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This study analyzed the spatiotemporal differences and driving factors of carbon emission
in China’s prefecture-level cities for the period 2003–2019. In doing so, we investigated the
spatiotemporal differences of carbon emission using spatial correlation analysis, standard
deviation ellipse, and Dagum Gini coefficient and identified the main drivers using the
geographical detector model. The results demonstrated that 1) on the whole, carbon
emission between 2003 and 2019was still high, with an average of 100.97 Mt. Temporally,
carbon emission in national China increased by 12% and the western region enjoyed the
fastest growth rate (15.50%), followed by the central (14.20%) and eastern region
(12.17%), while the northeastern region was the slowest (11.10%). Spatially, the
carbon emission was characterized by a spatial distribution of “higher in the east and
lower in the midwest,” spreading along the “northeast–southwest” direction. 2) The carbon
emission portrayed a strong positive spatial correlation with an imbalance polarization
trend of “east-hot and west-cold”. 3) The overall differences of carbon emission appeared
in a slow downward trend during the study period, and the interregional difference was the
largest contributor. 4) Transportation infrastructure, economic development level,
informatization level, population density, and trade openness were the dominant
determinants affecting carbon emission, while the impacts significantly varied by
region. In addition, interactions between any two factors exerted greater influence on
carbon emission than any one alone. The findings from this study provide novel insights
into the spatiotemporal differences of carbon emission in urban China, revealing the
potential driving factors, and thus differentiated and targeted policies should be formulated
to curb climate change.

Keywords: urban carbon emissions, spatiotemporal differences, driving factors, geographical detector model,
interaction

1 INTRODUCTION

Increased carbon emission is widely recognized as the primary cause responsible for global warming,
greenhouse effects, and has led to extreme climate phenomena, such as glaciers melting, sea-level
rising, storm surges, and floods, which represents a serious hazard to human health as well as
economic development (Liu et al., 2019a; Wang and Jiang, 2019; Wei et al., 2019). Consequently,
carbon emission reduction is not only of great necessity for human existence but also for the
realization of green sustainable progress in an economic society. The Paris Climate Agreement in
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2016 has announced the global mean temperature control goal of
1.5/2°C (Yang et al., 2022a). In light of that, more nations have
pledged to curb carbon emission and established a raft of effective
emission mitigation strategies to fulfill this challenging
responsibility (Karmellos et al., 2021). As the world’s largest
developing country and carbon emitter, China has also actively
participated in global carbon governance and promised to peak
the carbon emission by 2030 and then become carbon neutral by
2060 (hereinafter named as “30.60” targets) at the 75th session of
the United Nations General Assembly in 2020 (Gao et al., 2021;
Zhang et al., 2022). However, it should be noted that following
the continuously growing economy, the carbon emission in
China, as contrary to the “30.60” targets, has rather increased
(Zhou et al., 2019b; Wang et al., 2021). In addition, carbon
emission varies remarkably across regions in China due to the
significant differences in resource endowments, levels of economic
development, and scientific and technological innovation (Liu
et al., 2019c; Shen et al., 2021). Hence, investigating the
spatiotemporal differences regionally and identifying the
potential driving factors of carbon emission systematically in
China are the major concerns of policymakers.

In the literature, a considerable number of studies have been
concentrated on the measuring methods, spatiotemporal
evolution, influencing factors, and mitigation strategies of
carbon emission in China. For the measurements, the
structural decomposition approach (SDA) and logarithmic
mean Divisia index (LMDI) decomposition methods were the
most frequently used worldwide (Huang et al., 2022; Ma et al.,
2019). Studies on spatiotemporal characteristics have found that
the carbon emission in China would continue to grow for a long
time (Wang et al., 2021) and showed significant spatial
correlations (Du et al., 2022; Zhao et al., 2020). In addition,
some models have been employed to explore the time- and space-
changing features of carbon emission, such as spatial correlation
analysis (Wang and Zheng, 2021), exploratory spatial data
analysis (Han et al., 2021; Zhang et al., 2021), spatial
econometric model (Li and Li, 2020), and geographically
weighted regression model (Xu and Lin, 2021; Yang et al.,
2021). Regarding the driving factors, various natural and
human factors of carbon emission have been researched
systematically in the literature. Among the natural factors, the
climatic condition was universally recognized as one of the most
decisive factors affecting carbon emission (Xu et al., 2021). In
addition, human factors including the economic development
level (Cai et al., 2021; Dong et al., 2020), energy consumption
structure (Xu and Lin, 2019; Yang et al., 2022b), urbanization and
industry structure (Ali et al., 2019; Dong et al., 2019b), technology
(Chen et al., 2020; Sun et al., 2021), transportation (Song et al.,
2019), and trade openness (Pu et al., 2020) have also been
identified to influence carbon emission, but their influences
differed in diverse regions (Liu et al., 2021). These
aforementioned findings corroborated the views of Huang and
Matsumoto (2021), in which the authors found that the impacts
of urbanization on carbon emission were significantly different
between regions. In terms of the emission mitigation strategies,
existing studies have mainly reached agreements upon
transforming the economic development mode, optimizing

industrial and energy structure, improving technology
innovation capacity, and so on (Chuai and Feng, 2019; Wang
et al., 2019; Wu et al., 2021). In summary, the aforementioned
studies on carbon emission have given us much enlightenment.
However, the existing literature was mainly conducted from the
perspectives of countries, provinces, and industries, but studies,
further exploring urban carbon emission, were still scarce. It has
been reported that the energy consumption ofmajor cities around the
world shared 75% of world’s total and more than 80% of global
carbon emissions came fromurban areas. In the case of China, people
living in urban areas have reached over 902million, comprising
approximately 64% of the total population of China in 2020 (CSY,
2021). With cities as the biggest sources of carbon emission, urban
carbon emission reduction should be set as the key issue for attaining
China’s “30.60” targets of reaching its peak by 2030 and turning
carbon-neutral by 2060 (Dong et al., 2019a).

Although there have been an increasing number of research
studies centering on carbon emission over Chinese cities, most of
them have been conducted at the single city level (Shen et al.,
2018; Wei et al., 2020) or typical urban areas (Liu et al., 2019b;
Salvia et al., 2021); the studies on the urban carbon emission with
a national coverage still remain insufficient. In addition, prior
studies have demonstrated that the distribution of carbon
emission was uneven in different regions but failed to reveal
the sources of regional differences. Fortunately, the Gini
coefficient improved by Dagum is capable of distinguishing
the key contributor of the total difference, thus targeted
policies can be formulated to alleviate carbon emission.
Moreover, to date, studies usually focused on the separate
effect of driving factors of carbon emission, and the interactive
influences between these drivers tend to be neglected. In fact, the
causes of carbon emission are associated, and the interaction
between factors can indirectly affect carbon emission (Xu et al.,
2021). The geographical detector model proposed by Wang et al.
(2010) sheds light on the spatial relationships and interactive
effects of variables, which is conducive to investigating important
factors more comprehensively. To summarize, it is of great
necessity to make an in-depth analysis of carbon emission
with the aspect of city.

Compared with the existing literature combed previously, this
study contributes to several aspects. 1). This study took 284
Chinese prefecture-level cities as the research unit and then
investigated the spatiotemporal differences and driving factors
of urban carbon emissions in China based on a series of
diversified empirical frameworks. 2) ArcGIS techniques of
Moran’s I, cold and hot spots analysis, and standard deviation
ellipse were adopted to intuitively portray the spatiotemporal
evolution characteristics of urban carbon emission in China. 3)
The Dagum Gini coefficient and its decomposition were further
employed to reveal the leading sources of regional differences in
carbon emission. 4) Using the geographical detector model to
explore the main drivers of national and regional carbon
emission, as well as their interactive effects, provided a basis
for emission mitigation measures in cities with different regions.

The remainder of this article is organized as follows. Section 2
introduces the related methodologies and describes the data
sources. Section 3 discusses the spatiotemporal differences and
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driving factors of carbon emission from national and regional
perspectives. Section 4 summarizes this study and puts forward
policy implementations.

2 METHODOLOGY AND DATA

2.1 Methodology
2.1.1 Global Spatial Correlation Analysis
Global Moran’s I is a commonly used statistics for testing spatial
correlation (Moran, 1950). The formula can be set as follows:

I �
∑n
i�1
∑n
j�1
Wij(yi − �y)(yj − �y)
S2∑n

i�1
∑n
j�1
Wij

; (1)

S2 � 1
n
∑n
i�1
(yi − �y)2, �y � 1

n
∑n
i�1
yi, (2)

where yi and yj are the carbon emission of city i and j, respectively,
n is the number of cities (284 in this study), S2 refers to the
variance, �y represents the annual mean carbon emission, andWij

is the spatial weight matrix using the nested weight matrix of
spatial geography and economy. I ∈ [−1, 1]. If I > 0, it indicates
positive spatial correlation; if I < 0, it means negative spatial
correlation; and if I = 0, no spatial correlation exists.

The Z-value is used to evaluate the statistical significance of
global Moran’s I, whose formula can be set as follows:

Z � I − E(I)�������
VAR(I)√ ; (3)

E(I) � − 1
n − 1

, VAR(I) � E(I2) − E(I)2, (4)

where E(I) and VAR (I) are the mathematical expectation and
coefficient of variation of I.

Considering that the carbon emission may be affected by both
geographical and economic factors. In this study, the nested weight
matrix of spatial geography and economy is calculated by geographical
distance and per capita GDP. The formula is shown as follows:

W1,ij �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1(dij)2, (i ≠ j)
0, (i � j) ; (5)

W2,ij �
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩(PGDPi

PGDPj
)1 /

2

, (i ≠ j)
0, (i � j) ; (6)

Wij � (1 − α)W1,ij + αW2,ij, (7)
where W1,ij, W2,ij, and Wij are the geography, economy, and
nested spatial weight matrix, respectively, dij is the distance
between the centers of city i and j, PGDPi and PGDPj are the
average values of per capita GDP of city i and j from 2003 to 2019.
α ∈ [0, 1], it represents the proportion of economic weight. In this

study, α is 0.50, implying that economy weight is equal to the
geography weight.

2.1.2 Local Spatial Correlation Analysis
Compared with the global Moran’s I, it only evaluates the spatial
correlation of carbon emission from a global perspective, while
the cold and hot spots analyses (Ord and Getis, 1995) can reflect
the spatial agglomeration degree of individual units. In this study,
the cold and hot spots analysis is also applied to identify
significant spatial clustering of high- and low-carbon emission
calculated by Getis-Ord Gp

i , which are represented as hot spots
and cold spots, respectively. The formula for global G index is
given as follows:

G �
∑n
i�1
∑n
j�1
WijXiXj

∑n
i�1
∑n
j�1
XiXj

. (8)

The Gp
i index of sample i is set as follows:

Gp
i �

∑n
j�1
WijXi

∑n
j�1
Xj

. (9)

Similar to Moran’s I, the Z(Gp
i ) is used to assess the statistical

significance of Gp
i . Its formula is as follows:

Z(Gp
i ) � Gp

i − E(Gp
i )��������

VAR(Gp
i )√ , (10)

where Xi and Xj are the carbon emission of city i and city j,
respectively; Wij is the spatial weight matrix; E(Gp

i ) and
VAR(Gp

i ) are the mathematical expectation and coefficient of
variation of Gp

i ; and Z(Gp
i ) is the standardized statistic of the Gp

i
test, its significance can identify the spatial distribution of hot and
cold spots in different areas.

2.1.3 Standard Deviation Ellipse
The standard deviation ellipse (SDE) proposed by Lefever (1926)
quantitatively describes the spatial distribution characteristics of
the research object through its center, long, and short axis, azimuth,
and other basic parameters (Chen et al., 2021). The concrete
calculating process can be reflected by the following equation:

SDEx �
�����������∑n

i�1(xi − �X)
n

√
; (11)

SDEy �
�����������∑n

i�1(yi − �Y)
n

√
; (12)

tanα � A + B

C

�
(∑n

i�1xi
2 − ∑n

i�1yi
2) +

�����������������������������(∑n
i�1xi

2 − ∑n
i�1yi

2)2

+ 4(∑n
i�1xiyi)2

√
2∑n

i�1xiyi
;

(13)
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σx �
�
2

√
��������������������∑n

i�1(xi cos α − yi sin α)2

n

√√
; (14)

σy � �
2

√
��������������������∑n

i�1(xi sin α − yi cos α)2

n

√√
, (15)

where (SDEx, SDEy) is the centroid of the ellipse, (xi,yi) is the
geographic coordinates of the city i, ( �X, �Y) is the weighted mean
center, (�xi, �yi) represents the D-value between the mean center
and coordinates of XY, and the angle α is the ellipse directional
orientation, meaning the clockwise rotation degree from north to
the long axis of the ellipse. σx and σy are the length of the long and
short axis of the ellipse, respectively.

2.1.4 Dagum Gini Coefficient and Its Decomposition
Dagum (1997) proposed a superior method for measuring inequity,
which can describe the sources of overall regional difference and the
distribution of subsamples remain unaffected by sample overlap
(e.g., not all cities in the eastern region have a higher carbon emission
than those in other regions; some cities in the center, western, and
northeastern regions may also have higher carbon emission than
individual cities in the eastern region, which calls as the sample
overlap). This method has been widely employed in many fields, yet
its applications in the environmental stewardship remain limited.
Given this, we used Dagum’s decomposition and Gini coefficient to
explore the regional difference of the carbon emission in urban
China. The following Equation 16 can express it:

G � ∑k
j�1∑k

h�1∑nj
i�1∑nh

r�1
∣∣∣∣∣yji − yhr

∣∣∣∣∣
2n2 �y

, (16)
where yji (yhr) is the carbon emission of city i (j) in the region j (h),
�y is national average carbon emission, n represents total number
of cities, k denotes the number of regions, and nj (nh) is the
number of cities in their respective region.

Before conducting Dagum’s Gini coefficient decomposition,
the regions under study must be classified by their average carbon
emission using Eq. 17, as follows:

Yh ≤ . . .Yj ≤ . . .Yk. (17)

Following Dagum (1997), the Gini coefficient can be
decomposed into three terms, namely, contribution of intra-
regional differences Gw, contribution of interregional
differences Gnb, and contribution of the intensity of
transvariation Gt,, as illustrated in Eqs 18–20. Accordingly, the
components meet G = Gw + Gnb + Gt. Equation 21 denotes the
Gini coefficient Gjj within the jth region, Eq. 22 denotes the Gini
coefficient Gjh between jth and hth region, and Djh represents the
relative difference of carbon emission between regions i and j, as
shown in Eq. 23. Note that pj � nj/n, sj � njYj/n�Y, j � 1,/, k.

Gw � ∑k
j�1
Gjjpjsj; (18)

Gnb � ∑k
j�2

∑j−1
h�1

Gjh(pjsh + phsj)Djh; (19)

Gt � ∑k
j�2

∑j−1
h�1

Gjh(pjsh + phsj)(1 −Djh); (20)

Gjj �
1
2μj

∑nj
i�1∑nj

r�1
∣∣∣∣∣yji − yjr

∣∣∣∣∣
n2j

; (21)

Gjh � ∑nj
i�1

∑nh
r�1

∣∣∣∣∣yjr − yhr

∣∣∣∣∣/njnh(μj + μh); (22)

Djh � djh − pjh

djh + pjh
. (23)

Eqs 24, 25 show the detailed calculation process of djh and
pjh. Specifically, djh is the difference of the contribution rate of
carbon emission between regions, which could be defined as
aggregate expectation of all samples, satisfyingyji − yhr ≥ 0, in
regions j and h, whereas pjh is the hypervariable first-order
moment, and condition yhr − yji ≥ 0 is also satisfied, in regions j
and h. Fh(Fj) is the cumulative density distribution function of the
hth (jth) region.

djh � ∫∞
0

dFj(y)∫y
0

(y − x)dFh(x); (24)

FIGURE 1 | Interaction relationships.
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pjh � ∫∞
0

dFh(y)∫y
0

(y − x)dFj(y). (25)

2.1.5 Geographical Detector Model
The geographical detector model proposed by Wang et al. (2016)
is an advanced statistical method, which can be used to detect
spatial heterogeneity and reveal the key drivers behind that
heterogeneity. The model mainly consists of four parts including
the factor detector, interaction detector, ecological detector, and risk
detector (Wang et al., 2010). To be specific, the factor detector,
denoted by PD statistic, investigates the explanatory power of factor
X on Y spatial heterogeneity; the interaction detector distinguishes
whether there exist interactions between X1 and X2; the ecological
detector compares the impact difference of X1 and X2 on Y; and the
risk detector reveals potential risk areas of Y. In this study, based on
the previous researches (Zhang and Zhao, 2018), we adopted the
factor detector, interaction detector, and ecological detector to

identify and extract the key contributors affecting carbon
emission. The formula is given as follows:

PD � 1 −
∑L

h�1∑Nh
i�1(yh1 − yh)2

∑L
i�1(yi − �y)2 � 1 − 1

nσ2
∑L

h�1nhσ
2
h, (26)

where PD is the power of determinant on the carbon emission.
PD ∈ [0, 1], and the greater the value, the stronger the
determinate power of this factor for carbon emission
heterogeneity will be. The study area is divided into L layers,
represented by h = 0,1,2,3, L. n and nh refer to the total number of
cities in China and layer h. σ2 and σ2h stand for the variance of
carbon emission in the entire study region and layer h.

The fact is, however, that Y may be influenced by the
interaction between two factors rather than a single one. With
regard to this, the interaction detector can assist in significantly
identifying the interaction between the two factors (Zhan et al.,
2018). The interactive influence can be judged using Figure 1.

As shown in Figure 1, q (X1) and q (X2) refer to the separate
impact of X1 and X2 on Y, and q(X1 ∩ X2) denotes the interactive
impact of X1 and X2. To be specific, the weak and non-linear impact
represents a smaller interactive impact of X1 and X2 than their
separate impacts, while the enhanced and bivariate impact suggests a
bigger interaction. In addition, the weak and univariate impact
indicates that a moderate interaction impact exists in the separate
impact of X1 and X2, whereas the independent effect shows that the
interaction impact is equivalent to the sum of X1 and X2 separate
impacts. Finally, the enhanced and non-linear impact stands for the
interactive impact of X1 and X2 that is much stronger relative to the
sum of their separate impact.

2.2 Data and Source
2.2.1 Data for the Carbon Emissions
Given the scarcity of official source on carbon emission data in cities
and in accordance with Han and Xie (2017) and Ren et al. (2020),

TABLE 1 | Description of the driving factors.

Factor
variable

Variable definition Data description Sources
of original data

FDI (X1) Foreign direct investment level Foreign direct investment to GDP/% China City Statistical Yearbook; Statistical Bureau of each
prefecture-level cityOPEN (X2) Trade openness Total volume of imports and exports to GDP/%

PGDP (X3) Economic development level Per capita GDP in constant 2003 prices China City Statistical Yearbook
TRA (X4) Transportation infrastructure Number of public cars/car
INV (X5) Investment scale Per capita investment in fixed assets/Yuan China City Statistical Yearbook; Statistical Bureau of each

prefecture-level city
INF (X6) Informatization level Internet comprehensive development index China City Statistical Yearbook
ER (X7) Environmental regulation Three waste treatment rates calculated by the entropy

method
PD (X8) Population density Total population to areas/%
IS (X9) Industrial structure Tertiary GDP to GDP/Yuan
FIN (X10) Financial development level Balance of deposits and loans of financial institutions

to GDP/%
RD (X11) Research and development

expense
Technology investment to local financial
expenditure/%

EI (X12) Energy intensity Electricity consumption for industrial to GDP/%

Note: Three waste treatment rates refer to the ratios of industrial solid wastes, wastewater centralized treatment of sewage work comprehensively utilized, and consumption waste
treatment.

FIGURE 2 | Changing trends of carbon emission in China and four
regions.
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this study calculated carbon emission based on the consumption of
liquefied petroleum gas, natural gas, and annual electricity in a
concerned city by using a unified standard and scientific method

proposed by IPCC (Eggleston et al., 2006). The formula for
calculation is as follows:

CO2 � C1 + C2 + C3 � kE1 + vE2 + φ(η × E3), (27)

FIGURE 3 | Spatial distribution of carbon emission in 2003, 2011, and 2019.

FIGURE 4 | Center of gravity migration of carbon emission in China from 2003 to 2019.
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where CO2 is the carbon emission of cities; C1, C2, C3 stand for the
carbon emission caused by liquefied petroleum gas, natural gas, and
annual electricity consumption; E1, E2, E3 represent the
consumption of liquefied petroleum gas, natural gas, and annual
electricity, respectively; k(v) is the converted coefficient of liquefied
petroleum gas (natural gas); η denotes the proportion of coal power
generation; and φ is the converted coefficient of coal power fuel
chain, equivalent CO 2 is 1.320 3kg/(kwh) (Zhou et al., 2019a).

2.2.2 Data for the Driving Factors
Based on a previous study (Huang et al., 2019b; Essandoh
et al., 2020; Zhang et al., 2020), 12 proxy indicators were
selected as the potential driving factors for carbon emission.
To be more specific, the foreign direct investment (FDI) level,
trade openness (OPEN), economic development level (PGDP),
transportation infrastructure (TRA), investment scale (INV),
information level (INF), environmental regulation (ER),
population density (PD), industrial structure (IS), financial
development level (FIN), research and development expense
(RD), and energy intensity (EI) were chosen in this study. All
of the abovementioned variables have been classified using the
natural breaks classification method, and the
detailed description of these driving factors is displayed in
Table 1.

2.2.3 Data Description
In view of data accessibility and consistency, the scope of our
research was limited in 284 Chinese prefecture-level cities from
2003 to 2019. Since 9 January 2019, Jinan and Laiwu have
amalgamated into one. With regard to this, we aggregated the
original data of these two cities from 2003 to 2018.

In addition, taking into account the economic and geographical
conditions of different areas in China, the carbon emission should
be studied regionally. This study divided the study area into four
regions, namely, eastern, central, western, and northeastern, to
investigate regional differences in carbon emission.

3 RESULTS AND DISCUSSION

3.1 Temporal and Spatial Characteristics
The temporal changes in carbon emission in China and four
regions during the same period are exhibited in Figure 2. As
seen in the figure, the national annual average carbon emission
took on an increasing trend for the period 2003–2019 and
increased by 12% annually. More specifically, the annual
average carbon emission maintained relatively steady growth
between 2003 and 2016 from the minimum, 42.02 Mt, to the
maximum, 104.09 Mt, but had a sharp increase since 2017
and hit an all-time high of 221.92 Mt in 2019. With regard
to four regions, the carbon emission showed predominant
regional differences with the annual average value sorted by a
decreasing order as eastern region (180.65 Mt) > northeastern
region (70.10 Mt) > western region (66.87 Mt) > central region
(64.26 Mt), with the annual growth rates being 11%, 9%, 16%
and 14%, respectively. Also, the carbon emission in those four
regions presented a similar temporal behavior of increase to the
whole country, indicating that carbon emissions have become a
vital environmental issue to China’s sustainable economic
development.

The spatial distribution of carbon emission in 2003, 2011, and
2019 is presented in Figure 3. As shown in Figure 3, the carbon
emission is divided into four types: “low emission” (0–100 Mt),
“medium–low emission” (100–400 Mt), “medium–high
emission” (400–700 Mt), and” high emission” (>700 Mt).
Overall, the carbon emission from the 284 Chinese cities
experienced a growing trend from 2003 to 2019, and the
spatial diffusion breadth and scale expanded. Carbon emission
in the studied cities was characterized by a spatial distribution of
“higher in the east and lower in the midwest”. Specifically, cities
with higher emissions were distributed mainly over eastern

FIGURE 5 | Change of the rotation and shape of carbon emission in China from 2003 to 2019.

TABLE 2 |Global Moran’s I of carbon emission for the year 2003, 2011, and 2019.

Year Moran’s I Z-score p-values

2003 0.037*** 3.880 0.000
2011 0.043*** 4.385 0.000
2019 0.064*** 6.075 0.000

Note: *** 1% significance level (p < 0.01).
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China, such as Shanghai (1,647.16 Mt), Beijing (1,490.28 Mt),
Binzhou (1,078.21 Mt), and Shenzhen (984.27 Mt), which ranked
in the top five, while cities in other areas had relatively lower
emissions (apart from Chongqing, 1,173.34 Mt, and Chengdu,
718.40 Mt). In addition, it is to be noted that all municipalities
were located in high carbon emission levels being concentrated
above 700 Mt. As a result of rapid industrialization and
urbanization, these developed cities were suffering more severe
environmental pressure.

To further analyze the overall spatial pattern changes in
carbon emission with time, in Figure 4 and Figure 5, a series
of distribution charts of carbon emission in Chinese cities from
2003 to 2019 were illustrated by using the SDE method. During
the study period, the spatial distribution of carbon emission
showed the “northeast-southwest” direction, and the gravity
center moved northwest, from Fuyang to Zhumadian then to
Zhoukou. As described in Figure 5A, the shape index (the ratio of
long axis to short axis) varied from at most 1.56 in 2003 to a lower
value of 1.34 in 2019, indicating that heterogenous spatial changes
in carbon emission were happening over time. The closer the ratio
was to 1, the more the ellipse looked like a circle, thus the smaller
the carbon emission differences between regions tended to be. In
addition to that the azimuth of the long axis was rotated
counterclockwise from 14.03° to 11.40°, which suggested that
“northeast-southwest” direction was the basic distribution
pattern of urban carbon emissions in China (see Figure 5B).

It has to do with the rapid increase of carbon emission in the
northeast and western regions over recent years.

Table 2 showed the global Moran’s I of carbon emission of 284
Chinese cities in 2003, 2011, and 2019. The results suggested that
the Moran’s I of carbon emissions were positive, and the p-values
for all passed the significance test at the level of 1%.We, therefore,
concluded that a spatial positive correlation of carbon emission
existed between regions.

The cold and hot spots results of carbon emission in Chinese
cities are illustrated in Figure 6. From the perspective of spatial
distribution, the primary and secondary hot spots of carbon
emission were located in eastern China, mainly in Beijing,
Shanghai, Guangdong, and their surrounding cities,
manifesting that the carbon emissions in these cities have not
been effectively controlled. Most of the primary and secondary
cold spots were mainly concentrated in central and western
regions of China, which formed a contrast with the east. As
for time trends, the hot spots of the Guangzhou-centered area
have changed from primary to secondary, and the secondary hot
spots have spread tomost parts of central China. During the study
period, new spatial and temporal changes did not appear
significantly in primary and secondary cold spots (see
Figure 6). In summary, the cold and hot spots of carbon
emission showed obvious spatial clustering characteristics,
featuring as a distribution pattern of “eastern hot spots
gathering and western cold spots grouping”.

FIGURE 6 | Hot and cold spots of carbon emission in 2003, 2011, and 2019.
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3.2 Regional Differences and Its
Decomposition
In this section, the Dagum Gini coefficient was used for the
measurement and decomposition of regional differences in
China’s carbon emissions. Figure 7 depicted the variation in
overall and intra-regional Gini coefficient of carbon emission in
China from 2003 to 2019, respectively. The overall Gini
coefficient exhibited a downward and fluctuating trend, with
the annual average decrease of 1.71%. The final Gini

coefficient in 2019 (0.48) was lower than that in 2003 (0.64),
indicating a narrowing regional difference in China’s carbon
emission in the research period.

For each specific region, Figure 7 further showed that the
average intra-regional Gini coefficients of the four regions, namely,
eastern, central, western, and northeastern, were 0.59, 0.46, 0.58,
and 0.50, respectively. The Gini coefficient of the northeastern
region displayed a V-shaped trend of “decreased first and increased
afterward”, with the annual decrease being 0.10%. To be more
specific, the Gini coefficient first declined slightly from 2003’s 0.53
to 2017’s 0.43, which was an annual decrease of 1.46%, followed by
a strong increase until 2019, reaching the value of 0.51, and then
increased by 9.43% annually. Compared with the northeastern
region, the differences in eastern, western, and central regions all
showed slowly declined trends from 2003 to 2019, decreasing by
2.33, 2.72, and 1.50% at annual rates, respectively. As analyzed
before, the differences in carbon emission within regions were
progressively alleviated, which is conductive to help China to
become carbon-neutral quickly in the future.

The changing trends of the interregional Gini coefficient are
illustrated in Figure 8. As described in Figure 8, the differences
between regions were fairly clear, with the largest gap being
between eastern and western regions at an annual average of 0.66,
followed by eastern-central (0.62), eastern-northeastern (0.61),
central-western (0.56), and western-northeastern (0.53), while
the differences between central and northeastern regions was the
lowest (0.50). In addition, the interregional Gini coefficient
changing trends for the four regions were generally consistent
and steadily decreasing, with the annual decline rates of 1.86, 1.79,
1%, 1.79%, 1.74%, 1.26%, 1.08% and 0.39% in central-western,
eastern-western, eastern-central, central-northeastern, western-
northeastern, and eastern-northeastern, respectively. These
trends might be the results of resource endowment,
technological innovation, and economic development level,
which caused the differences in carbon emission between regions.

For further analysis of the regional differences in carbon
emission, Figure 9 presented the decomposition of the overall
Gini coefficient of the carbon emission in China and the main
sources for the differences. Figure 9 shows that the intra-regional
differences (Gw) contributed 25.91% on the total differences on
average, the intensity of transvariation (Gt) contributed 28.99%
during 2003–2019, and the contribution of inter-regional
differences (Gn) was 45.10%, which meant the difference
between regions was the greatest source. Regarding the
changing processes, it was fairly obvious that the contributions
of Gw and Gt remained relatively stable, while the contribution of
Gn was increasing, as it varied gently within 41.48%–49.34%, with
the annual increase rate being 0.20%. Therefore, it was concluded
that the deterioration trend of carbon emissions in China was
largely attributable to the differences between regions; thus,
shrinking the gap of regions should be the key contributor to
facilitate China’s carbon-abatement agenda.

3.3 Driving Factors of Carbon Emission
The results in Table 3 represented the selected 12 driving factors’
influence on carbon emission using the factor detector model in
2003 and 2019. Furthermore, the ecological detector was utilized to

FIGURE 7 | Changing trends of the overall and intra-regional Gini
coefficient of carbon emission.

FIGURE 8 | Changing trends of the interregional Gini coefficient of
carbon emission.

FIGURE 9 | Sources of the overall differences in carbon emission and the
trends of their distributions.
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test the distinct differences among these influencers regarding the
spatial heterogeneity of regional carbon emission (see Figure 10,
p< 0.05 ). To investigate the interactive effects between any two
factors of carbon emission in China, the interaction detector was
introduced, and the results are provided in Figure 11.

Based on Table 3, these drivers were found to differ in their
impacts on carbon emission in China, with most drivers showing
significant effects, among which TRA (0.586), PGDP (0.561), INF
(0.365), PD (0.325), and OPEN (0.247) had the strongest
determinative power. In detail, the influences of the twelve
factors mentioned before on carbon emission in China are
elaborated further:

(1) It can be seen that TRA was closely associated with carbon
emissions in China, with the PD value changing from
0.667 in 2003 to 0.586 in 2019, which implied that the
influence of TRA appeared to have weakened during the
study period. The finding that transportation
infrastructure expansion stimulated pollution
comprising carbon emissions was not surprising, which
was consistent with other studies (Xie et al., 2017; Huang
et al., 2019a). This indicated that rapid economic growth
and population expansion increased travel needs which
further caused more traffic carbon emissions. Notably,
with the appeal for sustainable economic development
and green travel, TRA tended to form a more energy-
saved and low-carbon style, as fossil energy was being
replaced gradually by cleaner sources of energy such as
solar in the transportation sector.

(2) The results showed that AGDP posed a huge environmental
hazard to carbon reduction with the PD value up to 0.561 in
2019, while AGDP portrayed a smaller role that determined
only 0.380 of the change of carbon emission in 2003. The
reason for this result may be the extensive economic
development mode characterized by high energy, high
polluting, and high emission, which made the economy to
become the second decisive and influential driver. As the
economy grew faster, the number of resources and energy

consumption increased rapidly, which in turn led to more
carbon emissions (Ma et al., 2021). With this in mind,
economic development must offset its environmental
damage to a great extent, to simultaneously attain a win-
win scenario with China’s economic growth and carbon
abatement.

(3) According to the estimated results, the explanatory power of
INF has had a negative and an obstructive impact on carbon
emission, with the PD value ranging from 0.447 in 2003 to
0.365 in 2019. Similar results include Anser et al. (2021); on
the one hand, the widespread application of information
technology has enhanced enterprise green knowledge and
innovation capacity, and on the other hand, it brought about
opportunities for socioeconomic cleaner production and
low-carbon development. In addition, the INF can
promote environmental information exchange and
resource sharing and will serve as a technological
foundation for the government to strengthen
environmental supervision, which can lead to lower
carbon emission.

(4) The decisive power of PD on carbon emission in 2003 was
0.215, while it increased to 0.325 in 2019, indicating that PD
has added considerable pressure on carbon mitigation. Our
findings also echoed the argument that the positive
correlation between population density and environmental
pollution existed in China (Sharma et al., 2021; Xu et al.,
2021). The possible reason was that high PD levels
accelerated urbanization, leading to an enormous increase
in energy resource consumption, and thus the environment
was seriously damaged. To sum up, the side-effects on the
environment caused by PD must, these aforementioned
results suggested, be properly arranged in the enactment
and deployment of emission-inhibiting policies.

(5) Consistent with a previous study produced by Wang and
Zhang (2020), OPEN showed a quite significant, adverse
effect on carbon emission in the research period, with the
PD value decreasing dramatically from 2003’s 0.376 to 2019’s
0.247. Along with the implementation of reform and opening
up, China has been active in formulating various measures
that yielded sound, long-term economic and environmental
benefits, including expanding its import–export trade and
attracting massive foreign investment. We can conclude that
a higher openness level is greatly conducive for ceasing the
growth of carbon emissions. Further deepening the
internal–external opening should be recognized as an
important impetus for the high-quality environment, and
bringing into full play a promoting role of OPEN on carbon
abatement was of great magnitude in China.

(6) It is noted that the PD values of the remaining seven
factors all stayed low in the years 2003 and 2019, implying
a relatively smaller decisive power on carbon emission. It
can be found that INV, IS, and RD had exerted a positive,
incentive influence on carbon emission. Conversely, FDI
and FIN hindered the growth of carbon emission.
Moreover, from a long-term perspective, ER and EI’s
PD values exhibited a downward trend and were no
longer significant in 2019.

TABLE 3 | Power of the determinant value (PD value) for driving factors in China
(2003 and 2019).

Driving factor PD Effect direction

2003 2019

FDI (X1) 0.146*** 0.073*** ↓
OPEN (X2) 0.376*** 0.247*** ↓
PGDP (X3) 0.380*** 0.561*** ↑
TRA (X4) 0.667*** 0.586*** ↓
INV (X5) 0.030* 0.138*** ↑
INF (X6) 0.447*** 0.365*** ↓
ER (X7) 0.095*** 0.003
PD (X8) 0.215*** 0.325*** ↑
IS (X9) 0.138*** 0.158*** ↑
FIN (X10) 0.298*** 0.121*** ↓
RD (X11) 0.160*** 0.171*** ↑
EI (X12) 0.135*** 0.015

Note: *10% significance level (p < 0.1); ** 5% significance level (p < 0.05); *** 1%
significance level (p < 0.01).

Frontiers in Environmental Science | www.frontiersin.org April 2022 | Volume 10 | Article 88052710

Wang et al. Urban Carbon Emission

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


FIGURE 10 | Ecological detector results for driving factors on carbon emission in 2003 and 2019.

FIGURE 11 | Interaction detector results of driving factors on carbon emission in 2003 and 2019.

TABLE 4 | PD values for driving factors in four regions of China (2003 and 2019).

Driving factor 2003 2019

Eastern Central Western Northeastern Eastern Central Western Northeastern

FDI (X1) 0.100 0.066 0.030 0.341 0.189**(↑) 0.059 0.378**(↑) 0.086
OPEN (X2) 0.408*** 0.056 0.006 0.016 0.254**(↓) 0.131*(↑) 0.109 0.334*(↑)
PGDP (X3) 0.362*** 0.605*** 0.185** 0.659*** 0.692***(↑) 0.508*** (↓) 0.291***(↑) 0.615***(↓)
TRA (X4) 0.695*** 0.601*** 0.707*** 0.579** 0.732***(↑) 0.688***(↑) 0.704***(↓) 0.503***(↓)
INV (X5) 0.075 0.026 0.085 0.010 0.370***(↑) 0.215* (↑) 0.025 0.142
INF (X6) 0.415*** 0.390*** 0.265*** 0.266 0.438***(↑) 0.321* (↓) 0.225***(↓) 0.323
ER (X7) 0.058 0.258*** 0.128* 0.551*** 0.021 0.035 0.029 0.056
PD (X8) 0.221** 0.139** 0.093 0.250 0.336***(↑) 0.164**(↑) 0.177 0.244
IS (X9) 0.365*** 0.123*** 0.147** 0.192 0.323***(↓) 0.240***(↑) 0.207**(↑) 0.204
FIN (X10) 0.549*** 0.460*** 0.262*** 0.188 0.153*(↓) 0.436** (↓) 0.178** (↓) 0.430
RD (X11) 0.334*** 0.226*** 0.253*** 0.410** 0.153**(↓) 0.150 0.330***(↑) 0.353
EI (X12) 0.225*** 0.327*** 0.285*** 0.168 0.070 0.010 0.040 0.029
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Furthermore, this study used the ecological detector to
examine the significant differences in the impacts of factors on
carbon emission at the 0.05 significance level. As is indicated in
Figure 10, a great majority of those drivers showed a rather
remarkable difference. For instance, in 2003, the impacts of TRA
(X4) had a distinct difference as compared to those of ER (X7) and
PD (X8). Results from the ecological detector showed that
significant differences existed between PGDP (X3) and any
other factors on the spatial distribution of carbon emission
except TRA (X4) by 2019. The effects of TRA (X4) and
INF(X6) on carbon emission were also significantly different,
while the influences of INV(X5) and FIN(X10) were not significant
(Figure 10).

The results of the interaction relationships between every
two drivers in the years 2003 and 2019 are shown in Figure 11.
The PD statistics on the diagonal represented the same
separate effects of each driver, as listed in Table 3, while
those distributed in the upper triangular matrix referred to the
interactive effects. From the figure, it can be found, obviously,
that interactions between most factors showed enhanced and
non-linear effects on the carbon emission in China but some
had an enhanced and bivariate effect. Taking FDI (X1) and
OPEN (X2) for example, the relationship between X1 and X2

(X1 ∩ X2(0.64)>X1(0.15) +X2(0.38) � 0.53) was non-linear
in 2003, X1 and X2 enhanced each other, leading to a
continuous increase in carbon emission. Likewise, the
interaction between OPEN (X2) and TRA (X4)
[X2 ∩ X4(0.79)>Max(X2, X4) � 0.667] was greater than the
maximum of their separate effects, indicating an enhanced,
bivariate impact on carbon emission. From Figure 11, in
2003, the interactive determinant powers of TRA (X4) with
other factors were significantly enhanced. This finding was
also applicable to OPEN (X3) in 2019. According to the
aforementioned analysis, the improvement of each variable
might not reduce and cease the carbon emission without
paying enough attention to interactions between factors.

The factor detection model was applied to further reveal
the main driving factors affecting carbon emission regionally.
The whole China was divided into four regions based on its
geographical location, as shown in Table 4. The results are
outlined as follows: in the eastern region, TRA was the
primary factor affecting carbon emission both in 2003 and
2019 (with PD value increased by 0.037). PGDP (0.692), INF
(0.438), INV (0.370), and PD (0.336) were also the important
factors for increasing carbon emission. In 2003, PGDP (0.605)
had the strongest determinative power on carbon emission in
the central region; TRA (0.601), FIN (0.460), INF (0.390), and
EI (0.327) also exerted major impacts on carbon emission. By
comparison, TRA (0.688) surpassed PGDP (0.508) and
became the primary influencing factor in 2019. Obviously,
the PD values of FIN (0.436) and INF (0.321) decreased during
the study period, thus indicating that the financial
development and information construction in central areas
reduced their impacts on carbon emission. As for the western
part of China, the influence of TRA, FIN, and INF on carbon
emission decreased significantly from 2003 to 2019, whereas
that of FDI, PGDP, IS, and RD increased, resulting in more

carbon emission. That might be due to the fact that cities in
the western region were relatively intensive in energy
resources but lagged in technology, short in innovation and
poor in research. The effects on PGDP and TRA was weakened
(with PD values decreased by 0.044 and 0.076, respectively) in
the northeastern region, whereas the OPEN showed a growing
impact on carbon emission (with the PD value remarkably
increased from 0.016, 2003 to 0.334, 2019), which signified
that trade openness exacerbated carbon emission.

4. CONCLUSION AND POLICY
IMPLICATIONS

4.1 Conclusion
This study investigated the spatiotemporal differences and
driving factors of carbon emission in 284 Chinese cities for
the period 2003–2019. Specifically, we used the spatial
correlation analysis, standard deviation ellipse, and Dagum
Gini coefficient methods to derive the spatiotemporal
evolution pattern of carbon emission and revealed the main
sources of regional differences. Moreover, the geographical
detector model was introduced to identify the major drivers
of carbon emission in China. We draw the following
conclusions:

(1) From the spatiotemporal evolution, the annual average
carbon emission in China was 100.974 Mt for the period
2003–2019 and exhibited a general upward trend over
time. Among the four regions, carbon emission was the
highest in the eastern region and then followed by
northeastern and western regions, while the center
region was the lowest. In addition, all the four regions
presented a persistent increase in carbon emission, and
the western region enjoyed the largest growth rate. In
addition to that, the results showed that the carbon
emission portrayed a “northeast–southwest” spatial
distribution direction and represented a strong positive
spatial correlation with an imbalance polarization trend
of “east-hot and west-cold.”

(2) The overall differences in carbon emission for cities showed a
gradual downward trend during the research period from the
DagumGini coefficient analysis, with higher Gini coefficients
in eastern and central regions and lower Gini coefficients in
western and northeastern regions, indicating that the
regional differences in carbon emission were shrinking.
Moreover, the contribution of interregional differences was
obviously the largest and still increasing, thus narrowing the
interregional differences should be set as the crucial point to
reduce the overall carbon emission from a policy perspective.

(3) As for the driving factors of carbon emission, the results of
the geographical detector model showed that transportation
infrastructure, informatization level, and trade openness had
the strongest determinative power in 2003, while
transportation infrastructure, economic development level,
and informatization level were the primary drivers affecting
carbon emission in 2019. In the eastern, central, and
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northeastern regions, transportation infrastructure and the
economic development level exerted a greater effect on
carbon emission; however, the explanatory powers of
transportation infrastructure and the foreign direct
investment level were larger than other factors in the
western region. In addition, the interactions can be
classified into two kinds: enhanced and nonlinear and
enhanced and bivariate. Also, the interactive effects
between any two factors showed greater influence on
carbon emission than their separate effects.

4.2 Policy Implications
In line with the conclusions obtained, the following policy
implications for carbon emission mitigation in China can be
put forward:

First, and most importantly, China has to seek new ways to
simultaneously guarantee sustained economic growth and
carbon emission reduction. As the largest developing
country, China still needs to spare no efforts to develop its
economy, and the carbon emission may continue to increase at
the same time. Over the long term, under such urgent
circumstances of extreme climate change, degeneration of
ecological conditions, and exhaustion of resources, the first
task for the Chinese government should be looking for
alternative ways to change the economic growth from high
inputs, high consumption, and high discharge to green and low
carbon. For example, the government should prioritize clean
vehicle research, economic structure adjustment, information
technology improvement, and increased trade openness to
curb carbon emission. Meanwhile, the interactions between
factors should also be given full play to achieve the steady
progress of China’s economy while reducing carbon emission,
for example, considering the interactions with other factors
during economic development, accelerating the development
of new energy transportation, and improving the level of
informatization, so as to achieve a win–win scenario with
economic development and carbon mitigation.

Rather, the disparity between regions was the largest
contributor to the total difference of carbon emission, so
narrowing the gap between regional carbon emissions in
urban areas should be treated as an effectual approach in
mitigation policymaking. According to the aforementioned
analysis results, the difference between eastern and western
regions was the largest; thus, it is necessary for the local
government to take the top priority for policies
implementation about shrinking the gap across the cities
belonging to eastern and western regions. For cities with
higher emissions in the eastern region, the enactment of
emission mitigation policies should be based on promoting
green- and low-carbon economic transformation, so as to
cease the growth of carbon emission. Strengthening the
polluting industries and capital control and maintaining the
current low-carbon development status, for lower cities in the
western region, can assist in significantly curbing carbon
emission. In addition, given that the carbon emission showed
strong spatial positive correlation, the regional cooperation
system should also be established to promote information

exchange and cooperation, which can accelerate the emission-
inhibiting process.

Last, in view of the distinguished decisive power of driving
factors affecting regional carbon emission, it is pertinent for the
Chinese government to formulate several flexible and targeted
policies to facilitate its carbon-abatement agenda which are
suitable for different parts of China. To be specific, the
cities in all regions should stay devoted to modifying the
traditional means of transportation into a cleaner way. In
addition, to reduce carbon emission, the eastern region also
has to put the main attention on economic progress and the
enhancement of informatization level. Also, improving
economic development quality and financial development
level, increasing efforts to attract FDI, and accelerating
research and development could serve as tools for carbon
emission mitigation both in central and western regions.
Regarding cities in the northeastern region, it is thus
imperative for the local government to spur regional
economic growth and expand the opening in trade during
the carbon emission reduction.

However, there still exist some limitations that can be further
improved in the future. First, carbon emission is an important
catalyst for global warming, which could be triggered by various
natural causes such as climatic types in different regions (Cai
et al., 2018). Therefore, the analysis of impact factors on carbon
emission should be considered into climatic types in future
studies. Furthermore, the interactive influences in this study
provided by the geographical detector model may not be
comprehensive due to the complex relationships between
variables (Zhu et al., 2020). With the improvement of the
model, there is a need for future research to probe the
interactive effects among three or more influencing factors on
carbon emission in China. Finally, since December 2019, the
global COVID-19 pandemic has been exerting profound impacts
on human health and economic development. How will it affect
carbon emission? With the extension of the study period and the
update of data, this topic is worthy of further research.
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