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Climate change impacts on drylands pose more vexing risks to socio-ecological

systems, resulting in food security issues, biodiversity loss, and livelihood shifts in

Africa. This study critically reviewed relevant literature to evaluate the complexities

and feedback loops between the climate–drylands–food security (CDF) nexus,

which helps assess tactics to attain sustainable dryland ecosystem management

under the changing environment. Comprehensive CDF frameworks are explored

for dryland dynamics, ecosystem services, and food security (FS), and current high-

precision ecosystem observation networks are used to detect regional-level

climate variability and identify hotspots. In addition, this review also examines

challenges and uncertainties for CDF systems and effective agrarian innovations as

away forward. To bridge the gap from science to policymaking in theCDF nexus, it

is vital to enhance the impacts and feedbacks of ecohydrological processes on

agrarian production, ecosystem service tradeoffs and their effects on livelihoods,

and regional development andpreservation byoptimizationof the ecologicalwater

security pattern. This state-of-the-art assessment uses acquired information and

knowledge to conceptually evaluate the past, current, and future impacts and risks

and facilitates decisionmaking through the delivery of long-term sustainability and

socio-ecological resilience.
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1 Introduction

Climate change is one of the world’s most pressing real

threats to the drylands, which may jeopardize food security

(FS), that is, physical, social, and economic access to

sufficient, safe, and nutritious food by people for an active

and healthy life (Samuel et al., 2019) and other sectors of our

civilization (Tachiiri et al., 2021; Ukhurebor et al., 2021).

Drylands are areas where precipitation is balanced by

evaporation from surfaces and evapotranspiration (Middleton

and Thomas, 1997). They are generally characterized by sparse

vegetation, water scarcity, and unpredictability (Berg and

McColl, 2021). The distinct biophysical features of drylands

make them highly susceptible (Robertson et al., 2018) and

complex to unanimous climate change drivers (Berdugo et al.,

2020). Upsurging temperatures, changes in precipitation and

rainfall patterns, land use, nutrient availability, atmospheric CO2

(Classen et al., 2015; Copeland et al., 2017; Schlaepfer et al., 2017;

Leisner, 2020), and other greenhouse gases emissions (GHGs) are

key driving factors of unprecedented dryland expansion (Maestre

et al., 2012; Li et al., 2019; Lian et al., 2021). Drylands are

associated with substantial land degradation and extremely

vulnerable to severe environmental shocks and socioeconomic

crises (Fraser et al., 2011; UNU-WIDER, 2017). Due to

anthropogenic change and non-climatic stressors, in tandem

with other stimuli, the mean global temperature has increased

by ~1.0°C and is expected to further increase over the next

century (IPCC, 2018). As a result, many dryland habitats are

faced with severe threats that lead to reduced carbon

sequestration and high water scarcity (UNEP, 2007; UNEP-

WCMC, 2011; Bradford et al., 2020). Moreover, by the late

21st century, it is projected that ~78% of dryland expansion

will befall under the representative concentration pathways

(RCPs) 8.5 scenario in developing countries (Huang J et al.,

2016; Huang et al., 2017). The impaired climate–drylands

connection could impact FS in all four dimensions:

availability, access, utilization, and food system stability,

negatively influencing the efforts toward sustainability and

ecosystem resilience in Africa (Connolly-Boutin and Smit,

2016; Niles and Brown, 2017; Mbow et al., 2019). Multi-

disciplinary investigations are in need to identify effective

techniques and practices, including coupled earth-

anthropogenic processes in conjunction with careful

management and adaptation measures of potential ecological

risks, to enable mitigating the repercussions.

Meanwhile, the two dimensions of the nexus approach are

interdisciplinary and transdisciplinary (Pahl-Wostl, 2019). By

highlighting the trade-offs and synergies between the

components, the primary dimension assesses the complexity

of linkages among climate, dryland, and food systems. The

second dimension strengthens driving forces such as

population growth, socio-economic progress, and climate

change, as well as innovation, technology, and policies (Endo

et al., 2020). Nonetheless, a three-node nexus of climate

change–dryland variation-FS leads to complexity. It also

apprehends a “wide portrayal” and facilitates bringing in the

socio-economic and ecological dimensions. This approach is

considered a flexible and open option (Bleischwitz and

Miedzinski, 2018). Tools and methodologies are varied and

context-specific, but the linkages from climate change to social

and environmental impacts are difficult to model, given the

unpredictable anthropogenic activities affecting the outcomes

(Devereux and Edwards, 2004). Conversely, new techniques are

compelled to understand the complexities that lead to abrupt

non-linear/correlation between Earth’s systems (Randall et al.,

2007; Stephens et al., 2020) and thresholds due to bulky and/or

irretrievable effects (Devereux and Edwards, 2004). In addition to

their implicitly multi-scale structure, linkage processes are

difficult to simulate and/or emulate because they are rarely at

the required spatial and temporal scale to establish specific

reference as to the underlying changing aspects. To fully

comprehend the CDF linkages, key factors (e.g., population

growth, agricultural transformations and industrial

development, technology and innovations, livelihood shifts,

and governance and policy implementation) that drive those

nexus complexities must be assessed and described for the entire

system through the lens of climate change.

Correspondingly, a wide range of multi-spatiotemporal scale

integrated frameworks focused on dryland changes,

climate–land–energy–water (CLEW) nexus (Vinca et al., 2021),

water–energy–food (WEF) nexus (Kogan et al., 2017; He et al.,

2019; Kogan, 2019), water–energy–food–environment nexus

(WEFE) (Malagó et al., 2021; Mirzaei et al., 2021),

water–energy–food–biodiversity–health (WEFBH) nexus (Hirwa

et al., 2021), and others have been set up. However, they are not

sufficient anymore (Fernández-Ríos et al., 2021). Instead, current

advances in climate change, dryland ecosystemmanagement, and FS

are hindered by the limitations of inadequate data on dryland

environments and the methodologies commonly used for

scientific data analysis, some of which are ill-equipped for

capturing complex relationships present in the huge volumes of

available data. Coupling large-scale field spatial observations with

model simulations is now considered the most viable opportunity

and accurate technique to identify dryland ecosystem shifts and

evaluate dryland ecosystem stability. But, resistance and recovery

after extreme events such as droughts, as a high priority needs urgent

attention (Ruppert et al., 2015; Burrell et al., 2017; Wei et al., 2022).

Development of using geospatial tools by multiscale frameworks

continues to present key fundamental gaps (Fritz et al., 2019). In

addition, various methods have been used to assess the influence of

extreme events on dryland degradation (Wang et al., 2012; Dubovyk,

2017; He et al., 2019). Global FS requires transdisciplinary responses

and interventions at different types of scale (Drimie andMcLachlan,

2013), that is, globally (Schmidhuber and Tubiello, 2007; Yadav and

Congalton, 2018), regionally (Ingram, 2011), and locally (Moore

et al., 2012). With global climate change, dryland variation, and FS,
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there is the additional challenge of uncertainties, which is unlikely to

decrease in the next coming decades (Campbell et al., 2016). There

are gaps between research and technology transfer, research and

implementation, research and practice, and science and policy. It is,

therefore, urgent to seek alternative resources, efforts, and

procedures that combine local with emerging scientific

knowledge through more effective dissemination of information

and technology, appropriate participatory learning, and

partnerships.

Few current research on climate change, dryland

variation, and FS in Africa have been published (Wheeler

and von Braun, 2013; Cervigni and Morris, 2016; Guilpart

et al., 2017; Li and Zhang, 2017; Leakey, 2018; Schouten et al.,

2018; Nyberg et al., 2019; Chimwamurombe and Mataranyika,

2021). Consequently, developed and developing nations

started focusing on new tools and strategies for boosting

agricultural production to meet future challenges, and

improving or advancing techniques that would help deal

with food (in) security and monitor the expansion of

drylands (Peng et al., 2021). The apparent potential for

developing more holistic and cost-effective tactics,

including using existing strategies and procedures as

foundations, through developing novel methods that

integrate RS and local participation, necessitates a suitable

synopsis of dryland dynamics and FS on distinctive

spatiotemporal scales.

In a nutshell, this succinct review aims to address both the

vexing and progressive threats between climate change, dryland

dynamics, and FS through the lens of novel systems approach,

advances, challenges, and future opportunities. The CDF nexus

provides a strong foundation for scientists, environmental

decision-makers, and activists and actors who are interested in

achieving all targets of the 17 sustainable development goals

(SDGs), particularly SDG 13 (climate action), SDG 15 (use of

ecosystem services), SDG 2 (zero hunger), and the Paris Climate

Agreement, thereby devising effective policy for action and

planetary well-being. This study also proposes a conceptual

framework clarifying the interlinkages between influencing

systems (i.e., drylands, climate, ecosystems, socio-ecological,

and food systems) that consistently unravel and build greater

resilience to the confounding vulnerabilities, shocks, and stresses

within the food networks.

This study employs various research publications, books,

reports, and case studies collected from official websites.

Hence, we organize our review into four major aspects and

then discuss them using past and current literature. These

aspects are: 1) the CDF nexus, including dryland distribution

and their associated impacts factors, the relationship between

compounded climate, dryland, and FS; 2) technique advances in

drylands monitoring methods, including regional observation

networks and innovative technologies; 3) challenges and

uncertainties for climate change, dryland dynamics, and FS

measurements; and 4) future directions and research

opportunities to improve dryland ecosystems management

and cope with ongoing risks related to FS under climate

change conditions.

2 Methodology

2.1 Study area

Africa’s inhabited dryland areas (mainly arid, semi-arid, and

subhumid zones) cover 11% of Earth’s surface, 27% of the

planet’s drylands, and 40% of the continent’s surface

(Figure 1) (Wei et al., 2021). In these regions, the majority of

the population (~85%) relies on subsistence rainfed agriculture

and pastoralism (Kogo et al., 2021). The main staple subsistence

crops are wheat, rice, maize, sorghum, and millet (Tsusaka and

Otsuka, 2013). Increase of multiple climatic extreme events,

including rainfall variability (Bradford et al., 2020), high

temperatures (Webb et al., 2017), erratic droughts (Adhikari

et al., 2015), and changing agro-ecological conditions

(Schmidhuber and Tubiello, 2007; Scheelbeek et al., 2018) has

significantly affected dryland agriculture with high uncertainties

since the 1980s (Defrance et al., 2020). Ultimately, model

simulations and other evidence clearly show that continued

global warming will make the earth’s drylands drier over time

(Overpeck and Udall, 2010; Huang et al., 2012; Feng and Fu,

2013; Koutroulis, 2019). Climate models predict high

evapotranspiration and lower soil moisture levels in arid and

semi-arid regions of Africa (McCarthy et al., 2001; Bathiany et al.,

2018), suggesting some tropical grasslands could become drier

and unsuitable for farming (Schmidhuber and Tubiello, 2007).

2.2 Methods

VOSviewer, a software tool for constructing and visualizing

bibliometric networks (Perianes-Rodriguez et al., 2016), was used

to conduct the similarity analysis of high frequency terms in the

titles and abstracts of the articles and to generate a keyword

tagging map. Studies published from 1980 to 2022 were analyzed.

The keywords were mainly categorized into four subjects:

“climate change,” “drylands,” “food security,” and “Africa”.

Databases used for extraction of studies, reports, and

published articles included Web of Science™ (WoS) Core

Collection database, Scopus, and ScienceDirect. In addition,

reports on the impacts of climate change on either drylands

or food security in Africa were also extracted from official

websites of international organizations such as the

Intergovernmental Panel on Climate Change (IPCC),

Intergovernmental Science-Policy Platform on Biodiversity

and Ecosystem Services (IPBES), United Nations Framework

Convention on Climate Change (UNFCCC), and the Food and

Agriculture Organization (FAO). Moreover, 2,820 studies were
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initially extracted. Referring to their abstracts, 152 studies were

considered pertinent to this study. Out of the 152 publications,

88 studies were used to provide a summary of the nexus between

the impacts of climate change on dryland variation, and food (in)

security in Africa. In the context of interconnections, climate

change, dryland ecosystem shifts, and food security in Africa are

studied because there is a strong connection between the three

systems to form a nexus. The analysis reveals that the dryland

variation is mostly influenced by climate change, which results in

food insecurity in Africa (Figure 2). As shown in Figure 2, it is

clear that more prior research has been focused on climate

change, household, and household food security.

3 Overview on impacts of climate
change on drylands and food security
in Africa

3.1 Climatic changes in arid and semi-arid
environments

Progressive shifts in climatic or weather variability influence

both dryland biophysical and socioeconomic reciprocities (Berg

et al., 2016; Greve et al., 2019; Overpeck and Udall, 2020). The

main drivers of dryland variation include climatic factors

(i.e., high temperature, changing rainfall patterns, and infertile

soils) and anthromes (e.g., agriculture, urbanization, livestock

grazing, and wildfires). The interconnected natural processes of

degradation are water and wind erosion, salinization, and organic

matter (OM) loss, which furtherance results in a decrease in soil

health, agrarian productivity, and the ability to reduce carbon (C)

emissions into the atmosphere (Reynolds et al., 2007). Over-

exploitation and land degradation of ~4 × 109 ha (~73% of the

total area of rangelands) resulted in soil loss of ~216 × 106 ha

(~47% of SSA’s drylands), degradation of 43 × 106 of irrigated

croplands (~30% of total SSA’s drylands) (UNEP, 2021).

Nevertheless, dryland ecosystems and their biodiversity are

strongly shaped by interdependent components such as

topography, geology, rainfall, herbivores, fires, and human

management (Davies et al., 2012). For instance, in Southern

Africa, dry forests particularly, the Miombo woodland have the

capability of storing ~100 tons of carbon/hectare. In addition, the

coupled human biomes development leads to land degradation

and a net loss of carbon storage, deteriorating the impacts of

climate change (Stringer et al., 2012).

3.1.1 Increase in temperatures
Global warming trend has indeed been detected over

drylands since the 1980s, with further warming predicted in

the near future (Huang et al., 2016). Africa’s drylands are known

for their high temperatures (Put et al., 2004; Zhang et al., 2021).

Climate change-induced temperature rises are likely to aggravate

FIGURE 1
Distribution of Africa’s drylands based on aridity index (AI). The AI was calculated using the annual precipitation (P) and potential
evapotranspiration (PET) based on the 1970–2000 mean global-AI and global_ET0 datasets (Trabucco and Zomer, 2018). The hyper-arid zones are
not considered in this study.
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existing vulnerabilities of natural semiarid systems like droughts,

water scarcity, and floods (Koohafkan and Stewart, 2008). The

extreme variation in rainfall and the overall water shortage

constrain nutrient accumulation in dryland ecosystems,

impeding biogeochemical nutrient cycling (Laban et al., 2018).

The study by Daramola and Xu (2021) reported that temperature

generally increased across all dryland areas, with the warmest

years identified between 2015 and 2017 except for the hyper-arid

zones where the highest temperature increase occurred in 2010.

Extreme temperature occurrences have a severe impact on

agriculture in Africa since many crops are already planted at

the boundaries of their thermal tolerance and water stress

resilience (Scholes et al., 2015).

3.1.2 Decrease in rainfall patterns and poor
nutrient soils

Prior research showed that precipitation generally decreased

over the drylands and summer precipitation increased over

Southern Africa as well as Northern Africa’s dryland areas

(Daramola and Xu, 2021). High precipitation years in

Southern Africa caused an initial spike in fire rates, which

then declined in subsequent years (Wei et al., 2020). Dryland

soils are defined as having low organic matter (limiting microbial

processing of nutrients for plants), weak structure and high salt

content, and limited moisture retention capabilities (Safriel,

2017; Plaza et al., 2018). These, however, are enhanced by

extreme variations in rainfall and overall water deficiency

(Hartley et al., 2007).

3.1.3 Wildfires
Wildfires are an extreme threat to dryland environments

(e.g., grasslands, savannas, or dry forests) and the threat is

increasing due to increased ignition potentials by humans, the

spread of fire-prone invasive grasses, and shrubs, surface

temperature, and dry conditions. The dramatic increase in

wildfire prevalence in recent decades poses serious threats to

human safety, infrastructure, agricultural production, cultural

resources, native ecosystems, and watershed functioning. It is

especially prevalent in Africa, with up to 9% of the continent

burnt on an annual basis (Andela et al., 2013), which contributes

to 70% of the global burned area (Andela and van der Werf,

2014). More extensive dry season fires lead to wet season rainfall

deficits of up to 30 mm (Saha et al., 2016). Subsequently, the

occurrence and impacts of wildfires must be reduced through

FIGURE 2
Diagram of clusters of topic terms for climate change, dryland variation, and food security nexus. The larger the node, the more frequently
keywords appear in research. Lines stand for the co-citation relationship. Different colors denote research topics.
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prevention, preparedness, and pre-fire management. The post-

fire response such as erosion control and replanting in burned

areas also helps reduce the immediate impacts of wildfire and

establish non-native grasses, reducing the risk of future fires.

Variations in surface temperatures change the water

dynamics in the soil, impacting crop yields directly. The

warming trend will also lead to soil surface temperature

increase, resulting in a decrease in rainfall patterns and soil

nutrients. Although wildfire occurrence and extent have been

linked to rainfall and temperature on regional scales, the

atmospheric mechanisms that drive regional patterns of

rainfall and temperature need to be further investigated.

3.2 Climate change and food security

3.2.1 Food availability
Availability refers to the physicality of food. Different foods

can be produced in different ways. Agriculture in the drylands is

dominated by small-scale and resource-poor farming, which is

characterized by declining crop yields and livestock productivity

and suffers from limited investments in agricultural technologies

and inputs (Mortimore et al., 2009). Heat and drought stress, as

well as increased insects (Salih et al., 2020), plant diseases

(Graziosi et al., 2020), and flood damage (Atanga and Tankpa,

2021), thus have significant consequences for regional, national,

and household food security and livelihoods (Blunden and

Arndt, 2020). Under RCP 8.5, reductions of 13, 11, and 8% in

mean cereal yields are projected in West and Central Africa,

Northern Africa, and Southeastern Africa, respectively, based on

the yield indicator of crop production per area of harvested land

(WMO, 2020; Stuch et al., 2021). In addition, climate impacts the

production of roots and tuber crops in different ways, such as

changes in sowing time, pest and disease infestation of crops, and

low crop yields (Owusu et al., 2020). Concerns have been raised

that converting Africa’s dry tropical forests and savannahs to

croplands for agricultural production may undermine the

biomes’ natural carbon reserves (IPCC, 2019). Livestock has

both positive and negative effects on dryland resources.

Nevertheless, about 25 × 106 pastoralists and 24 × 107 agro-

pastoralists rely on livestock as their main source of income. In

sub-Saharan Africa (SSA), 35% is permanent pasture (Kiage,

2013).

According to the study by Fischer et al. (2002), land

suitable for double cropping would be reduced by 2 ×

107 ha whereas for triple cropping would decrease from 5 ×

106 to 1 × 107 ha (Grote et al., 2021) in SSA. From 2000 to

2050 in SSA, due to combined high temperatures and rainfall

shortages, maize, millet, and wheat production is expected to

decline by 5, 10, and 15%, respectively (Shiferaw et al., 2013).

In Tanzania in eastern Africa, the maize yields will shrink by

about 33% for the overall country. For the central regions,

there will be an 84% decrease. Moreover, a decline in mean

maize yields is projected for over 85% and 25% of harvested

maize areas in Southern Africa and West Africa, respectively

(Stuch et al., 2021). In many instances, crop production is not

only affected by climate change and abiotic stresses, such as

warmth and water scarcity (Cairns and Prasanna, 2018;

Deutsch et al., 2018), but also biotic factors such as novel

viral pests, insects, and diseases [e.g., Case of deserts locusts in

Eastern Africa drylands (Kassegn and Endris, 2021)]. Finally,

all these fluctuations continue to adversely affect food

supplies, food prices, and malnutrition-related diseases

(Levy et al., 2016). In light of these results, it is clear that

there is much uncertainty regarding future forecasts of food

production under climate change. Therefore, the implications

for agro-socio-ecological linkages are important to accurately

predict system dynamics from climate change.

3.2.2 Food accessibility
Generally, accessibility refers to the ease of acquiring foods in

a form and location that enable their consumption. Weather-

related shocks might undermine food security through various

levels of change and food price volatility (Porter et al., 2014).

Local food supply in many nations is mostly reliant on global

food exchanges (or trade) and adverse climatic conditions such as

floods, cyclones, and hailstorms alter agricultural commodities

and transportation infrastructures at national to regional scales,

thus influencing food supply at variable levels. However,

changing climate affects food production, farmers’ income,

access to food, supply, and safety (Affoh et al., 2022).

COVID-19 has had a vexing effect on food security and

marginalized dryland communities across Africa, which serves

as an external driver of FS (Ukhurebor et al., 2021). Food,

livestock traders, and consumers have experienced restrictions

on cross-border mobility and relations leading to a surge of

spoiled goods due to prolonged transit times. For instance, in

Eastern African countries, truckers regularly line up for miles

when crossing the borders of neighboring countries. In addition,

the effects of political instability in the Democratic Republic of

Congo, Ethiopia, and South Sudan have caused the people to flee

across the borders (O’Grady, 2021). From 2019 to 2020, the acute

food insecurity induced by population change has increased to

1,033, 883, 600, 333, and 250% in Mali, Chad, Burundi, Sierra

Leone, and Cameroon, respectively (WFP&FAO, 2020).

Climatic instability in SSA, however, could destabilize local

markets, curb economic growth, and heighten the risk for

agricultural investors in the north and south arid regions,

which will lead to increased childhood hunger by rising food

prices. It is projected that the price of maize will increase by 104%

between 2005 and 2050 (Rosegrant et al., 2014), although the

systematic analysis of the relationship between weather shocks

and domestic food prices is rather limited (Mirzabaev and Tsegai,

2012). Advances in well-being may result from a more equitable

allocation of benefits among many stakeholders and

beneficiaries. Furthermore, a policy environment that fosters
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construction of better storage, and freer trade and promotes

investments in transportation and irrigation infrastructure can

help deal with these problems early on.

3.2.3 Food utilization
Food utilization is closely linked with the general health

environment, water, and sanitation (Vilakazi et al., 2019),

which is indirectly impaired by climate change (Wheeler and

von Braun, 2013). Climate change could have a direct effect on

micronutrient consumption in three forms: by lowering

important micronutrient source crop yields, altering the

nutritional balance of a particular crop, or influencing crop

selection decisions (Felix and Romuald, 2012). Due to uneven

actual food distribution across Africa and diverse populations

and households, food utilization is understudied (Myers et al.,

2017). In response to food price shocks, urban and rural

households adjust their consumption patterns in a number

of ways such as decreasing caloric intake, decreasing the

number of meals per day, decreasing food diversity, or

substituting with less preferred foods (Matz et al., 2015;

Kubik and May, 2018). Across most dryland areas in

Africa, many poor people still face difficulties in obtaining

adequate calorie intake and/or diverse quality diets. The

proliferation of small-scale agro-processing industries and

modern storage techniques in both rural and urban areas

can increase food security by diversifying agrarian products

and enhancing nutritional standards as well as creating the

employment (Adeyeye, 2017). The “atta” for cowpea in Benin

is a typical example (Kpossilande et al., 2020). Moreover,

processed food can be purchased in various forms for each and

every category of household (Reardon et al., 2021).

Importantly, several studies revealed that agricultural

policies have contributed in many SSA countries to

increased food production, which helps the population to

acquire more nutritious diets and improve livelihoods

(Pernechele et al., 2018).

3.2.4 Food stability
Food stability is established when food supply and people’s

ability to access and consume food remain stable and consistent

over time (Bonuedi et al., 2020). The major causes of food

instability include recurrent droughts, geopolitical instability,

conflicts, lack of investments in agriculture, unstable markets,

and poverty (WFP, 2019). More importantly, even temporary

disruptions of food access resulting from food inflation can entail

long-term, often irreversible nutritional damage, especially

amongst infants and young children during the period of

critical growth and development (Arndt et al., 2016). Because

of the short-term supply fluctuations, the stability of complete

food systems may be jeopardized as a result of climate change

(Grote et al., 2021). Furthermore, abiotic (e.g., weather) and

biotic (e.g., pests) shocks can compromise cereal stability. As

staple crops like wheat and maize are planted in large areas, losses

from pests, diseases, and climate change may be catastrophic

(Conceição et al., 2016).

3.3 Feedbacks between
climate–drylands–food security
interactions and drivers

Dryland FS is driven by several factors. Changing climate is

just one of many interconnected trends and drivers that shape

dryland agricultural systems, including FS and nutrition (Brown

et al., 2018). The dryland socio-ecological system comprises a

food system, which is, furthermore, a complex adaptive system

(Pereira, 2013; Allen and Prosperi, 2016). The most noteworthy

technical advances and socio-economic factors that drive

changes in food systems include technological and structural

changes in the food system, food production, processing,

distribution, and markets, population growth, wealth shifts,

changing demographics, globalization, catastrophe

management, and energy production, availability and use

(Ingram, 2011; Pingali, 2012). Likewise, a sustainable food

system is critical to the households’ survival and community

resilience in Africa (Smit, 2016).

Bringing various fundamentals together, the integrated

conceptual framework, illustrated in Figure 3, shows how

climate, dryland, and food system give rise to a set of

socioeconomic, ecosystem, food, livelihoods, and policy

systems. The ecosystem services are stratified according to the

livelihood outcome and other factors and the climate, in turn,

shape-specific elements of dryland expansion and FS. Food

system development must be evaluated not only in terms of

economic efficiency and capacity to enhance FS but also in terms

of their environmental impacts throughout the food chain. The

climate change implications on drylands, ecosystem, food, and

the socio-economic systems could gain from facets of all FS and

improved livelihoods, thus providing a certain comprehensive

understanding of the whole system as vividly illustrated in

Figure 3.

4 Technical advances in climate
change, dryland ecosystem
monitoring, and food security

4.1 Progresses of dryland agroecosystem
dynamics detection techniques

Over the past four decades, methods to detect and quantify

the relative dryland expansion and land degradation have been

developed (Wang et al., 2012; AghaKouchak et al., 2015). The RS

techniques and spatial modeling are commonly used tools for

quantifying spatio-temporal trends of LU/LC change in drylands

(Ohana-Levi et al., 2019). Over the last four decades, the advent
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FIGURE 3
Interrelationship among the dryland agroecosystem, climate system, socio-economic system, and food system. Here, we present the CDF
nexus (epicenter) from the viewpoint of environmental and socioeconomic feedback (above and below) and food system outcomes (right side). In
particular, the anthropogenic activities, natural processes, and socioeconomic operations together drive dryland agroecosystem changes in African
drylands. All these combined factors, however, positively/negatively impact the stability and income level, via effects on productivity,
production costs, and market prices resulting in food insecurity and malnutrition.

FIGURE 4
Advances in satellite imagery and multi-spectral RS of dryland vegetation dynamics. Historical milestones are provided from the 1960s to the
2030s. Timelines of LiDAR, chlorophyll fluorescence (ChIF), thermal infrared (TIR), microwave, optical, and hyperspectral earth observation satellites
are shown. The progression of satellite capabilities from optical to hyperspectral indicates both the rising spatial and temporal resolution of sensor
information as well as the extension of RS techniques in drylands. Modified and adapted from (Kuenzer et al., 2014; Smith et al., 2019). The color
differentiates the type of satellite and its capability. The solid, semi-solid, and dash-dash lines represent daily, weekly, and monthly scales,
respectively, as the data acquisition time.
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of earth observations (EOs) has been highly relevant for

enhancing data availability in drylands globally (Figure 4).

Cost-effective atmospheric conditions in drylands

complimented the extra huge need by providing the improved

probability of high-quality data due to decreasing cloud cover for

optical RS (Smith et al., 2019). Henceforward, several RS

integrated tools have been introduced in drylands, including

sensors such as Advanced Spaceborne Thermal Emission and

Reflection Radiometer (ASTER), Compact High-Resolution

Imaging Spectrometer (CHRIS), Landsat thematic mapper

(TM), Landsat multispectral scanner (MSS), Landsat

operational land imager (OLI), and thermal infrared sensor

(TIRS) with different multi-spectral satellite products such as

atmospheric profiles product (MOD), Moderate Resolution

Imaging Spectroradiometer (MODIS), modified atmospheric

profiles from reanalysis information (MAPRI), and

Atmospheric Correction Parameter Calculator (ACPC)

(Kowalik et al., 1982; Jiménez-Muñoz et al., 2010; Fritz et al.,

2019). Quantitative estimates of Vegetation Health and biomass

dynamics based on the Visible Infrared Imaging Radiometer

Suite (VIIRS) of Landsat MSS offer a dimensionless measure of

greenness with normalized difference vegetation index (NDVI)

(Rouse et al., 1974; Tian et al., 2016). Multi-source and multi-

scale data sets, and fusion algorithms that intelligently integrate

in situ data, remote sensing observations, and modeling results,

are required to capture the complex spatial and temporal land

and vegetation dynamics processes.

Dryland RS satellites are defined in terms of spatial and

temporal resolution (Figure 5). Apart from the Advanced Very

High-Resolution Radiometer (AVHRR) and Landsat, no sensor

line allows for three to four decades of long-term monitoring of

thermal patterns. While AVHRR provides two thermal

observations per day on average, Landsat also has a 16-day

repeat cycle. Thus, cloud-free data may only be accessible a

few times annually, especially in overcast latitudes (Kuenzer et al.,

2014). Several studies employed the AVHRRNDVI time series to

assess the long-term patterns in regional vegetation heterogeneity

and drivers in African drylands (Anyamba and Tucker, 2005;

Donohue et al., 2009; Fensholt and Rasmussen, 2011).

4.2 Observational networks as essential to
Africa dryland ecosystem management

Long-term ecological research (LTER) is a method of

assessing biophysical interactions with human activities and

how they affect the ecological integrity, particularly

environmental processes and humanity’s carrying capacity

(Vanderbilt and Gaiser, 2017). These networks deal with

climate and anthropological impacts on grassland, forests,

freshwater, deserts, coasts, and other ecosystems that span a

wide topographical range (Yevide et al., 2015). Some ecosystem

research networks (ERNs) have been established in Africa

(Table 1). These monitoring initiatives are intended to

FIGURE 5
Comparison of RS satellites. The multispectral scanner (MSS)* its original pixel size was 79 m × 57 m, where the production systems now
resampled the data to 60 m. The thematic mapper (TM)** band 6 was acquired at 120 m resolution, but products are resampled to 30 m pixels.
Therefore, the Landsat 8 operational land imager (OLI) and thermal infrared sensor (TIRS)***, the TIRS bands are acquired at 100 m resolution but are
resampled to 30 m in the delivered data product. The spectral band placement for each sensor is visually displayed. The MODIS consists of
several bands, including bands 1–2+, bands 3–7++, and bands 8–36+++.

Frontiers in Environmental Science frontiersin.org09

Hirwa et al. 10.3389/fenvs.2022.851249

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.851249


develop response strategies for any potential consequences such

as biodiversity loss, land degradation, desertification, and

extreme events (Li et al., 2015). Ecosystem monitoring via

international LTER (ILTER) emerges in countries and is now

applied all over the world (Yevide et al., 2016). Currently, the

ILTER covers about 44 nations and 700 experimental stations,

integrating observation of ecological aspects to serve the needs

worldwide (Mirtl et al., 2018). Therefore, the advancement of

dryland-specific models and novel assessment technologies for

drylands cannot act without substantial and specialized

observational networks (Smith et al., 2019). These networks

currently exist in some regions, for example, HiWATER,

OZFlux, and Semiarid ECohydrology Array (SECA). Africa is,

however, one of the continents that owns continental and

regional-scale monitoring networks, including the South

African environmental observation network (SAEON) (Gray

and Kalpers, 2005; Jürgens et al., 2012). Rapidly advancing

technology will continue to impact LTER’s tasks. The

monitoring sites generally continue to be sparse, scattered,

and biased toward dryland ecosystems. Development of

ecotechnologies is needed. A need for scientifically-based

peer-reviewed research using ‘‘bottom-up’’ rather than ‘‘top-

down’’ help answer pressing.

In 1992, the Global Climate Observing System (GCOS) was

created. All stakeholders that require climate information, from

research to forecasting and impacts to mitigation and adaptation,

are ensured to have access to adequate information and trends in

the climate system. (Verstraete et al., 2009). Various technologies

have also been developed to help address concerns about dryland

expansion, climate variability, FS, and other environmental

assessments (Smith et al., 2019). However, long-term

ecological research infrastructures are often fragmented,

unevenly distributed in space, and restricted to particular

scientific objectives (Hass et al., 2018). Multiple global

ecosystem research networks that help enhance investigations

related to climate change, environment, and FS necessitate funds

in research and development, human capital, knowledge flows,

and infrastructure.

5 Challenges and uncertainties for
climate change, dryland dynamics,
and food security

Climate models (CMs) are weather forecasting extensions.

Moreover, these models provide information on hydro-

biogeochemical cycles (Foley, 2010; Wang et al., 2015).

Scientists utilize the CMs to draw past, current, and future

conclusions about complex earth systems (Huang et al., 2017).

The most intricate and reliable models for understanding climate

systems and forecasting climate change are General circulation

models (GCMs) and regional climate models (RCMs), which

may need bias corrections and model output statistics (MOS)

(Eden and Widmann, 2014). For instance, Keenan et al. (2016)

testified that during the last decades, in the warming break of

drylands, a current hiatus of crop growth rate was linked to a rise

of atmospheric CO2 in the terrestrial sink, which was attributed

to the effects of atmospheric CO2 on vegetation (Ballantyne et al.,

2017). Consequently, because global carbon cycle dynamics are

not included in some CMIP5 models, CMIP5 cannot duplicate

this trend without significant uncertainty (Huang et al., 2017).

Even for state-of-the-art models of global carbon cycling, the

carbon concentration still has a lot of uncertainty. The case of the

West African monsoon is an example (Klein et al., 2017).

Nonetheless, various models are built based on the same

modeling institutions. Thus, the ensemble of CMs is not

weighted. There are great uncertainties remaining in

evaluations of the global trends in dryness and wetness under

TABLE 1 Examples of African Ecosystem Research Networks (AERNs) dealing with climate change, dryland monitoring, and FS.

Station name Time Key technologies References

Sahara and Sahel Observatory (ROSELT/OSS) 1992 25 clusters of observatories, geoportals, and instruments for monitoring
environmental parameters. Open source and technologies (e.g., FOSS and
OGC). Acquisition of low-resolution satellite images using NOAA/AVHRR
and Spot 4–5/VEGETATION.

Ajmi et al. (2014)

Biodiversity Monitoring Transect Analysis in
Africa (BIOTA-AFRICA)

2000 Automatic weather stations, temperature loggers, and research hut
infrastructures

Jürgens et al. (2012)

South African Environmental Observation
Network (SAEON)

2002 Arid lands node manages several sites using automatic weather stations,
temperature loggers, and research hut infrastructures. Metadata models
were developed with terrestrial sites

SAEON/NRF (2018)

Tropical Ecology Assessment and Monitoring
Network (TEAM)

2002 17 sites. Data are collected using paper field forms, transcribed into digital
form, or using a mobile EcoPDA device. Data acquisition data tools using
automatic camera trap arrays, processed and curated data via technology
partners San Diego Super Computer Center and the Hewlett Packard
Enterprise at the University of California, San Diego

Rovero and Ahumada (2017),
Team network (2011)

Global Observation Research Initiatives in
Alpine environment (GLORIA)

2011 Field manual, field forms, online data input tool (e.g., Central GLORIA
Database), photo documentation and management tool (PDM), and
temperature data loggers

Yevide et al. (2015)
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climate change conditions (Trenberth et al., 2014). To handle the

uncertainties in aridity projections and the aridity index (AI)

calculation against the hydro-ecological variables, there is a need

to consider regions where the overwhelming of models agree in

sign (Greve et al., 2019). Moreover, the use of time series

precipitation and evapotranspiration datasets from

meteorological stations could be helpful to reduce

uncertainties in AI projections and regional dryland climate

modeling (Tarek et al., 2021).

Dryland climate system uncertainty over human action

possesses two main sources, including uncertainty due to

unknown future emission concentrations of greenhouse gases

and aerosols, and uncertainty of the climate system’s response to

our actions (Trenberth and Trenberth, 1992; Smith et al., 2009). This

information, combined with climate models, allows decisionmakers

at all levels of governance to determine how both natural and

manmade influences have and will impact changes in our climate.

6 Future directions and research
needs

In the past four decades, drastic population development has

been observed in drylands (Smit, 2016; Ellis et al., 2021).

Subsequently, modern dryland farming and intensive land use

are necessary. Sustainable agriculture comprises multiple

components, including the introduction of climate-adapted

cultivars and sustainable environmental protection that integrates

provision and preservation of ecosystem services by enhancing

durable intensification programs based on conservation

agriculture and community-based adaptation and mitigation with

operational support services (e.g., biodiversity, food production, and

reduction of GHG emissions) (Mbow et al., 2014; Sanz et al., 2017).

Therefore, planning of the so-called

food–energy–water–biodiversity–human health (WEFBH) nexus

has revealed practicality in evaluating strategic policy to achieve

the SDGs prior to the rising demands, dryland resource scarcity, and

climate variability (Albrecht et al., 2018; Hirwa et al., 2021).

Remote sensing data have been utilized to provide information

in data-scarce areas to address climate variability and FS induced by

shifts in foundational dynamic ecosystems. The extension of

dryland-specific modern observation models, networks, and

evaluations of new RS technologies is a key to successful dryland

ecosystem management. These technologies exist in some areas

across Africa (e.g., AngoSat-2, NileSat-301, and NARSSCube-2)

(Woldai, 2020). Owing to advances in model development from

the late 1990s until now, modeling efforts have inspired more

current observational investigations. In this instance,

measurements are frequently provided apropos of regression

models, and multidecadal aerial images are used to identify

vegetation changes, for example, in the case of Niger over a

forty-year interval. Nonetheless, some models (e.g., Brusselator

model) can be overly mechanistic in their representation of

many processes at hand, resulting in a high dimensionality that

must be calculated from data. As a result, this modeling approach is

frequently linked to observation and involves comparisons to field-

based assessments (Figure 6). Ultimately, we recommend close

collaboration between geo-information data-driven modeling

approaches and terrestrial ecosystem modelers to more swiftly

categorize model structural deficiencies and hence intrinsically

empower more precise dryland ecosystem functioning model

projections with the social and ecological system.

Commonly known technologies are categorized into two

main types of hardware and software resources, including

open-source and affordable tools and scanners, sensors, and

platform networks. Therefore, an increasingly growing pool of

comparatively low-cost innovations is spurring the transition

from catchment to subnational measures (Richardson et al.,

2018). The ecosystem phenology camera network can be used

to estimate the carbon flux, photosynthesis, and canopy

greenness in dryland vegetation (Richardson et al., 2013), and

mobile devices can be redeployed to record and capture

ecological data. For instance, the Land-Potential Knowledge

System (LandPKS) recognizes soil and land types, monitors

soil health and vegetation, and identifies management options

(Herrick et al., 2016). This could be used to verify remote sensing

products, assess earth surface model projections, seasonally

explain ecosystem-scale data, and investigate the climate

change effects on the terrestrial ecosystem (Seyednasrollah

et al., 2019). Public and private institutions can reduce

expenditures on design, research, and development, via

surplus non-custom devices that are relatively inexpensive and

widely available.

7 Conclusion

At present, dryland ecosystem degradation meets

increasingly severe climate change. Increasingly, widespread,

frequent, and extreme weather events substantially impact

food security, especially the sufficiency and regularity of food

production. In this review, the bibliometric approach was used to

assess the research trends, which identified that research demand

on the impacts of climate change on drylands and FS has been

increasing. African drylands harbor enormous exceptional levels

of biodiversity via diverse land-use systems and provide a variety

of ecosystem services. However, they are ecologically fragile in a

plethora of ways. There is a strong relationship between climate

change, dryland change, and food systems. With regards to the

digital revolution in the RS field, in addition to continuing to use

conventional methods to detect the impact of climate change on

arid and semi-arid regions, technical innovations (e.g., ecosystem

observational/research networks) and modern practices (e.g.,

climate modeling tools) focusing on dryland changes and FS

in Africa are very rare across all sectors. Novel methods, such as

coupling different vegetation indices, are urgently needed and
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encouraged to support conventional dryland RS and FS

assessment, from basin to regional scales. With particular

efforts to the tactically explored studies, we propose an

integrated conceptual framework of different systems

(i.e., drylands, climate, ecosystem, socio-economic, and food

system) (Figure 3). The foresight and prediction assessment of

driving forces of the climate, drylands, and FS needs further

research (Section 6). The framework has the potential to reveal

new insights into climate change, dryland ecosystem dynamics,

and FS with the availability and accuracy of data in the entire

system. The nexus approach combines intradisciplinary sections

involving all socioeconomic and ecological fields to better

understand the regional impacts and develop adaptive

strategies while mitigating the climate change impacts on

drylands. Herein, we propose new research opportunities to

strengthen the CDF nexus: ① promoting sustainable

agricultural best management practices and innovations as a

tool to enhance community resilience and cope with climate

change impacts on FS, ② using modern observational data and

developing idealistic models to better understand the CDF nexus

approaches, and ③ strengthening dryland research and

management effectiveness through emerging and affordable

technologies. By combining these research directions, we may

gain new insights into dryland dynamics, ecosystem services, and

FS. We recommend decision makers design policy instruments

that consider CDF fields as a multidisciplinary nexus.
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