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Intelligent automation in travel and tourism is likely to grow in the future, which is possible
due to advances in artificial intelligence (AI) and associated technologies. Intelligent
automation in tourism is a socio-economic activity, which needs an explanation of
theory and practice. The study objective is to know the predictive relationship between
AI and intelligent automation in tourism with mediating role of the internet of things (IoT),
sustainability, facilitating adoption, and environmental, social, and governance (ESG)
investment. Designing valuable AI, promoting adoption, analyzing the implications of
intelligent automation, and establishing a sustainable future with artificial intelligence are
the fundamental constructs of this study. Research in these areas enables a systematic
knowledge creation that shows a concentrated effort on the part of the scientific
community to ensure the positive uses of intelligent automation in the tourist industry.
A quantitative research approach was used to collect and analyze data. A purposive
sampling technique was applied, and data were collected from four hundred two (N = 402)
respondents. The results revealed that AI has a predictive relationship with intelligent
automated tourism. Similarly, IoT, sustainability, facilitating adoption, and ESG have
influenced tourism. As a conclusion, AI design can improve tourism department if the
intelligent automated framework was applied to it.

Keywords: artificial intelligence, automation, tourism, internet of things, ESG investment

INTRODUCTION

The focus is on artificial intelligence and intelligent automation in tourism. Defining, visualizing,
designing, and delivering artificial intelligence (AI) solutions to the travel and tourist business needs
proper critical evaluation impossible with intelligent automation (Zhao et al., 2011). AI knows which
type of systems can be reliable for the tourism sector and how they could be constructed for future
tourists. The problem is that AI systems need high resources and concentration to sustain the
structure. For this reason, an intelligent automated system could be developed to improve the
tourism sector. There has been an increased recognition that more attention needs to be paid to AI,
the internet of things, environmental, social, and governance (ESG), sustainability, adoption, and
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intelligent automation in the tourism sector. In recent years, AI
technology has emerged as a desirable domain for tourism. An
understanding of artificial intelligence automation may prove
essential in recognizing tourism experiences and tourist
observations in the future. The study explains the cause-and-
effect relationship of new artificial intelligence technologies. It is a
projective influence on intelligent automation tourism, which can
sustain ESG criteria—identifying how intelligent automation
might improve tourists’ knowledge and visitor’s trip with the
artificial intelligence automated framework. This method
attempts to bypass some of the common problems faced by
tourists in the past.

A slightly more advanced method has been proposed with the
help of artificial intelligence automation, and it may improve the
tourism departments and their client’s enthusiasm toward trips and
travel (Yue et al., 2012). The combination of artificial intelligence is
crucial to constructing intelligent automated technologies for the
future sustainability of tourism. Multidisciplinary perspectives are
working in tourism and its relationship with AI automation, such
as psychology, anthropology, behavioral science, business studies,
and human–computer interaction (HCI), as well as design research
methodologies such as cybernetic thinking (Martelaro and Ju, 2018;
Tuomi et al., 2019), speculation technique (Wong, 2018),
prototyping (van Allen, 2018), ESG factors for travel and
tourism industry (Ionescu et al., 2019), and multidisciplinary
approach with artificial intelligent automation that can be
helpful to the tourism field (Churchill et al., 2018). Creating
unforgettable travel experiences requires a careful choreography
of many components based on an in-depth knowledge of the needs
of tourists (Tussyadiah, 2014). Designing tourist experiencesmeans
considering the entire journey, from planning to post-trip
reflection, and focusing on ways to encourage participation and
involvement. Explaining AI’s role in enhancing, augmenting, or
substituting tourist encounters is critical in the context of user
experiences (Lindvall et al., 2018). ESG investment in artificial
intelligent tourism can be possible with the internet of things (IoT).
These factors previously mentioned are helpful for the visitors. The
development of criteria for functional AI systems is aided by
various desirable behaviors for systems tackling particular
concerns and tourist contact points.

Most importantly, the design is critical to determine how
intelligent automation affects tourism. AI systems implementation
can adjust best tourist locations and social (and physical) structure in
the future tourism department. Tourists may be persuaded to visit
well-known places through predictive analytics and virtual tourism
information. The “automated tourist experiences” can only be
conceptualized if research explains the causal relationship
between artificial intelligence and intelligent automation in
tourism. ESG investment and IoT can make a more sustainable
future for tourism. As a result, artificial intelligence thoughts can
design intelligent automation tourism environment.

LITERATURE REVIEW

The design of valuable artificial intelligence is focused on finding
technology answers to long-standing design issues, such as

psychology, cognitive and behavioral sciences as well as
information systems that would be used to shed insight on the
persistent behavioral problems that tourists display, such as lack
of discipline, insufficient attention, or absence of cognition. These
challenges should be addressed by requiring AI systems to
discourage visitors from making misinformed judgments that
result in inadequate practices (Tussyadiah, 2020). For instance,
digital nudging (Schneider et al., 2018) and nudge theory aspect
involvement (Thaler and Sunstein, 2009) may be used to achieve
this goal in the tourism industry (Tussyadiah et al., 2019;
Tussyadiah and Miller, 2019). Automated systems may solve
issues that need immediate attention to the flow of visitors at a
destination and give help then sending push notifications and
recommending alternative destinations. In this regard, Fogg
(2009) described Captology as a computer technology
mediation that is essential to save the environment and
maintain social satisfaction, which is persuasive for human
beings. Tussyadiah (2017) delineated quantitatively that
human–computer interaction may be used as lenses for
research, and ESG investors should plan for the
implementation (Tung and Law, 2017). Another work exploits
the value perceived by the tourist and the attachment to
intelligent voice assistants (IVA) and the quality of the
human–VAT relationship in the field of hospitality (Loureiro
et al., 2021). Online analysis of tourism service consumers
supports their policy of continuous improvement, creating a
positive impact on customer satisfaction, which ultimately
leads to the intention to continue digital platforms (Filieri
et al., 2021).

Designing valuable artificial intelligence from a technological
standpoint necessitates highlighting the necessity of critical
artificial intelligence (Russell et al., 2015; Tadapaneni, 2020).
Robustness against requirements, exploits, defects, and
cyberattack risks are all factors to consider (He et al., 2019;
Luo et al., 2020; Shao et al., 2020; Fan et al., 2021; Khan et al.,
2021; Wang et al., 2021). Russell et al. (2015) emphasize the
necessity of verification in the form of “correct system design”
and also validation with correct system design, which was also
argued earlier by Menzies and Pecheur (2005). The first point to
be considered is that the AI systems need access to a vast quantity
of data; in tourism, these data mainly comprise personal
information collected from tourists. ESG criteria should be
built to make the most out of data while causing the least
amount of intrusion into people’s privacy and a feasible
environment (Lords, 2018; Sethu, 2019; Tussyadiah et al.,
2019). Techniques may address this problem to data
anonymization and de-identification in the tourism
department (Garfinkel, 2015; Khalila and Ebner, 2016). The
second predictive stage focuses on the developers’ perspectives,
consumers, and the regulators’ need to comprehend and justify
artificial intelligence for any industry (Lords, 2018; Monroe,
2018). Another area of study should be improving artificial
intelligence’s technological openness and decreasing prejudice,
which is essential for the future. In the third stage, building
artificial intelligence with the perspective of IoT to solve security
challenges necessitates the development of guidelines to guide
behavior in safety-critical circumstances, identify infiltration and
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possible exploitation, and avoid hazardous occurrences (Russell
et al., 2015). Finally, given the autonomy of these systems,
research should be performed on how to maintain some
meaningful human control. AI autonomy involves putting
notions like “human in the loop” or “human on the loop” into
action and relationships with social agent (Dautenhahn, 1998;
Schirner et al., 2013; Lugrin, 2021; Schoenherr, 2021).

The next step is to make it easier for tourism businesses,
workers, and visitors to implement (positive) intelligent
automation. The present adoption pattern and prospects and
the key drivers and impediments to adoption must all be
determined via research. Theories and models that evaluate
innovation diffusion, acceptability, resistance, use, and ease of
service and those that assess innovation diffusion, acceptability,
resistance, use, and discontinue of use were previously valuable in
this field. Examples are the role of “diffusion innovation theory”
(Rogers, 2003, 2003), “theory of reasoned action” (Fishbein and
Ajzen, 1975), “theory of planned behavior” (Ajzen, 1991), “the
technology adoption model” (TAM; Davis, 1989), “the extended
TAM2model” (Venkatesh and Davis, 2000), “the Unified Theory
of Acceptance and Use of Technology” (UTAUT) and UTAUT2
(Venkatesh and Davis, 2000), “and the Unified Theory”
(Venkatesh et al., 2003; Venkatesh et al., 2012).

At a personal level, in combination with the drivers and
obstacles to general technology adoption, such as simplicity of
use, usefulness, and technological self-efficacy, research efforts
should be focused on discovering characteristics specific to
artificial intelligence, robots, and the IoT that affect the
appropriateness of innovation, such as trustworthiness and
vulnerability parameters of the ESG investment necessary for
the field of tourism. Researchers had argued that if it comes to
engaging with robots, there is a certain amount of nervousness in
society, which leads to an unfavorable attitude toward robots
(Nomura et al., 2006; Nomura et al., 2006). Negative views
regarding AI and robots in the news media may increase this
mentality. To better comprehend tourist customers’ and staff
attitudes toward intelligent robots in tourist service
environments, reference theories are underpinning
technophobia (Brosnan, 2002) and the gravitational lensing
hypothesis (Mori, 2017; Murphy et al., 2019), technological
social inclusion (Wang and Wu, 2021). Kurtessis et al. (2017)
derived that organizational support theory is management
theory, which may help get employee support for intelligent
automation in the industry. Consumers’ attitudes and
intentions to use intelligent devices have been measured
(Tussyadiah and Park, 2018; Lu et al., 2019), while workers’
attitudes and intentions have indeed been measured (Li et al.,
2019).

To enable and expedite intelligent automation
implementation in tourism, it is necessary to identify variables
affecting the acceptance of innovation at an organizational level.
Therefore, knowing the limitations of innovation dissemination
in organizations can assist in comprehending the constraints to
sector acceptance. Themanagement literature has information on
principles underpinning organizational adoption and
dissemination of innovation (Frambach and Schillewaert, 2002;
MacVaugh and Schiavone, 2010; Sun et al., 2020; El-Kassar et al.,

2022) as well as transformational leadership (Bass, 1990;
Haeruddin et al., 2021), a factor proved in the literature to
speed up technology advancement in corporations (Frambach
and Schillewaert, 2002; MacVaugh and Schiavone, 2010; El-
Kassar et al., 2022). Intelligent automation could be studied to
see how it fits into the strategic priorities of commercial and
public tourist organizations and the competitiveness conditions
throughout the sectors (Rydzik and Kissoon, 2021). ESG
investors collaborate with the present government and attempt
to stimulate adoption (advocacy, funding), and organizational
activities to educate prospective users might then be offered to
eliminate obstacles and enhance responsible adoption in the
organization (Oyewole, 2021).

To maximize the advantages of intelligent automation in
tourism, it is crucial to foresee the spectrum of automation’s
good and bad effects on people (tourists, personnel), the industry,
and society. The functions and effects of intelligent systems in the
tourism department are essential for the future of sustainability
(Gretzel, 2011; Gajdošík and Valeri, 2022). However, the study
did not concentrate primarily on artificial intelligence.
Furthermore, Lin et al. (2011) identified three areas of ethical
concern coming from the use of robots: safety and mistakes, law
and ethics, and societal consequences. Anticipating service failure
due to technical (programming) faults during human–robot
contact is an essential part of intelligent machine adoption. As
a result, research must focus on ways to reduce the potential of
damage through artificially intelligent actors in a variety of service
contact scenarios. Psychological effects of human–robot contacts,
such as concerns of privacy (monitoring) and data protection, are
mandatory for the satisfaction of tourists (Pagallo, 2016;
Chatzimichali et al., 2021). On the other hand, there are
emotional reactions to the proximity of robot appearance to
humans (Walters et al., 2008; Mori, 2017; Akdim et al., 2021)
and technostress (Ayyagari et al., 2011; Beltrame and Bobsin,
2021; Tuan, 2021). In a nutshell, societal challenges, safety,
privacy consequences, and technostress have crucial influence
on the structure and quality of tourist experiences in the future,
which make it unsustainable (Beltrame and Bobsin, 2021;
Chatzimichali et al., 2021; Tuan, 2021).

Another central area of study is the modifications intelligent
automation can introduce to the tourism sector, such as alterations
to organizational decision-making processes as artificial intelligence
substitutes portfoliomanagers (Javelosa, 2017) and the unintentional
effects of AI (-assisted) judgments (Jarrahi, 2018). Likewise, Larivière
et al. (2017) described that cooperative decision-making, work
allocation, and special scientists can look at the balance of people
and then make intelligent systems. Furthermore, again it was
conceptualized that automated tourism, accommodation service
experience’s creation, and expenditure considering intelligent
automation are possible due to artificial intelligence system. The
study found that artificial automation could modify the roles of
employees and customers in automated intelligent services. Artificial
intelligence framework positively influences work performance and
an intelligent artificial sustainable system.

The social and economic effects of intelligent automation on
the tourist sector, local citizens, and economy bring effectiveness
when the degree of hospitality and tourism can become replaced
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by intelligent machines. In response, intelligent machines can
generate valuable earnings, revenue redistribution (disparities),
while overcoming gender problems, and total wealth in the
tourism sector. In terms of labor, automation raises worries
about the loss of skills and knowledge in society as a result of
over-reliance on technology, as well as the possibility of a future
jobless society (Lin et al., 2011; Chessell, 2018; Pham et al., 2018;
Samuels, 2021). Additional implications of intelligent machine
progress had already been questioned in the specific situation of
technological singularity, a concept in which technological
progress would become challenging to control and
unrecoverable, and artificial intelligence surpasses human
intelligence, resulting in the extinction of human society (Eden
et al., 2012; Roli et al., 2021). The same may be said for evaluating
social effects, particularly guest–host relationships and local
support for tourist growth. Approaches such as future (for
example, visualizing futures) and future-making (Hajer and
Pelzer, 2018; Szántó, 2018; Szántó et al., 2020) could be used
in addition tomachine learning approaches to increase prediction
and forecasting efficiency in the industry (Ahmed et al., 2010;
Kamolov et al., 2021).

Ideally, academic efforts can discover how intelligent
automation may assist the tourist industry in becoming more
futureproof. After learning about the many advantages and issues
that may arise from implementing intelligent automation, the
next step is to recognize the various ways of minimizing adverse
effects and maximizing the benefits of automation in tourism.
The principle of sustainability changeover (Markard et al., 2012;
Safarzyńska et al., 2012; Turnheim et al., 2015; Yue et al., 2021;
Bauer et al., 2022) is crucial for guiding exploration in this area,
particularly in identifying how AI systems could perhaps be used
to structure transition mechanisms to sustainable progress across
tourism. Government policy is critical in addressing the
profession’s and society’s possible negative consequences of
intelligent automation. Policy interventions via education and
training programs to address skills shortages in AI-related
occupations or minimize capacity loss due to automation
dependency, encouragement to promote labor-intensive sectors
like hospitality, and a guaranteed basic income to improvement in
primary mass jobless due to automation are just a few examples.
Furthermore, tourism organizations and other stakeholders may
utilize a variety of intervention tactics to encourage visitors and
staff to engage in responsible conduct (Navío-Marco et al., 2018;
Xiang, 2018).

Intelligent automation can significantly change tourism in the
not-too-distant future, reducing the necessity for human, face-to-
face contact between visitors and inhabitants (tourism staff) even
more than it now does. Lack of socialization may result in the loss
of shared values necessary for structured social life, including care
for others’ well-being and environmental preservation such as
ESG criteria (Han et al., 2019; Bao et al., 2020; Yue et al., 2020;
Zhumadillayeva et al., 2020; Pan and Yue, 2021). The task at hand
is to determine how much artificial intelligence and robotics can
contribute to solving these emergent problems. As individuals
become more reliant on virtual advisers and robots to help them
manage their everyday lives and travel requirements, we must
fundamentally transform our perspective of intelligent agents

from simple tools to vast and complicated social players. Humans
can be guided, informed, and mentored by computational
systems that raise public awareness of physical and biological
thresholds and human well-being while boosting answerable and
resource-efficient behavior. Humans and the environment hold
the key to efficient human–robot interaction for a sustainable
society. As a result, more research is needed to figure out how to
humanize humans in the age of intelligent machines and add
value to the expansion of robotics (Kopacek and Hersh, 2015;
Fusté-Forné and Jamal, 2021). Also, exploration can be focused
on developing scientific, cultural, and technological instruments
to support and stimulate current trends for the progress of society
and people, as well as to assist in avoiding the exploitation,
mistreatment, indifference, and misuse of artificial intelligence
and robots (Kopacek and Hersh, 2015; Fusté-Forné and Jamal,
2021). The fundamentals of robotics must also be considered
when developing specifications for robust artificial intelligence,
establishing a feedback loop that leads to the development of
beneficial AI (Tussyadiah, 2020).

Research Method
The study used a positivistic and quantitative approach to
explain the relationship between artificial intelligence, ESG,
IoT, creating a sustainable future, facilitating adoption,
tourism, and intelligent automation in tourism. Quantitative
research knows the facts objectively (Creswell, 2010). The
rationale behind this approach was to understand the
projective association between artificial intelligence, ESG, and
artificial automation in tourism.

The study’s main objective was to highlight the importance of
artificial intelligence, ESG, IoT, facilitating adoption, creating a
sustainable future, and intelligent automation tourism of China.
Ethical considerations and consent forms were initially filled,
followed by the COVID-19 standard operating procedure (SOP).
However, the study did not mention the specific tourist place due
to ethical issues, because respondents did not disclose their
anonymity.

Moreover, the working hypotheses are correlated with the
objectives of the study, respectively:

1) The first hypothesis is that artificial intelligence has actively
contributed in recent years to the intelligent automation of
services in the tourism sector;

The paper uses an explanatory method to explain the theory
and co-relationship with quantitative results. Second,
quantitative data were collected through a questionnaire, and
the research has adapted items from the previous empirical
literature review. The self-administered questionnaire was
distributed with the help of local language researchers to take
reliable and valid data from the respondents.

2) The second working hypothesis is the predictability of tourist
services by using models of structural equations;

The paper analyzes the predictive impact of artificial
intelligence on intelligent automation in tourism with
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mediating influence of ESG, IoT, facilitating adoption, and
creating a sustainable future with structural equation modeling
(SEM), which is a gap in the literature. The initial model and
model fit were measured and employed in the existing artificial
intelligence automation tourism situation. The final decision was
taken on the modified model fit, and its coefficient of
determination was used for prediction.

3) The third hypothesis is related to the direct interdependent
relationship between artificial intelligence and intelligent
automation in tourism.

The paper developed a linear model to study the artificial
intelligence relationship and its dependency on intelligent
automation in tourism. Data were collected from five
popular tourist places in China. Different researchers
developed scales, and we adapted a scale from previously
valid and reliable dimensions, factors, indicators, and
elements, which were identified in the existing literature.
The study nature was quantitative, and accurate and reliable
items are always demanded. For instance, the study used seven
(7) different types of scale, such as the internet of things (IoT, 8
items and the study just selected 4 items that have good
Cronbach alpha value and we retained in our research) that
Krishna and Verma (2016) and Vašíček et al. (2017) adapted,
“artificial intelligence” (AI = 5 items), “creating a sustainable
future” (CSF = 6 items), “intelligent automation tourism” (IAT
= 6 items), and “facilitating adoption” (FA = 8 items)
indicators by Tussyadiah (2020), “tourism impact scale” (T
= 6 items) (Ap and Crompton, 1998), and “ESG measurement
scale” (ESG = 8 items)” indicators adapted from Sultana et al.
(2018). Reliability and validity are the essential measurements
of the questionnaire, and this paper collected one hundred-
two (102) pilot tests to ensure reliability and validity of the
scale. The concepts were converted to the variables, and seven
(7) indicators were chosen for the artificial intelligence
automation in tourism in the tourist places of China. The
study counters these indicators with a non-probability
purposive sampling technique with N = 411 sample size
through (“G*Power”) “software”, which is shown in Figures
1, 2 and Eq. 1. (Faul et al., 2007). In this regard, N = 402 have
given the responses regarding artificial intelligence automation
of tourism, which were proceeded for the data analysis phase.
Similarly, the data were collected from the 402 tourists and
their tourism department employees. Equation 1 of the sample
size is given:

γ � Xβ + ε
X � (1X1, X2......Xm) andN × (m + 1, matrix � Xi )
β of length � (m + 1)
ε of length N � (εi ~ N(0, σ)

(1)

Suppose that. . .

H0: R2Y.B � 0

H1: R2Y.B> 0.

The effect size and its equation for the sample size are given:

f2 � R2 Y.B
1 − R2 Y.B

R2 Y.B � f2

2 + f2

The sample size has seven (7) predictors and a similar
noncentrality parameter (λ = 20.550). The value of “Critical F”
is important for measuring the sample, and it was 2.032 with
numerator df (7). Denominator df was count 403, and effect size f
square was 0.05. Similarly, power (1 − β = 0.93) is measured for
the sample size, and actual power was 0.930. In conclusion, the
study’s sample size was derived (N = 411) and 402 respondents
filled questionnaire.

The researchers took help from the formula of “F test linear
multiple regression: fixed model, R2 deviation of predictors” and
followed the COVID-19 SOPs. Furthermore, Statistical Package
for Social Sciences (version 21), AMOS and SEM, were used to
measure the initial model and model fit for the paper conclusion.
This empirical paper has tested two models to project the tourism
and intelligence automation tourism among tourist and
employees. For instance, the initial model has seven (7)
constructs, and their values of RMSEA and SRMR were higher
than cutoff points such as 0.19 and 0.47, whereas the GFI, CFI,
and NNFI values were 0.694, 0.592, and 0.629, lower than the
cutoff point, which indicated that there is no ideal fitness present.
On the other hand, the χ2/df value was 10.496, which is also
higher than the cutoff point. As a result, the model needs
modification, which suggested that SEM and added two
covariate control factor, error terms, with the combination of
nine (9) indicators for the causal and effect theoretical
relationship for an inferential measure of the intelligent
automation of tourism among Chinese tourist and tourism
department employees. According to the modeling phase, data
pre-processing activities are necessary to guarantee that
inaccurate, blaring, redundant, and repetitive information are
removed from the data. Equation 2 describes the “sum of squared
differences” between the line and the actual data point is
minimized, and it is called Alpha squares in the multiple
regressions and with several predictors.

Otcome i � (model) + error i
Y � (b0 + b1 Xi1 + b0 + b2 Xi2 + ... b0 + bn Xn ) + εi

(2)

Similarly, the SEM measures the level of dependency in the
linear equation model, which leads to the structural modeling in
applied statistics. Equation 3 is the basic formula of the SEM.

C(α.α) � [N − r]⎡⎢⎢⎢⎢⎢⎢⎢⎣∑G
g−1

(N)gf(µg,∑g,x(g) ,S(g))
N

⎤⎥⎥⎥⎥⎥⎥⎥⎦ � [N − r]F(α.α)

fkl (µg ∑(g)x(g)S(g))
� log[∑g] + tr(S(g)∑(g−1)+(x(g)−µg)∑(g−1)(x(g)−µg))

c � (N1 − 1)F(1) � (N − 1)F.
C � ∑(G)

g�1
N(g)F(g) � FN. (3)
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Furthermore, data were ready for the normal distribution, and all the
outliers were removed from the data, which is the basic assumption of a
regression equation. Thefinal training dataset was evaluatedwith the help
of these aforementioned equations and further applied bootstrapping
technique to the model fit (secondmodel) for accurate results and future
efficient prediction for intelligent automation in the tourism,which canbe
beneficial for the ESG criteria.

Data Analysis
This study empirically tests all the indicators with confirmatory
measurement factor analysis and derives an equation for each
item (statements). The measurement model suggested that
construct validity and reliability are perfect, and the model is
applicable for the further structural equation evaluation, which is
portrayed in Figure 3. Moreover, the initial model (first model)
and model fit (second model) were measured for the actual
prediction of beneficial artificial intelligent automation in
tourism department with ESG protocols. Likewise, the initial

model was not found with satisfactory results, meaning not a
good fit with the Eq. 2 criteria, and the paper modified the
proposed model and added two control variables (respondents’
age and education) with covariate paths as well as error term (e1,
e5, e6) as covariates to achieve desired results. These added
factors evaluate the model statistically significant (Figures 3, 5).

The primary goal of path analysis is to determine any causal
relationships among the study variables. SEM is one of the most
advanced approaches for determining whether or not a cause-and-
effect connection exists between a set of variables (Hair et al., 2014).
Notably, the paper differentiated a casual R2 relationship between
the initial model and model fit. It is to be noted that the actual logic
of path analysis is to develop a diagram that is clearly connected
with arrows, covariate, and show the real causal flow or the real
direction of cause-and-effect for future prediction. The beauty of
path analysis is that it measures association from the direct path to
indirect causal effects, can be estimated simultaneously, and
predicts a good model for future issues. So, the path diagram

FIGURE 1 | Central and Noncentral Distribution.
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FIGURE 2 | F Tests.

FIGURE 3 | Measurement of the artificial intelligence, intelligence automation tourism, and internet of things (N = 402).
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shows a pictorial illustration of the theoretical explanation of cause-
and-effect relationships among a set of variables up to numerical
results (ratio and percentages). Agresti and Finlay (1997) concluded
that the basic attribute of path analysis is to build direct and indirect
causal effects among the set of outcomes and predictors. The use of
indirect effects is very beneficial in the derivation of scientific
knowledge. An indirect effect is when a variable affects an
endogenous indicator over its effects on some other factors or
indicators. It is called an indirect effect and is also known as
intervening indicator in the subjective model. However, SEM was
constructed and applied to evaluate the mediating role of creating

sustainable future, facilitating adoption, ESG, and IoT, between
artificial intelligence and intelligent automation in tourism. The
exhibition of the initial model and model fit are shown in Table 1.

The statistical equation for the SEM in the context of intelligent
automation in tourism was introduced and the equation derived the
CMIN values, which is shown in the formula covariance-based
model Eq. 4.

C (α.α) � [N − r]⎡⎢⎢⎢⎢⎢⎢⎢⎣∑G
g−1

(N)gf(µg ,∑g,x(g) ,S(g))
N

⎤⎥⎥⎥⎥⎥⎥⎥⎦ � [N − r]F(α.α)

fkl(µg ∑(g)x(g)S(g)) � log[∑g] + tr(S(g)∑(g−1)+(x(g)−µg)∑(g−1)(x(g)−µg))
c � (N1 − 1)F(1) � (N − 1)F.

C � ∑(G)
g�1

N(g)F(g) � FN.

(D1)CMIN InitialModel � 10.496

CMINModel Fit � 3.719

Δχ2 � 10.496 − 3.719 � 6.777

D2fml(µg ∑(g)x(g)S(g)) � fkl(µg ∑(g)x(g)S(g)) − fkl(µg ∑(g)x(g)S(g))
� log[∑g] + tr(sg ∑(g − 1) + (x(g)−µ(g))∑(g − 1)(x(g) − µ(g)).
CMINInitialModel � χ2/df � 1.785

CMINModel fit � χ2/df � 1.393

(4)

TABLE 1 | Fit indices for artificial intelligence, facilitating adoption, sustainability,
ESG investment, intelligent automation tourism, and internet of things among
tourists (N = 402).

Model χ2df χ2/df GFI CFI NNFI RMSEA SRMR

Initial model 10.496 1.785 694 0.592 0.692 0.476 0.195
Model fit 3.719 1.393 0.936 0.921 0.863 0.086 0.095
Δχ2 6.777 — — — — — —

Note:N = 402, All the changes in χ2 values are computed relative to model, χ2 > 0.05, GFI
= goodness of fit index, CFI = comparative fit index, NNFI (TLI) = non-normed fit index,
RMSEA = root mean square error of approximation, SRMR = standardized root mean
square, Δχ2 = chi-square change.

FIGURE 4 | Empirical results from a complex multivariate initial model representation standardized regression coefficient for intelligent automation in tourism (N =
402). Note: a complex multivariate model of five endogenous constructs and two exogenous indicators. Completely standardized maximum likelihood parameter
estimate for intelligent automation in tourism among tourists and employees.

Frontiers in Environmental Science | www.frontiersin.org March 2022 | Volume 10 | Article 8533028

Tong et al. Automation in Tourism

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


The fit indices indicated for designing beneficial artificial
intelligence, intelligent automation tourism, sustainability,
facilitating adoption IoT, and tourism are shown in Table 1.
Absolute fit for model fit was χ2 (12,402) = 3.719, p < 0.001. The fit
indices were considered to indicate the good fit of the data with
the testedmodel and the study analyzed themodel fit in two key steps.
In step 1 and step 2, the indices’ absolute and relative fit (GFI, CFI,
NNFI, RMSEA, SRMR) were compared. Because the χ2 test of
absolute model fit is sensitive to sample size and number of
parameters, investigators often turn to various descriptive fit
statistics to assess the model’s overall fit in data. The following
equationmathematicallymeasures the absolute and relative fit (Eq. 5):

GFI � 1 − _F
_Fb

f((∑(g), s(g)) � 1
2
tr[K(g−1)(x(g) −∑(g − 1))])2.

Model fit value ofGFI � .936

CFI � 1 −
max(Ĉ − d, 0)
max(Ĉb − db, 0) � 1

NCP

NCPb

RNI � 1 − Ĉ − d

Ĉb − db

Model fit value of CFI � .921

TLI � 1 −
Ĉb

db
− Ĉ
d

Ĉb

db
− 1

Model fit value ofTLI � .863

SRMR �
���������������������∑G
g−1

,
⎧⎨⎩∑pR

i−1
,∑j≤i
j−1

,(šgij− ; σ(gij))⎫⎬⎭
√√

⁄∑G
g−1

pp(g).
Model fit value of SRMR � .095

Population RMSEA �

��
F

0
d

√√

Estimated RMSEA �

��
F

0
d

√√
LO 90 �

�����
δL/n
d

√
HI 90 �

�����
δU/n
d

√
RMSEA � .086

(5)

Hu and Bentler (1999) measured that χ2/df in between 1 and 3
RMSEA and SRMR values should be less than 0.08 and CFI, TLI,
or NNFI and GFI values usually higher than 0.9 are considered as

a good value when it becomes 0.9 ≤ 0.8 then allowable in some
cases. Likewise, RMSEA and SRMR for the initial model were 0.47
and 0.19, whereas the GFI, CFI, and NNFI values were 0.69, 0.59,
and 0.69, respectively, while the other side χ2/df value was 1.785
in the above (Table 1). The fitted model of the study was fit
according to the descriptive measure of fit because the p values
were <0.05). Furthermore, the model modification process
started as suggested by the modification indices for the
intelligent automation tourism. Modification indices followed
up some of the variance and covariances between errors in
terms of artificial intelligent automation in tourism indicators
because some of the elements were similar in content and context.
According to Tomás et al. (1999), the covariance between error
terms in survey-based research can legitimately draw the
variance. The criteria of modification indices for error
covariance should be at least 4.0 (Byrne, 2016). Moreover, the
study drew the covariance, and the “chi-square Chang” was
greater than 6.777 in the modification process. All the non-
significant paths were removed in step 2 of the model and
added some covariance paths. After that, the indices of
absolute and relative fit (GFI, CFI, NNFI, and RMSEA) were
again compared and calculated in that stage. The RMSEA and
SRMR for the model fit after drawing covariance and removal of
insignificant paths were discarded; the results of RMSEA and
SRMR (0.08 and 0.09, respectively) were counted since the GFI,
CFI, and NNFI values were 0.93, 0.92, and 0.86, respectively,
while χ2/df was 1.393. It means finding the difference between the
proposed model and the saturated model. Now it was the perfect
model for the projection of the intelligent automated feature in
the tourism when mediation model was added. In conclusion, the
model was fit, and the modification process does not allow the
data to further modify the model (Figure 4 and Figure 5).

Figure 5 also suggested that the path coefficient was significant
because p values were <0.05. Now which path coefficient was
considerably significant, and which one was not significant, the
arrows of the path had explained in numbers. As a result, the
mediation model measure that IoT, tourism sustainability,
facilitating adoption, and ESG investment mediate the
relationship between artificial intelligence designing and
tourism, and intelligent automated tourism with beta values
(CSF = β = 0.55, IoT = β = 0.03, FA = β = 0.40, ESG = β =
0.25). Likewise, artificial intelligence directly influences tourism
with a positive path coefficient (AI = β = 0.04, p > 0.05), and
artificial intelligence directly influences intelligent automated
tourism with a positive path coefficient (IAT = β = 0.41, p <
0.05). The data concluded that creating sustainability was a strong
coefficient between artificial intelligence when applied the
intelligent automated tourism. Likewise, artificial intelligence
brings positive change in the tourism with the help of IoT,
ESG policy, sustainable factor, and different facilities in the
tourism department. Artificial intelligence brings improvement
in the tourism and intelligent automated tourism (Figure 5).

The study used bootstrapping technique for the sample
enlargement in the model fit and estimates to be analyzed the
direct and indirect effects on study variables. For example,
artificial intelligence has a direct effect on IoT, sustainability,
facilitating adoption, ESG policy as well as indirectly effect on
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tourism and intelligent automation in tourism. Similarly, Valeri
and VanderWeele (2013) suggested that five thousand (5,000)
bootstrapped sample is reliable and valid in the linear multiple
paths especially for the SEM analyzed data.

The research hypothesized that artificial intelligence design
has beneficial influence on the tourism and intelligent automation
tourism with mediating role of sustainability, IoT, adoption, and
ESG policy. Likewise, the results of direct effects revealed that
artificial intelligence design is a highly significant and positive
predictor for tourism as well as a significant positive predictor for
intelligent automation in tourism, whereas artificial intelligence
design was a significantly positive predictor for IoT while on
another side it was found to be a positive significant predictor for
facilitating adoption. Furthermore, artificial intelligence was
found to be a cause for ESG while also directly affecting the
intelligent automation in tourism. The data concluded that
artificial intelligence could increase intelligent automation in
tourism with the help of ESG, IoT, sustainability, and facilities
adoption (Table 2).

The aforementioned results in Table 3 revealed indirect effects
of internet of things between artificial intelligence and tourism; it
was found to be a highly projective mediator for the overall
model. Similarly, internet of things model was found to be a
positive mediator for artificial intelligence and intelligent

automation tourism. As a result, creating sustainability was
found to be an insignificant indirect predictor between
artificial intelligence, tourism, and intelligent automation
tourism. Similarly, facilitating adoption was a positive indirect
significant predictor between artificial intelligence and tourism as
well as a positive predictor for intelligent automation tourism.
Lastly, ESG was found to be a positive significant predictor for
tourism and intelligent automation tourism.

The model fit equation revealed that seven hypotheses were
rejected, and all the proposed hypotheses were accepted, as
artificial intelligence design predicts tourism and artificial
automation tourism. Furthermore, measurement and structural
model is showing significant and insignificant paths in Table 4.

DISCUSSION

The techniques proposed can be generalized to any tourism sector
and the current study found that artificial intelligence brings
development in the tourism as well as intelligent automation is
beneficial for it. In this context, Ivanov and Webster (2019)
delineated that artificial intelligence automation predicts and
influences the automated future of travel and tourism.
Intelligent automation has begun to infiltrate the world tourist

FIGURE 5 | Empirical results from a complex multivariate model representation standardized regression coefficient for intelligent automation in tourism among
tourists (N = 402). Note: a complex multivariate model of five endogenous constructs and two exogenous indicators along with two control variables. Completely
standardized maximum likelihood parameter estimate for the artificial intelligent automation in tourism among tourists and employees.
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practices. The technical side of intelligent systems, meaning how
to design better, more effective artificial intelligence for service
delivery, has dominated research on intelligent automation,
particularly automation applied to the services sectors (Pinillos
et al., 2016; Jabeen et al., 2021). This is mainly due to the virtuous
artificial intelligence exploration and innovation process. Given
dynamic efficiency, artificial intelligence is projected to have a
substantial beneficial influence on the economy, and it is quickly
establishing one of the most critical sectors in the economic plan
of the world’s most industrialized countries (Rao, 2017; Dutton,
2018; Yigitcanlar et al., 2021). As a result, empirical research is
committed to initiate what might help developed countries gain
traction in the race to achieve the next major accomplishment in
AI and intelligent robots. The more funding accessible to spend in
technical innovation, the quicker artificial intelligence technology
improves (Russell et al., 2015). Likewise, Formosa (2021) defined

that artificial intelligence has a relationship with social and
human robotics autonomy.

Artificial intelligence (AI) has permeated many organizational
processes, raising concerns that clever robots could soon be able
to make decisions instead of many individuals. This study
analyzes how humans and AI might support each other to
incorporate decision-making processes that are generally
characterized by unpredictability, uncertainty, and ambiguity,
to give a more proactive and realistic viewpoint (Jarrahi,
2018). The current study delineated that ESG was found to be
a positive significant predictor for tourism and intelligent
automation tourism, which is countering unpredictability,
uncertainty, and ambiguity among individuals.

The potential applications of artificial intelligent automation
have been widely described in literature. For instance, intelligent
automation inquiry in the social sciences is underperforming,

TABLE 2 | Standardized estimates of direct effects for the paths of intelligent automation in tourism (N = 402).

Variables IoT CSF FA ESG Tourism IAT

β S.E β S.E β S.E β S.E β S.E β S.E
Artificial Intelligence 0.03 0.04 0.55*** 0.03 0.40*** 0.03 0.25*** 0.05 0.04 0.03 0.41*** 0.06

*p< 0.05, **p< 0.01, ***p< 0.001. Note: CSF = creating sustainability future; FA = facilitating adoption; ESG=environmental, social, governance; IoT= internet of things; IAT = intelligent
automation in tourism.

TABLE 3 | Standardized estimates of indirect effects of the paths for intelligent automation in tourism (N = 402).

Variables Tourism Intelligent automation in tourism

β SE CR β SE CR

Artificial intelligence
IoT 0.016 0.031 0.530 0.138*** 0.054 2.539
CSF 0.028 0.050 0.550 0.086 0.089 0.965
FA 0.728*** 0.052 14.117 0.010 0.091 0.114
ESG 0.208*** 0.032 6.852 0.205*** 0.054 3.822

*p < 0.05, **p < 0.01, ***p < 0.001. Note: CSF = creating sustainability future; FA = facilitating adoption; ESG=environmental, social, governance, IoT= internet of things.

TABLE 4 | Hypothetical paths for artificial intelligence and intelligent automation in tourism (N = 402).

Hypotheses Direction Paths Estimate SE CR p Label

FA ← AI 0.408 0.036 11.333 *** Sig
CSF ← AI 0.559 0.036 15.426 *** Sig
IoT ← AI 0.037 0.049 0.752 0.452 Insig
ESG ← AI 0.257 0.051 5.044 *** Sig
IAT ← AI 0.414 0.061 6.816 *** Sig
IAT ← ESG 0.205 0.054 3.822 *** Sig
Tourism ← CSF 0.028 0.05 0.55 0.582 Insig
Tourism ← FA 0.728 0.052 14.117 *** Sig
IAT ← FA 0.01 0.091 0.114 0.910 Insig
Tourism ← AI 0.04 0.034 1.154 0.249 Insig
Tourism ← IoT 0.016 0.031 0.53 0.596 Insig
Tourism ← ESG 0.208 0.03 6.852 *** Sig
IAT ← CSF 0.086 0.089 0.965 0.334 Insig
IAT ← IoT 0.138 0.054 2.539 0.011 Sig

*p < 0.05, **p < 0.01, ***p < 0.001. Note: CSF = creating sustainability future; FA = facilitating adoption; ESG=environmental, social, governance; IoT= internet of things; IAT = intelligent
automation tourism.
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which is necessary given the significance of intelligent automation
for the mechanisms underpinning social interactions and
controlling the community. The majority of research has
focused on the socially responsible (and legal) attributes of
artificial intelligence and its application (Gurkaynak et al.,
2016; Nawi et al., 2021). Furthermore, Huang and Rust (2018)
have given prediction about possible future consequences for the
social evolution of task and competencies. Intelligent automation
design is the best facilitator in the adaptation process (Colby et al.,
2016; Colby et al., 2016; Huang and Rust, 2018; Jarrahi, 2018).
The social science components of intelligent automation and the
technological ones must be prioritized in development of human
beings (Russell et al., 2015). In this respect, the study concluded
that artificial intelligence is a good predictor for bringing
sustainability in the tourism sector and intelligent automation
tourism is possible in the future.

The limitations of the study are that, for example, the research
of intelligent automation in the social sciences is weak, which is
necessary given the importance of intelligent automation for the
mechanisms underlying social interactions and community
control. Moreover, we intend to continue such research so
that we can also contribute to intelligent automation in the
social sciences, which would make it especially possible in the
scientific field of tourism to be able to be automated through
artificial intelligence.

CONCLUSION

In summary, scientific technique has demonstrated high-quality
results for the intelligent automation tourism with sustainable
environmental and social governance. The idea started from the
broad research agenda and then systematically constructed
knowledge in the area of artificial intelligence perspective, and
its relationship with intelligent automation tourism, as well as
conducting robust scientific research to advise policy measures
and efforts from diverse stakeholder groups, such as governments
and tourism organizations, to confirm the answerable adoption of
intelligent automation in tourism. The scientific analysis
proposes multiple survey preferences based on key scientific
inquiries about artificial intelligence, associated automated
technology, and their implementations in tourism. However,
constructing beneficial artificial intelligence, facilitating
adoption, examining the implications of intelligent
automation, and establishing a sustainable vision with the help
of ESG criteria could be a good framework for the tourism sector.

The outcome of predictive model leads to the conclusion that
artificial intelligence design can improve tourism department if
the intelligent automated framework was applied to it. This is
because artificial intelligence, internet of things, facilitation
adoption, and sustainable ESG had a predictive association
found with intelligent automation in tourism.

Contributions
The main achievements, including contributions, may be
summarized as follows:

• Artificial intelligence and intelligent automation framework
provide an advancement of state-of-the-art for the tourism
sector.

• As a social phenomenon and an economic activity, tourism
has to be shaped in the future, and this study provides a
framework for future research in the field of AI, robotics,
IoT, ESG, and intelligent automation in tourism.

• Policymakers should follow artificial intelligence
professionals and specialists for intelligent automation in
tourism. Afterwards, ESG criteria framework for the future
of intelligent automation in the tourism department can
positively have an effect.

• It is recommended that artificial intelligence should
improve the tourism sector, which positively influences
the environment of intelligent automated tourism.
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