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Pollutant flux estimation and the analysis of flux variations are the basis for water
quality assessment and water pollution control. At present, pollution flux estimation
has certain shortcomings, such as a low frequency of water quality monitoring and
inadequate calculation methods. To improve the rationality and reliability of river
pollution flux estimation results, an improved prediction-correction pollution flux
estimation method was developed by combining the LOADEST model and the
Kalman filtering algorithm. By establishing the regression equation between
pollutant flux and daily discharge, the predicted pollution flux procedure can be
calculated using the LOADEST model. In a subsequent step, the pollutant flux is
corrected based on the Kalman filtering algorithm. The improved method was applied
to estimate the fluxes of chemical oxygen demand (COD), ammonia nitrogen (NH3-N),
and total phosphorus (TP) at the Guilin Section of the Lijiang River from 2010 to 2019.
The estimated fluxes were in good agreement with the measured ones, with
relative deviation values for COD, NH3-N, and TP of 2.27, 3.20, and 1.39%,
respectively. The improved method can reasonably estimate fluctuations in river
pollution fluxes without requiring more data. The results in the present study
provide powerful scientific basis for pollutant flux estimation under low-frequency
water quality monitoring.
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INTRODUCTION

Globally, water pollution is one of the most important environmental issues. In rivers, various
pollutants, impacted by physical, chemical, biological, ecological, climatic, and other factors,
can cause eutrophication, acidification, or alkalization, posing a threat to river ecosystem health
(Aparicio et al., 2016; Steward et al., 2018). Pollutants in rivers can be rapidly transported
through surface and subsurface routes, directly influencing the landscape water quality and
regional water safety (Zhang et al., 2017; Qin et al., 2019). The river pollutant flux can directly
reflect the total pollution load in the watershed above the river section, representing the
production and transportation characteristics of pollutants in the watershed, which is the basis
for formulating pollution control plans and measures (Halliday et al., 2014). However, low-
frequency and discrete water quality monitoring data series pose great challenges to the reliable
quantification of river pollutant fluxes (Li and Guo, 2017).
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In China, water quality is routinely monitored once amonth in
most rivers. The monthly representative value method
(i.e., assuming that the water quality monitoring data
represent the monthly average water quality concentration)
and the linear interpolation method (i.e., assuming that the
water quality concentration changes linearly between two
measured data) are conventional pollutant flux calculation
methods suitable for rivers that are not subjected to
considerable human activities (Valero, 2012; Gnann et al.,
2018). However, when human activities are intensified, this
has an obvious influence on water quality. Since river
pollutant flux estimations are mainly based on the above two
conventional methods, the actual situation is mostly not reflected,
impeding the development of refined water management
strategies. Therefore, to obtain more accurate simulation
results, a method of pollutant flux estimation based on
watershed pollution load modeling (e.g., SWAT model and
HSPF model) is developed (Chang and Li, 2017; Bui et al.,
2019). As such an approach requires numerous data types
(e.g., terrain, meteorological, land use, soil, and vegetation
data), which are difficult to obtain, it is necessary to develop a
method which not only reasonably describes the water quality
fluctuation characteristics but also has simple requirements for
data and can be easily used (Murphy and Sprague, 2019; Terskii
et al., 2019).

Based on previous studies, there are good statistical
correlations between river pollutant flux and discharge (Li and
Guo, 2017; Kim et al., 2018). Therefore, by establishing the
regression relationship between pollutant flux and discharge,
high-frequency discharge monitoring data can be used to
interpolate the pollutant flux between two measured water
quality values, facilitating the determination of the fluctuation
process between two measured values. In this paper, the Load
Estimator (LOADEST) model can establish the regression
equation between pollutant flux and daily discharge and can
subsequently estimate the river pollutant flux at different time
and space scales using daily discharge monitoring data and low-
frequency water quality monitoring data (Runkel et al., 2004).
Some authors have applied the LOADEST model to estimate
pollutant fluxes in the North Jiulong River, the Three Gorges
Reservoir Area, the Peru Creek, the Mississippi River, and the
Ishikari River (Duan et al., 2013; Runkel et al., 2013; Pellerin et al.,
2014; Gao et al., 2018; Zhu et al., 2019). However, affected by
incomplete data and non-optimal parameters, there are inevitable
errors between estimated and measured values, resulting in
deviation during pollutant flux estimation. Therefore, to
reduce the error and improve the calculation accuracy, an
effective data correction method is crucial.

As an optimal autoregressive data-processing algorithm,
Kalman filtering has the advantages of a small calculation
workload and a short computing time. The main processes of
Kalman filtering are prediction and correction (Cammalleri and
Ciraolo, 2012). The prediction process mainly uses the time
renewal equation to establish an a-priori estimation for the
current state and calculates the values of state variable and
error covariance to establish an a-priori estimation for the
next time state. In the correction process, the measurement

renewal equation is used to establish an improved posterior
estimation of the current state based on the prior estimation
of the prediction process and the measured variables (Evensen,
2003). It can improve the rationality and reliability of the
estimation results, and is widely used in the real-time
correction of hydrological and hydrodynamic models
(Goncalves and Costa, 2013; Javaheri et al., 2019; Xiong et al.,
2019).

This paper combines the LOADEST model and the Kalman
filtering algorithm to improve the reliability of river pollutant
flux estimation results. Based on low-frequency water quality
monitoring data and daily discharge data collection, the
optimal pollutant flux regression equation was selected by
the LOADEST model, and the daily pollutant flux process
was predicted based on the regression equation. Subsequently,
the predicted pollutant flux was corrected by the Kalman
filtering algorithm, thus obtaining the estimated
pollutant flux.

MATERIALS AND METHODS

Prediction of Pollutant Flux Based on the
LOADEST Model
The LOADEST model estimates the river pollutant flux using
multiple linear regression. The optimal flux regression equation
of the corresponding pollutant is established based on continuous
daily discharge monitoring data, the low-frequency water
pollutant concentration monitoring data, and subsequently, the
daily pollutant flux at different time scales is estimated, which
makes up for the deficiency that conventional statistical methods
cannot describe the fluctuation characteristics of water pollutant
concentration (Kim et al., 2018).

Regression Equation of Pollutant Flux
Taking the water pollutant concentration monitoring data and
the daily discharge monitoring data as input, the optimal
regression equation between pollutant flux and discharge is
selected by the LOADEST model to determine the daily
pollutant flux (Gao et al., 2021). The LOADEST model
provides 11 regression equations, as shown in Table 1.

TABLE 1 | Regression equations to determine the river pollutant flux by the
LOADEST model.

Number Regression equation

1 lnL � a0 + a1lnQ
2 lnL � a0 + a1lnQ + a2(lnQ)2
3 lnL � a0 + a1lnQ + a2dtime
4 lnL � a0 + a1lnQ + a2sin(2πD) + a3cos(2πD)
5 lnL � a0 + a1lnQ + a2(lnQ)2 + a3D
6 lnL � a0 + a1lnQ + a2(lnQ)2 + a3sin(2πD) + a4cos(2πD)
7 lnL � a0 + a1lnQ + a2sin(2πD) + a3cos(2πD) + a4D
8 lnL � a0 + a1lnQ + a2(lnQ)2 + a3sin(2πD) + a4cos(2πD) + a5D
9 lnL � a0 + a1lnQ + a2(lnQ)2 + a3sin(2πD) + a4cos(2πD) + a5D + a6D2

10 lnL � a0 + a1per + a2lnQ + a3Qper
11 lnL � a0 + a1per + a2lnQ + a3Qper + a4(lnQ)2 + a5(lnQ)2per
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In Table 1, L refers to the pollutant flux, kg/day; a0 to a6
represent the regression equation parameters to be estimated; lnQ
equals ln (streamflow) minus the center of ln (streamflow); D
equals the decimal time minus the center of decimal time in the
research period; per is used to identify the duration of the
estimation sequence (Runkel et al., 2004).

Parameter Estimation and Test
Due to limited observation times and the inaccuracy of historical
information, the data frequently contain non-specific values,
which fall in a specific observation interval, or values greater
(less) than a certain threshold rather than a specific value. In
statistics, such data are called censored data. The LOADEST
model uses different parameter estimation methods based on
whether the residual error of pollutant flux follow normal
distribution and whether censored data occur. When residual
error values are normally distributed, the censored data are
estimated by adjusted maximum likelihood estimation
(AMLE), whereas uncensored data are estimated by minimum
variance unbiased estimation (MVUE) (Cohn et al., 1989, 1992).
The specific algorithms are shown in Eqs 1, 2, respectively. When
the residual error does not meet the requirements of normal
distribution, the least absolute deviation (LAD) is used whether
the data are censored or not, as shown in Eq. 3 (Powell, 1984):

LAMLE � exp⎛⎝a0 +∑NV

j�1
ajXj

⎞⎠ × H(a, b, s2, α, κ) (1)

LMVUE � exp⎛⎝a0 +∑NV

j�1
ajXj

⎞⎠ × gm(m, s2, V) (2)

LLAD � exp⎛⎝a0 +∑NV

j�1
ajXj

⎞⎠ ×
∑n

k�1exp(ek)
n

(3)

where LAMLE, LMVUE, and LLAD are the estimated pollutant fluxes
calculated by AMLE, MVUE, and LAD methods, respectively; H
(a, b, s2, α, κ) represents the likelihood approximation function of
infinite series; gm (m, s2, V) represents the Bessel function; α and κ
represent the function of gamma distribution; a, b, and V
represent the dependent variables; m represents the degree of
freedom; s2 represents the residual variance; ek represents the
residual error; and n represents the number of data points for
equation calibration.

For the parameters of pollutant flux regression equation a0 to
a6, the LOADESTmodel mainly tests the validity by the following
methods:

1) Determination coefficient (R2) testing method. The
determination coefficient is used to test the data fitness of
the regression equation. According to the theory of
mathematical statistics, R2 > 80% indicates that the
regression equation has a preferable fitting degree, and R2

> 90% indicates that the regression equation fits well (Menard,
2000; Runkel et al., 2004).

2) Nash-Sutcliffe efficiency (NSE) testing method. The NSE
represents the relationship between the calculated value
and the average measured value of the model, which

ranges from -∞ to 1. The larger the NSE value, the higher
the coincidence between the simulated value and the
measured value (Wu et al., 2019). The NSE value is
calculated as follows:

NSE � 1 − ∑n

i�1(Qmea,i − Qsim,i)2
∑n

i�1(Qmea,i − Qmea)2 (4)

where Qmea,i and Qsim,i represent the measured and simulated
values, respectively, and Qobs represents the average of the total
measured value.

3) Serial correlation of residuals (SCR) testing method. The
SCR is used to test whether there is sequence correlation in
the residuals (Verbeke et al., 1998). The smaller the SCR
value, the more independent the residual of the equation.
For uncensored data, the probability plot correlation
coefficient (PPCC) is used to test whether the residual of
the regression equation is in accordance with normal
distribution, and PPCC > 0.9 indicates that the residual
meets the requirements of normal distribution (Vogel, 1986;
Runkel et al., 2004). For censored data, the Turnbull-Weiss
statistic method is used to test whether the residual of the
regression equation is in accordance with normal
distribution, and P < 0.05 indicates normal distribution
(Turnbull and Weiss, 1978).

4) T-ratio testing method. As multicollinearity affects the result
of regression analysis, the regression model uses the
correlation coefficient to determine whether there is a
correlation between independent variables. In the case of
multicollinearity correlation, it can be eliminated by
centralizing independent variables (Cohn et al., 1992). The
equations are as follows:

~T � �T + ∑N

k�1(Ti − �T)3
2∑N

k�1(Ti − �T)2 (5)

�T � 1
N

∑N
i�1
Ti (6)

where ~T represents the centering value; N represents the number
of observation data used for parameter calibration; �T is the mean
value of the observation data.

Regression Equation Optimization
The regression equation is optimized by the Akaike Information
Criterion (AIC) and the Schwarz Posterior Probability Criterion
(SPPC) (Akaike, 1974; Schwarz, 1978). Both AIC and SPCC are
standards to measure the complexity and the fitting accuracy of
statistical models. They can be used to select the model with good
fitness and least free parameters. When optimizing the regression
equation, the AIC and SPCC values of each regression equation
can be calculated by Eqs 7, 8, respectively. The equation with the
minimum values is the optimum:

AIC � m ln(SSR
m

) + 2k (7)
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SPPC � m ln(SSR
m

) + k ln(m) (8)

where SSR is the residual sum of squares; k represents the number
of equation parameters; m represents the number of data groups
for parameter estimation.

Pollutant Flux Correction Based on Kalman
Filtering
The basic idea of the Kalman filtering algorithm is taking the
minimum mean square error as the best estimation criterion,
establishing the space model of signal and noise states, and
using estimates of the previous time and observations of the
present time to update the estimation of state variables,
followed by obtaining the optimal estimates of the present
time (Kalman, 1960; Campestrini et al., 2016). In this study,
taking the measured pollutant flux values and the
corresponding predicted pollutant flux values by the
LOADEST model as inputs, the optimal pollutant flux
estimates at the measured time are calculated based on the
Kalman filtering algorithm. The difference between the optimal
estimates and the measured values is the error at the measured
time. Assuming that the errors follow linear distribution, the
daily pollutant flux errors are obtained by extending the
interpolation of the measured error values to the daily values
(Aulenbach, 2013). Therefore, the corrected pollutant flux
values are obtained by adding the daily flux pollutant error
values to the predicted daily pollutant flux values.

According to the Kalman filtering theory, the state equation
needs to be established and is as follows:

X0 � AXL + ω,/, X̂k � AXk−1 + ω (9)
where X0 is the initial iteration value by Kalman filtering; XL

represents the pollutant flux estimated by the LOADEST model;
A represents the state transition parameter, which is equal to the
linear correlation coefficient between the measured and the
predicted value using the LOADEST model; w is the model
noise that meets the requirements of normal distribution with
mean value of 0 and a variance of D. The value of D can be
determined based on the estimated flux error by the LOADEST
model. X̂k represents the predicted value of the pollutant flux for
the kth iteration; Xk-1 represents the corrected value of the
pollutant flux for the k-1st iteration.

The updated equation of the state estimation error covariance
is as follows:

P̂k � APk−1AT +D (10)
where P̂k represents the predicted error covariance for the kth
iteration; Pk-1 represents the corrected error covariance for the k-
1st iteration, and the initial value P0 refers to the predicted error
covariance by the LOADEST model.

The Kalman gain can be calculated as follow:

K̂k � P̂kH
T

HP̂kH
T + B

(11)

whereKk represents the Kalman gain for the kth iteration;H is the
transformation parameter matrix with the determinant value of 1;
and B represents the variance of measured noise.

The equation used for the filtering correction is as follows:

Xk � X̂k +Kk(Y −HX̂k) (12)
where Xk represents the corrected pollutant flux value for the kth
iteration, and Y represents the measured pollutant flux value.

The updated equation of the state filtering error covariance is
as follows:

Pk � (I −KkH)P̂k (13)
where Pk represents the state filtering error covariance, and I is
the identity matrix. The autoregressive iterative calculation is
performed sequentially according to Eqs 9–13. The optimal
corrected pollutant flux value in the measured time is obtained
when Pk converges to a constant value.

Study Area and Data
In this study, the improved method was applied to the Lijiang
River (Figure 1) which is a tourist attraction of world-wide
interest and belongs to the Pearl River basin. It is located in
the northeast of the Guangxi Zhuang Autonomous Region,
China. The Lijiang River originates from the northeast of the
Mao’er Mountain and is famous for its picturesque scenery of
mountains on the riverbanks, with a karst topography. The total
length of the Lijiang River is 214 km, with a drainage area of
12,285 km2 (24°18′–25°41′ N, 109°45′–110°40′ E). The climate of
the Lijiang River basin is subtropical monsoonal climate, with
warm, humid summers and cool, wet winters. The annual average
temperature is 19.3°C, with an annual average precipitation of
about 2,200 mm. Floodingmostly occurs in June and July, and the
dry period is from October to March (Li et al., 2015).

The overall water quality of the Lijiang River is good. The rapid
population growth, coupled with accelerated economic development,
has gradually led to a deterioration of the water quality during the last
few years (Deng et al., 2021). The discharge of wastewater from
factories and the increase in industrial and domestic pollution
discharge have resulted in water pollution risk. As it is difficult to
control diffuse pollution from agricultural sources, the protection of
the basin is challenging. Currently, water pollution is threatening the
safety of water resources from the Lijiang River.

This paper estimated the river pollutant flux from 2010 to 2019 at
the Guilin section of the Lijiang River. Due to nitrogen pollution
caused by the extensive use of chemical fertilizers and pesticides on
farmland, coupled with wastewater discharge from households and
restaurants on both sides of the Lijiang River, chemical oxygen
demand (COD), ammonia nitrogen (NH3-N), and total
phosphorus (TP) were selected as characteristic pollutants (Ye
et al., 2010). Simultaneous observed precipitation data were
obtained from the National Meteorological Information Center of
China.Monitoring data of daily average discharge and low-frequency
monitoring water pollutant concentration data for the Guilin section
from 2010 to 2019 were provided by the Guilin Hydrology Bureau.
These data were examined and calibrated to test whether they were
homogeneous, extreme, and temporally consistent. Therefore, the
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data were considered to be reliable (Huang et al., 2019). The statistics
of measured data, such as maximum, minimum, and mean of
discharge and pollutant concentration parameters were seen in
Table 2.

RESULTS AND DISCUSSION

Regression Model
The pollutant flux regression Eqs 14–16 were obtained by using
the daily average discharge, measured time, and water pollutant

concentration data at the Guilin section of the Lijiang River; the
parameters were calibrated by the optimization of AIC and SPCC.
The results of the LOADEST model show that the optimal
regression models for both NH3-N and TP fluxes were seven-
parameter equations, whereas the optimal regression model for
COD was a three-parameter equation. The regression model
analyses of COD, ammonia nitrogen, and TP are shown in
Table 3.

COD：
ln L � 9.3694 + 0.9166 lnQ + 0.0104D

(AIC � 0.02; SPCC � −0.17) } (14)

FIGURE 1 | Location of the lijiang river basin and gauging station.

TABLE 2 | Statistics of discharge, chemical oxygen demand (COD), ammonia nitrogen (NH3-N), and total phosphorus (TP) data.

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Discharge (m3/s) Maximum 3,930 2,250 2,220 2,470 2,970 2,280 2,120 3,700 1,520 3,960
Minimum 8.50 6.70 11.5 19.1 14.8 23.5 11.7 11.6 7.70 13.1
Mean 134 84.7 130 139 124 181 152 165 89.0 201

COD (mg/L) Maximum 2.40 2.80 2.80 2.00 1.90 2.70 2.00 2.40 2.30 1.70
Minimum 0.80 0.90 0.90 1.20 1.20 0.80 0.80 1.10 1.30 1.10
Mean 1.44 1.53 1.52 1.62 1.56 1.64 1.40 1.62 1.77 1.49

NH3-N (mg/L) Maximum 0.82 0.89 0.89 0.74 0.55 0.33 0.47 0.49 0.39 0.12
Minimum 0.09 0.06 0.06 0.09 0.07 0.05 0.01 0.06 0.03 0.03
Mean 0.35 0.37 0.37 0.38 0.24 0.23 0.21 0.21 0.16 0.08

TP (mg/L) Maximum 0.13 0.09 0.09 0.08 0.11 0.09 0.07 0.09 0.08 0.04
Minimum 0.02 0.05 0.05 0.03 0.04 0.03 0.04 0.02 0.02 0.03
Mean 0.06 0.07 0.07 0.05 0.06 0.05 0.05 0.06 0.06 0.04
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NH3 −N：
lnL � 7.4448 + 0.7228 lnQ + 0.0471(lnQ)2 + 0.3766 sin(2πD)

−0.0749 cos(2πD) − 0.1318D − 0.0229D2

(AIC � 1.88; SPCC � −122.63)

⎫⎪⎬⎪⎭
(15)

TP：
lnL � 6.0083 + 0.8268 lnQ + 0.0530(lnQ)2 + 0.0981 sin(2πD)

−0.1304 cos(2πD) − 0.0249D − 0.0086D2

(AIC � 0.72; SPCC � −52.89)

⎫⎪⎬⎪⎭
(16)

As shown in Table 3, the pollutant flux regression equations
for COD, NH3-N, and TP fit well for the study period, with R2

values ranging from 0.70 to 0.93. The highest R2 value was
obtained for COD; a large R2 value indicates that the pollutant
flux, daily discharge, and time are well correlated. When
comparing the simulated pollutant flux to the measured one,
the NSE values were 0.85 (COD), 0.83 (NH3-N), and 0.88 (TP),
indicating that the numerical results for the Lijiang River and the
monitoring results were similar, with a small error, and the
LOADEST model is highly reliable. The p values obtained for
COD, ammonia nitrogen, and TP were below 0.05, indicating that
the equation coefficients were statistically significant. The SCR
values were 0.27 (COD), 0.25 (NH3-N), and 0.16 (TP), indicating
that the residuals were independent. Furthermore, the PPCC

values were 0.99 (COD), 0.97 (NH3-N), and 0.99 (TP),
indicating that the residuals meet the requirements of normal
distribution. Based on the results, the regression equation
optimized based on the LOADEST model can be used to
predict the pollutant flux in the Lijiang River.

Pollutant Flux Estimation
In this study, the improved prediction-correction method was
used to estimate the pollutant flux of the Lijiang River. The
predicted pollutant flux based on the LOADEST model was
corrected by applying the Kalman filtering algorithm.
Generally, pollution flux depends on river discharge and
water pollutant concentration. However, based on the
results of the correlation analysis, the fluxes of COD, NH3-
N, and TP were only correlated with river discharge, with R2

values of 0.92, 0.73, and 0.89, respectively (Figure 2). Although
the pollution flux is a product of river discharge and water
pollutant concentration, here, the fluxes of COD, NH3-N, and
TP mainly depended on the variation of river discharge during
the study period, whereas the influence of water pollutant
concentration was weak. These results indicate that there is a
significant correlation between pollution flux and river

TABLE 3 | Regression model analyses of chemical oxygen demand (COD), ammonia nitrogen (NH3-N), and total phosphorus (TP). Std. Dev, standard deviation;NSE, Nash-
Sutcliffe efficiency value; PPCC, probability plot correlation coefficient; SCR, serial correlation of residuals.

Pollutant a0 a1 a2 a3 a4 a5 a6

COD R2 = 0.93; NSE = 0.85 Std. Dev 0.0215 0.0242 0.0074 — — — —

PPCC = 0.99 t-ratio 434.78 37.92 1.41 — — — —

SCR = 0.27 p Value 0.0001 0.0001 0.1550 — — — —

NH3-N R2 = 0.70; NSE = 0.83 Std. Dev 0.0932 0.0887 0.0553 0.0824 0.1052 0.0195 0.0075
PPCC = 0.97 t-ratio 79.89 8.15 0.85 4.57 –0.71 –6.76 –3.03
SCR = 0.25 p Value 0.0001 0.0001 0.3812 0.0001 0.0464 0.0001 0.0002

TP R2 = 0.86; NSE = 0.88 Std. Dev 0.0521 0.0496 0.0309 0.0461 0.0589 0.0109 0.0042
PPCC = 0.99 t-ratio 115.29 16.67 1.71 2.13 –0.22 –2.28 –2.05
SCR = 0.16 p Value 0.0001 0.0001 0.0793 0.0299 0.0239 0.0202 0.0365

FIGURE 2 | Correlations of measured of COD, NH3-N, and TP fluxes with discharge and water pollutant concentration of the Lijiang River.
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discharge, which is consistent with the results of previous
studies (Park and Engel, 2016; Kim et al., 2018). The
correlation between pollutant flux and concentration largely
depends on the hydrological conditions; in rivers with stable
discharge, it is higher than in those with large flow fluctuations
(Li and Guo, 2017).

The annual and seasonal variations of pollutant fluxes are
shown in Figures 3, 4. Throughout the study period, the annual
average fluxes of COD, NH3-N, and TP were 6,523.35, 997.53,
and 237.21 t, respectively. As shown in Figure 3, the annual
pollutant fluxes of both COD and TP exhibited an increasing
trend from 2010 to 2019, with growth rates of 5.18 and 0.94%,
respectively. This increase was mainly due to the economic and
industrial development and the population increase in the Lijiang
River Basin. The scouring on sediment causes more phosphorus
to be released into the river, which may increase the pollutant flux
of TP. The NH3-N flux increased from 2010 to 2013, followed by
a decrease until 2019, with an overall decline rate of 6.79%. Most
likely, this is a result of the reduction of non-point source

pollution input (e.g., pesticides, livestock manure, and
fertilizer) and the decreased rural wastewater discharge (Xu
et al., 2020).

As shown in Figures 4, 5, annual fluxes of COD, NH3-N, and
TP showed considerable seasonality, corresponding with
variations in discharge and rainfall (Li and Guo, 2017). All
pollutants showed larger fluxes in the wet season (from March
to August) compared to the dry season (from September to
February). The annual average fluxes of COD, NH3-N, and TP
in the wet season were 4,970.98, 779.35, and 189.86 t throughout
the study period, accounting for 76.20, 78.13, and 80.04% of the
annual average fluxes, respectively. In the wet season,
precipitation in the Lijiang River Basin is heavy, accounting
for about 80% of the annual precipitation, which explains the
large seasonal variations in pollutant fluxes (Figure 4). Pollutants
are discharged into the river by runoff scouring after
precipitation, resulting in increased pollutant loads. Therefore,
precipitation is the main driving factor for the increase of runoff
pollution in the river basin, and attention should be paid to the

FIGURE 3 | Estimated annual fluxes of COD, NH3-N, and TP from 2010 to 2019. (Symbols represent annual fluxes; lines represent 95% confidence intervals).

FIGURE 4 | Estimated seasonal fluxes of COD, NH3-N, and TP from 2010 to 2019.
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control of pollutant fluxes in the wet season. However, the NH3-N
flux in the wet season decreased from 2014 to 2019, which is
basically consistent with the change in pollutant concentration,

indicating that concentration is another factor affecting the NH3-
N flux.

Comparison With Other Methods
To verify the rationality of the pollutant flux estimation
results based on the improved prediction-correction
method, the estimated fluxes of COD, NH3-N, and TP were
compared with the measured fluxes and the simulated ones
based on the LOADEST model. As shown in Figures 6, 7, the
estimated daily fluxes largely coincided with the measured
pollutant fluxes. Linear regression analysis was carried out on
120 predicted and corrected flux values and showed that the
correlation coefficients of COD, NH3-N, and TP were 0.93,
0.80, and 0.90, respectively. The cumulative COD fluxes of the
total 120 measured values and their corresponding estimated
values were 1,756.43 and 1,796.25 t, respectively. The relative
deviation between estimated and measured fluxes of COD was
reduced from 10.01 to 2.27% after pollutant flux correction.
The cumulative NH3-N fluxes of the total 120 measured values
and their corresponding estimated values were 283.75 and
292.83 t, respectively. The relative deviation between
estimated and measured fluxes of NH3-N reduces from 7.18
to 3.20% after pollutant flux correction. The cumulative TP
fluxes of the measured values and their corresponding

FIGURE 5 | Annual and seasonal precipitation of the Lijiang River Basin
from 2010 to 2019.

FIGURE 6 | Pollutant flux estimation with measured values.
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estimated values were 63.52 and 64.40 t, respectively. The
relative deviation between estimated and measured fluxes
of TP was reduced from 9.76 to 1.39% after pollutant flux
correction. These results indicate that the fluxes of COD,
NH3-N, and TP of the Lijiang River from 2010 to 2019,
estimated by using the improved prediction-correction
method based on the LOADEST model and the Kalman
filtering algorithm, are reasonable and reliable.

The fluxes of COD, NH3-N, and TP at Guilin Section were
calculated for 2010 to 2019, using the monthly representative
value method (MRVM) and the linear interpolation method
(LIM), and subsequently compared with the fluxes estimated
by the improved prediction-correction method. As shown in
Tables 4, 5, the values obtained by the different methods
largely varied. For periods with small fluctuations in water
quality (e.g., 2013–2015), the annual pollutant fluxes
calculated via MRVM, LIM, and in the present study only
slightly differed, with a deviation ranging from 0.21 to 18.60%.

On the contrary, for periods with large fluctuations (e.g., 2010,
2011, 2016, and 2019), the annual pollutant fluxes differed
largely depending on the applied method, with deviation
ranging from 20.94 to 41.78%. Because of the slight
fluctuations in monthly COD, NH3-N, and TP
concentrations at Guilin Section in the dry season, the
variation in pollutant flux was mainly determined via
discharge, resulting in only slight differences depending on
the method. In the wet season, the opposite was observed. The
pollutant flux deviation in separate months exceeded 100%
(Supplementary Tables S1–S10). In addition, there was no
significant difference in the processes and total COD flux
estimated by the different methods. The main reason is that
the monthly change of COD concentration is small, ranging
between 1 and 2 mg/L in most months, and its flux is mainly
determined by river discharge. In summary, for water
pollutant concentration within a narrow range, the LIM
and the MRVM can be used for pollutant flux estimation,

FIGURE 7 | Correlation of predicted COD, NH3-N, and TP fluxes with corrected fluxes.

TABLE 4 | Comparison of annual pollutant flux estimates obtained by different methods (LIM represents linear interpolation method, MRVM represents monthly
representative value method).

Year 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

COD This study 5105.88 3905.74 5627.80 6350.89 5700.10 9255.61 6969.74 8008.47 4775.14 9678.55
LIM 3129.68 2651.24 6345.94 6151.89 5660.81 7938.65 5359.16 6679.97 3798.35 6595.78
Deviation −38.70% −32.12% 12.76% −3.13% −0.69% −14.23% −23.11% −16.59% −20.46% −31.85%
MRVM 3128.10 2668.55 5382.14 6120.17 5662.25 7939.16 5321.36 6895.44 3764.08 6976.76
Deviation −38.74% −31.68% −4.37% −3.63% −0.66% −14.22% −23.65% −13.90% −21.12% −27.92%

NH3-N This study 1,023.53 839.75 1512.28 1933.83 948.79 1194.13 903.04 819.44 320.95 489.84
LIM 639.40 594.80 1510.79 1941.91 852.99 1208.76 582.12 736.54 259.50 367.01
Deviation −37.53% −29.17% −0.10% 0.42% −10.10% 1.23% −35.54% −10.12% −19.15% −25.08%
MRVM 630.37 607.18 1522.77 1929.72 855.11 1190.83 542.59 760.44 259.82 387.27
Deviation −38.41% −27.70% 0.69% 0.21% −9.87% −0.28% −39.92% −7.20% −19.05% −20.94%

TP This study 208.88 164.11 268.14 231.40 244.37 266.85 269.34 327.32 135.81 258.91
LIM 123.43 111.13 256.16 190.95 245.41 246.93 207.26 277.44 103.99 162.56
Deviation −40.91% −32.28% −4.47% −17.48% 0.43% −7.46% −23.05% −15.24% −23.43% −37.21%
MRVM 121.60 112.77 259.96 188.35 246.10 244.35 207.88 286.43 102.77 172.51
Deviation −41.78% −31.28% −3.05% −18.60% 0.71% −8.43% −22.82% −12.49% −24.33% −33.37%
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whereas in the case of large fluctuations, these conventional
methods should be used with caution. Here, the improved
prediction-correction method, combining the LOADEST
model and the Kalman filter algorithm, is a better choice
for pollutant flux estimation.

CONCLUSION

To further develop the currently used river pollutant flux
estimation methods, an improved prediction-correction
method is proposed, including two steps: pollutant flux
prediction based on the LOADEST model and pollutant flux
correction using the Kalman filter algorithm. In the first step, the
regression equation between pollutant flux and daily discharge is
established to reflect the fluctuation characteristics of pollutants
to compensate for the shortcomings of conventional calculation
methods. In the second step, the predicted pollutant fluxes are
corrected by the Kalman filter algorithm to reduce the error
between the corrected and the measured values and to increase
the reliability of the estimated results. The improved method has
the advantages of simple data requirements and low technical
complexity, making it the method of choice in large-scale
applications. The results showed that the estimated fluxes of
COD, NH3-N, and TPwere in good agreement with the measured
values, indicating that the results based on the combination of the
LOADEST model and the Kalman filtering algorithm are reliable.
Compared with the results of the LIM and the MRVM, the
improved prediction-correction method can be used as a
better choice for pollutant flux estimation.

The improved method requires a good statistical regression
relationship between pollutant flux and river discharge and is
therefore suitable for rivers subjected to non-point source
pollution. With the increase in the proportion of point source
pollution, its application effect will decrease. The pollutant flux
estimationmethod for rivers dominated by point source pollution
should be further investigated.
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TABLE 5 | Comparison of monthly pollutant flux estimates obtained by different methods.

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

COD This study 1989.30 2048.30 4462.43 8260.37 11922.38 12775.80 8594.82 4595.98 2782.17 2327.51 3251.59 2222.83
LIM 1741.12 2555.56 5691.47 7201.42 9061.04 8428.74 6738.57 2830.26 2587.34 2412.68 1959.70 1929.01
Deviation −12.48% 24.76% 27.54% −12.82% −24.00% −34.03% −21.60% −38.42% −7.00% 3.66% −39.73% −13.21%
MRVM 1607.79 1875.89 5332.88 5831.27 9521.71 7963.71 9450.17 2831.36 2588.60 2658.93 1797.27 2206.84
Deviation −19.18% −8.42% 19.51% −29.41% −20.14% −37.67% 9.95% −38.39% −6.96% 14.24% −44.73% −0.72%

NH3-N This study 399.62 416.32 872.29 1636.69 2116.54 1745.56 1110.29 555.13 289.41 231.23 314.37 287.84
LIM 376.86 503.00 1032.86 1414.58 1622.32 1201.42 1115.47 433.83 271.83 244.96 209.33 255.13
Deviation −5.70% 20.82% 18.41% −13.57% −23.35% −31.17% 0.47% −21.85% −6.07% 5.94% −33.41% −11.36%
MRVM 345.70 386.62 929.57 1095.57 2007.18 896.61 1544.07 504.63 276.34 266.92 193.61 231.86
Deviation −13.49% −7.13% 6.57% −33.06% −5.17% −48.63% 39.07% −9.10% −4.51% 15.43% −38.41% −19.45%

TP This study 66.44 68.04 144.66 288.11 423.64 498.19 349.93 197.17 96.49 71.15 98.73 69.53
LIM 91.17 93.88 209.32 248.35 288.24 339.33 297.33 107.77 83.75 71.71 59.86 61.19
Deviation 37.22% 37.98% 44.70% −13.80% −31.96% −31.89% −15.03% −45.34% −13.20% 0.79% −39.37% −11.99%
MRVM 50.71 72.41 182.17 235.39 279.60 293.23 424.45 115.21 85.69 79.39 51.94 70.14
Deviation −23.68% 6.42% 25.93% −18.30% −34.00% −41.14% 21.30% −41.57% −11.19% 11.58% −47.39% 0.88%
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