the development of eddy correlation approaches for
measuring CH4 flux from lakebeds. Alternatively, relaxed eddy
accumulation techniques avoid the need for fast-response sensors
and have been used to measure fluxes of oxygen, temp, and
suspended matter across the SWI in a shallow riverine lake
(Lemaire et al., 2017). However, both eddy flux and relaxed
eddy accumulation approaches perform best in consistently
turbulent conditions, and therefore may be of limited utility in
lakes and reservoirs where near-bed turbulence is intermittent
(Simpson et al., 2011; Henderson, 2016). Flux gradient
approaches, adapted for use in moderately stratified lake BBLs
(D’Ambrosio, 2022), may be the best alternative in these cases.

4.2 Boundary Layer Dynamics
Methodological limitations have also obscured the relationship
between BBL conditions and SWI CH4 diffusion. In stratified
lakes and reservoirs, internal waves and seiches can drive changes
in BBL mixing and biogeochemistry that occur on timescales of
minutes to hours (Wüest and Lorke, 2003; Bernhardt et al., 2014).
It is well-established that such periodic changes in BBL
turbulence exert significant control on the diffusive flux of
other redox-active solutes to and from sediments, such as
oxygen and nitrate (Lorke et al., 2003; Brand et al., 2008,
2009; Bryant et al., 2010). However, most available approaches
for measuring CH4 diffusion from sediments cannot capture how
such boundary layer processes influence flux. Current techniques
largely rely on ex situ analyses (Table 1) performed on hourly to
seasonal time scales (Figure 3). Consequently, boundary layer
conditions have been largely overlooked as a potential factor
influencing the diffusive flux of CH4 out of sediments.

Future work that couples BBL observations with CH4 flux
measurements from sediments in space and time is needed to
investigate how boundary layer dynamics may influence the rate
and timing of CH4 transport into the water column. For example,
flux gradient approaches do not isolate sediments from lake-scale
processes in the boundary layer that may influence flux
(D’Ambrosio, 2022), unlike ex situ techniques such as
sediment incubations. Application of the flux gradient
approach has illustrated how fluctuations in BBL turbulent
mixing may exert an important control on CH4 transport
from sediments into the water column (D’Ambrosio, 2022).
The development of eddy flux and/or relaxed eddy
accumulation techniques may also be helpful in this regard
(Section 4.1). However, further measurements in other lake
systems and a closer examination of potential causal links
between boundary layer dynamics and CH4 transport are still
needed. For example, on seasonal time scales, methanotrophs can
regulate the upwards flux of CH4 in the water column by
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responding readily to changes in concentrations of CH4 and
electron acceptors (Graf et al., 2018; Mayr et al., 2020a; Mayr
et al., 2020b). On shorter time scales, it is unknown if
methanotrophs exert a similar control on CH4 flux from
sediments in response to fluctuating concentrations of CH4

and electron acceptors in the BBL.

4.3 Developing Modeling Approaches
Available methods for measuring diffusive CH4 flux across the SWI
rely on direct sampling of the sediments or the water column. Our
capacity to measure flux is therefore limited in lakes that are remote,
seasonally inaccessible, or ice-covered. Moreover, a sampling bias
towards measurements made over short-term deployments and
during the summer months is likely, as noted in the literature of
surface CH4 emissions from lakes (Wik et al., 2016; Jansen et al.,
2020). Consequently, current estimates of the diffusive flux of CH4

from sediments are focused on physically accessible lakes and
reservoirs, likely during the warmer months. Expanding the
spatiotemporal coverage of measurements would provide novel
insight into the variability and controls on CH4 release from lake
sediments in a wide variety of lakes and reservoirs.

Developing models that estimate CH4 diffusion from sediments
using easily-measured lake characteristics, rather than
measurements of CH4 concentrations in the sediments and/or
water column, could improve the spatiotemporal coverage of
methane flux estimates. Multiple models of surface CH4

emissions from easily-measured lake characteristics have been
created (Bastviken et al., 2004; Harrison et al., 2021). Similar
techniques for predicting CH4 diffusion from lake sediments have
not been developed, yet there is evidence that some basic lake
characteristics could be useful in predicting sediment diffusive
flux. For example, a recent study successfully modeled sediment
CH4 production as a function of particulate organic matter supply
and reactivity (Grasset et al., 2021).Moreover, a recentmeta-analysis
of over 60 lakes and reservoirs suggests sediment CH4 production
rates can be linked to trophic status (D’Ambrosio and Harrison,
2021), which can be readily measured on site with surface water
sampling. Exploring the power of lake characteristics to predict CH4

diffusion from sediments could elucidate how the supply of CH4 to
the lake water column potentially changes across seasons, latitudes,
lake types, and other system characteristics, uninhibited by direct
sampling effort.

4.4 Expanding Method Comparisons
Of the 163 studies included in this review, just 13% (n = 22) used
multiple methods to estimate CH4 diffusion from sediments
(Figure 5; Supplementary Table S1). Approximately half of
the comparative studies in our dataset compare the most
popular approaches (sediment incubations and sediment
diffusion models; Figure 1; Supplementary Table S1). To our
knowledge, less common methods such as water column models
have fewer direct comparisons (Figure 5). Comparisons between
approaches in one or multiple lakes are common in studies of
CH4 surface emission (Schubert et al., 2012; Podgrajsek et al.,
2014; Deemer et al., 2016; Sanches et al., 2019), and oxidation in
the water column or sediments (Bastviken et al., 2002; Su et al.,
2019), but are uncommon in the study of CH4 diffusion from

sediments. More method comparisons would benefit the field
because observed agreement or deviation between approaches
highlights methodological limitations and potential caveats when
considering estimates between studies.

5 CONCLUSION

The diffusive flux of CH4 from sediments is a critical source of
CH4 to lake and reservoir ecosystems, which collectively
contribute significantly to global greenhouse gas emissions.
Here, we critically assess the most popular methods for
quantifying CH4 diffusion from sediments, including
incubations, diffusion and diffusion-reaction models applied in
the sediment, and mass balance and advection-diffusion-reaction
models applied in the water column. We also discuss lessons
learned from the small body of studies that directly compare some
of these methods, including 1) estimating flux across the SWI
with sediment diffusion models is challenging because these
models are quite sensitive to surface sediment CH4

concentration gradients, which are difficult to measure at an
appropriate spatial resolution; 2) incubation-based approaches
can bias flux estimates by stimulating methanogenesis and/or
inhibiting methanotrophy in sediments; 3) depth-integrating
methanogenesis rates to estimate flux can lead to error if the
sampling spatial resolution is not fine enough to resolve changes
in CH4 production with depth; and 4) most studies estimate flux
based on sampling shallow sediments (<20 cm depth), and
therefore may not consider the possibility of significant CH4

production demonstrated deeper in the sediments of some
systems. Furthermore, we explore how methodological
limitations have shaped knowledge gaps regarding the rate and
timing of CH4 supply to lake interiors. Specifically, the coarse
spatiotemporal resolution of most established methods
contributes to a poor understanding of the short-term
variability of diffusive flux from sediments and the potential
control of boundary layer conditions. Furthermore, the
spatiotemporal coverage of diffusive flux estimates from
different systems is likely biased towards physically accessible
lakes sampled during the summer months.

We also identify several important avenues for future
methodological advancement. In situ approaches with sub-
hourly temporal resolution are needed to address questions of
short-term variability and the role of boundary layer conditions.
Recent applications of flux gradient techniques and possible
future adaptations of eddy correlation or relaxed eddy
accumulation approaches could be useful tools to this end.
Expanding CH4 flux measurements using these techniques can
help inform models that predict diffusive flux from sediments
using basic lake characteristics, possibly improving the future
spatiotemporal coverage of estimates. More quantitative
comparisons between techniques at the finest and coarsest
spatiotemporal resolution considered here (cm/min scales and
whole lake/seasonal scales, respectively) would highlight
additional strengths weaknesses of additional methods, point
out additional knowledge gaps, and clarify the implications of
methodological approach for flux estimation.
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