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Lakes are water bodies that play an essential role as water sources for humanity,

as they provide a wide range of ecosystem services. Therefore, this study aimed

to evaluate Lake Pomacochas, a high Andean lake in the north of Peru. A variety

of parameters were studied, including physicochemical parameters such as

temperature (T°C), dissolved oxygen (DO), potential hydrogen (pH), electrical

conductivity (EC), turbidity, total dissolved solids (TDS), biochemical oxygen

demand (BOD), alkalinity, and chlorides hardness; the concentrations of

nitrates, nitrites, sulfates, and ammonium; elements such as aluminum (Al),

calcium (Ca), magnesium (Mg), sodium (Na), potassium (K), and boron (B); as

well as metals andmetalloids such as zinc (Zn), cadmium (Cd), copper (Cu), lead

(Pb), and arsenic (As). In addition, pH, Zn, and Cuwere evaluated at the sediment

level. It is important to note that all parameters evaluated in the water matrix

showed significant differences in the seasonal period and depth levels. In

comparison, the parameters evaluated at the sediment level had no

significant differences between the seasonal period and sampling points. As

for the seasonal period, the variables that were higher for the dry season were

electrical conductivity, total dissolved solids, and lead while that for the wet

season were biochemical oxygen demand, zinc, magnesium, turbidity, calcium,

dissolved oxygen, temperature, and potential hydrogen. At the depth levels,

parameters such as total dissolved solids, lead, and arsenic had similar behavior

for the three depths evaluated. According to national standards, latent

contamination by cadmium and lead was found in the lake water from the

ecological risk assessment. However, by international standards, all sampling

stations showed a high level of contamination by cadmium, lead, zinc, copper,

and arsenic, which represents a potential risk for the development of

socioeconomic activities in the lake. At the same time, the evaluation of

sediments did not present any potential risk.
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Introduction

Lakes account for 50.01% of all terrestrial surface waters

worldwide, 49.8% of which are liquid and fresh surface waters

(Bhateria and Jain, 2016). These water resources play an essential

role as water sources for humanity; in addition, they provide

primary beneficial ecosystem services, such as the development

of agricultural activities, aquaculture, tourism, recreation, and

transportation (Chen H. et al., 2019). Rapid industrial and urban

development has compromised the quality and health of these

water sources, leaving many pollutants that can be discharged

directly into lakes or through runoff, atmospheric deposition,

and leaching processes (Stange et al., 2019).

Rapid global industrialization has raised awareness of the

presence of metals and metalloids in nature due to their high rate

of toxicity and persistence (Niu et al., 2020). These elements are

part of organic and inorganic complexes, mainly found in trace

concentrations (Utete and Fregene, 2020), whose presence affects

aquatic biota and the human population using the water resource

(Xu et al., 2017). The sources of metal pollution in lakes can be

natural, coming from the original material of the watershed soil

or windblown dust. In contrast, anthropogenic pollution comes

from agricultural chemicals, such as fertilizers or pesticide, as

well as metal-contaminated wastes from mining and smelting

(Wang et al., 2021). Thus, high pollution of urban and peri-urban

lakes is reported as a consequence of contamination of nearby

watersheds (Zerizghi et al., 2020).

High Andean lakes are highly vulnerable to contamination.

This vulnerability is due to their particular characteristics,

defined by their location, altitude, and prevailing conditions

such as geology, topography, soils, climate, diversity, and

population settled on their margins (Dodds et al., 2009;

López-Martínez et al., 2017; Aranguren-Riaño et al., 2018).

Lake Pomacochas is one of the largest high Andean lakes in

the Amazon region, located in a developing area of agriculture,

fish farming, and tourism, which are the primary sources of local

economic income (Barboza-Castillo et al., 2014). However, in

recent years, these activities have increased with more intensive

use of natural resources and have caused the progressive

deterioration of the water body (Matthews-Bird et al., 2017;

Marin et al., 2022). Consequently, a moderate trophic state

and an advanced state of eutrophy caused by agricultural and

livestock waste in the area are reported (Chávez et al., 2016;

Rascón et al., 2021). Considering the ecological and economic

importance of Lake Pomacochas, this research aims to determine

and analyze the presence and concentration of toxicologically

relevant elements and the physicochemical parameters of water

and sediment. For this purpose, four sampling stations were

established during two seasonal periods. The availability and

behavior of these elements, concentration indexes, dangers they

represent for aquatic life, and development of productive

activities were analyzed according to international and

national standards.

Materials and methods

Study area

Lake Pomacochas is located in the town of Florida-

Pomacochas, in a montane forest zone, on the eastern slope

of the Peruvian Andes. It is a lake of tectonic origin at an altitude

of 2,233 m. a.s.l., with an approximate surface area of 425.10 ha

and an estimated depth of 75.5 m (Wetzel, 2001). It has a humid,

warm temperate climate and an average temperature of 15°C.

There are two marked seasonal periods with an annual

precipitation of 1,104.5 mm (Barboza-Castillo et al., 2014).

The wet season from November to April, with the highest

precipitation peaks from January to March, and the dry

season from May to October with a decrease in precipitation

from June to August (Rascón et al., 2021). Precipitation does not

present a water deficit throughout the year; on the contrary, there

is a surplus of 77.0 and 102.0 mm (Vargas-Rivera). The lake is

located in one of the main livestock-raising areas of the Amazon

region, where the population settled in the surrounding area is

around 7,000 inhabitants (Oliva et al., 2015; INEI, 2018).

According to bathymetric studies, precipitation and subway

runoff are the main sources of water to the lake (Barboza-

Castillo et al., 2014). The main surface effluents are the Fichac

and Congona streams, which cross the urban zone, and their

effluent (Desaguadero) converges in the Pomacochas River

(Figure 1). The main activities in the basin are extensive

livestock ranching, vegetable production, aquaculture, and

tourism in the western part of the lake (Oliva et al., 2015;

ANA, 2016; Chávez et al., 2016).

Collection and preparation of samples

Samples were collected considering seasonal rainfall. One

sampling was executed in March (wet season) and another in

August (dry season) of 2021. Considering the lake’s land use

and activities nearby, four sampling points were established in

the study area. Sampling point one (P1) was chosen for the

direction of the lake discharge zone, sampling point two (P2)

for its proximity to the area of population settlement and tourist

activity, sampling point three (P3) for its proximity to the

livestock production zone, and sampling point four (P4) for its

proximity to the tributary inflow zone (ANA, 2016). Water and

sediment samples were collected in triplicate at each sampling

point. Along the water column, three depths were established

using the Secchi disk of 20 cm diameter, which combines white

and black quadrants alternatively (Utete and Fregene, 2020).

The first depth was considered at the surface level from 0 to

50 cm, the second was about the Secchi disk transparency value,

and the third was at 2.5 times the Secchi disk transparency value

(Potapov et al., 2019). At each depth, temperature (T°),

dissolved oxygen (DO), potential hydrogen (pH), and
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conductivity (EC) were determined with multiparameter

equipment, brand WTW and model 3630 IDS. On the other

side, turbidity was determined with a portable turbidity meter,

brand HACH and model 2100Q. Triplicate samples were

collected from each depth in 1-L polyethylene bottles that

were thoroughly cleaned and rinsed with sampling water to

determine physicochemical parameters (Popek, 2018).

However, for the determination of metals, samples were

collected in 100-ml polyethylene bottles treated with a 10%

1M nitric acid solution for 30 min and rinsed with distilled or

deionized water (EPA, 1992). Sediment samples were collected

in triplicate (a 0.5 cm layer from the lake bottom) using an

Ekman Dredge (Cross, 1987). All collected samples were

immediately transported to the Soil and Water Research

Laboratory (LABISAG) of the Universidad Nacional Toribio

Rodríguez de Mendoza de Amazonas, located in Chachapoyas.

They were stored at −20°C until processing (Hou et al., 2013). In

the laboratory, water samples were filtered using a cellulose

filter paper, qualitative grade F1002 CHMLab and thickness

190 µm. The filtered product was acidified with nitric acid (1 +

1) to pH < 2 (EPA, 1994). Sediment samples were dried at 50°C

before grinding with an agate mortar and sieving on a 200-mm

sieve.

Determination of physicochemical
parameters in the water profile

Alkalinity was determined by titration with hydrochloric acid

(HCL), hardness by titration with EDTA (ethylenediamine

tetraacetic acid), and chlorides by titration with silver nitrate

(AgNO3), according to the methodology by APHA, AWWA, and

WEF (30). Parameters such as nitrates (NO3
−) and nitrites

(NO2
−) were determined using the methodology established

by HACH (2000). Total dissolved solids (TDS), ammonium

(NH4
+), sulfates (SO4

2-), and chemical oxygen demand (BOD)

were determined using the methodology established by

APHAAWWA and WEF, 2017).

Determination of the concentration of
toxicologically important elements in the
water and sediment profile

Pulverized sediment samples were digested with HNO3:

H2O2 (EPA, 1996), and elemental concentrations of Cu and

Zn were measured (Manoj and Kawsar, 2020). Water samples

were determined from the filtrate, acidification, and appropriate

FIGURE 1
Geographic localization of study area.
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digestion in spectroscopy of emission atomic for MP-AES,

adapting of methodology for ICP (APHA et al., 2017). The

presence and concentration of metals and metalloids in water,

such as aluminum (Al), lead (Pb), arsenic (As), boron (B), copper

(Cu), cadmium (Cd), zinc (Zn), magnesium (Mg), and calcium

(Ca), and the presence and concentration of copper (Cu) and

zinc (Zn) in sediment samples were determined.

Microwave plasma atomic emission spectroscopy was

performed with an Agilent microwave plasma

spectrophotometer, brand Agilent Technologies and model

4100 MP-AES, equipped with a standard torch, Inert OneNeb

nebulizer, and dual-pass glass cyclonic spray chamber, brand

Agilent Technologies, for all experiments. Nitrogen was obtained

from the air using a nitrogen generator, brand Agilent

Technologies and model Agilent 4,107. The pump speed was

set at 15 rpm. Before reading the samples, 12 s was set for the

consumption time, 12 s for the torch stabilization time, and 30 s

for the rinsing time. The reading time was 5 s. The spectral

intensity was the mean of three repeated readings per sample.

The detection wavelength of 193.695, 213.857, 228.802, 249.772,

285.213, 324.754, 393.366, 396.152, 405.781, 588.995, and

766.491 nm was selected for the quantification of As, Zn, Cd,

B, Mg, Cu, Ca, Al, Pb, Na, and K, respectively. Before the

readings, the equipment was calibrated by using standard

solutions of each element in different concentrations, prepared

from a 1,000 ppm standard solution (Supplementary Figure S1).

The standard solutions used were of Agilent brand, located in the

spectrometry area of LABISAG. After each reading, the

equipment recovered both concentration and intensity without

the need to enrich samples.

Data analysis

All the data obtained were subjected to a normality test

applying the Kolmogorov–Smirnov test and homogeneity of a

variance test with the application of Bartlett’s test to

determine which statistical tests to use. For the evaluation

of the behavior of the physicochemical parameters and

toxicological elements of the water profile in depth and

seasonal period, a principal component analysis (PCA) was

applied. PCA is a statistical method used to reduce the

dimensions of a large data set (Van Der Maaten et al.,

2009). At the same time, selecting the most significant

variables is a good technique; discard those that are

redundant or have a high correlation (Marin and Robert,

2014; Borcard et al., 2018). PCA recognizes the variance

within a set of correlated variables to create a smaller

group of uncorrelated variables called principal

components (PC), which are weighted linear combinations

of the novel variables (Thioulouse et al., 2018). In this study,

PCA was determined using a correlation matrix. Eigenvalues

were calculated to measure the significance of the

components. Once the PCA was calculated, the number of

components to be used was determined, using the criterion of

considering a sufficient number of components able to explain

between 70% and 90% of the total variation of the original

variables (Rencher, 2012). Finally, a biplot was used to better

interpret the first two principal components (Jolliffe, 2002).

To detect spatial, temporal, and depth variations in both

water and sediments a non-parametric multivariate analysis of

variance (PERMANOVA) based on permutations was used

(Anderson and Walsh, 2013). On the other hand, a U

Mann–Whitney test was applied to determine the significant

differences between the parameters present in water and

sediment.

The mean concentration of metals and metalloids present

in the water samples was contrasted with the international

standards established by the European Union for

environmental quality in the field of water policy of

European Union (EQS) (EU, 2008), Canadian standard set

by the Ministers of the Environment for the protection of

aquatic life (CCME) (CCME, 2007), National Primary

Drinking Water Regulations (EPA) (EPA, 2009), and

National Environmental Water Quality Standards of Peru

(ECAs), for the category of conservation of the aquatic

environment (C4) and the category of extraction and

cultivation of hydrobiological species in lakes or lagoons

(C2) (MINAM, 2017). The toxicological elements present

in the sediments were contrasted with the Canadian

sediment quality standard for the protection of aquatic life

in fresh waters (CEQG) (CCME, 2001), considering the

previous conversion to the required concentration units

and considering the following evaluation parameters:

interim freshwater sediment quality guidelines (ISQG) and

probable effect level (PEL).

-Sediment concentration < ISQG = No adverse biological

effects.

-Sediment concentration > ISQG and < PEL = Occasional

biological effects.

-Sediment concentration > PEL = Frequent adverse biological

effects.

All statistical analyses were performed at a significance level

of p < 0.05, using R software version 4.1.0 (R Development Core

Team, 2021).

Results

Concentration of physicochemical
parameters of the water profile

Table 1 shows the mean values and their standard error

for the physicochemical parameters determined in the water.
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TABLE 1 Mean concentration and standard deviation of physicochemical parameters of the water profile.

p D EE T °C DO
(mg/L)

pH EC
(µs/cm2)

Turbidity
(UNT)

TDS
(mg/L)

BDO
(mg/L)

Alkalinity
(mg/L)

Chlorides
(mg/L)

Hardness
(mg/L)

NO3
−

(mg/L)
NO2

−

(mg/L)
SO4

2−

(mg/L)
NH4

+

(mg/L)

P1 D1 Wet 20.1 ± 0.1 7.2 ± 0.0 8.7 ± 0.0 232.7 ± 0.6 4.2 ± 0.1 0.1 ± 0.0 1.1 ± 0.2 178.8 ± 11.9 9.9 ± 0.6 148.7 ± 1.5 8.1 ± 0.2 0.0 ± 0.0 8.0 ± 0.2 0.2 ± 0.0

Dry 19.0 ± 0.1 6.2 ± 0.0 6.9 ± 0.1 240.3 ± 0.6 3.3 ± 0.2 1.0 ± 0.0 2.3 ± 0.1 119.2 ± 0.0 11.8 ± 2.2 134.2 ± 0.9 5.8 ± 0.0 0.0 ± 0.0 2.2 ± 0.0 0.2 ± 0.0

D2 Wet 20.5 ± 0.5 7.3 ± 0.0 8.7 ± 0.0 234.0 ± 0.0 4.9 ± 0.3 0.1 ± 0.0 10.1 ± 0.1 119.2 ± 11.9 15.0 ± 0.6 138.7 ± 0.9 7.1 ± 0.2 0.0 ± 0.0 3.8 ± 0.6 0.2 ± 0.0

Dry 19.5 ± 0.0 6.3 ± 0.4 7.2 ± 0.0 241.3 ± 0.6 2.8 ± 0.1 3.3 ± 3.3 1.7 ± 0.5 119.2 ± 20.6 13.1 ± 0.0 130.7 ± 4.0 8.0 ± 0.6 0.0 ± 0.0 2.4 ± 1.0 0.3 ± 0.1

D3 Wet 20.0 ± 0.3 6.7 ± 0.0 8.4 ± 0.0 233.7 ± 0.6 4.2 ± 0.2 0.1 ± 0.0 16.7 ± 0.2 135.1 ± 6.9 8.3 ± 0.5 118.2 ± 1.5 6.7 ± 0.0 0.0 ± 0.0 3.3 ± 0.2 0.3 ± 0.0

Dry 19.2 ± 0.0 6.7 ± 0.0 6.9 ± 0.2 241.3 ± 0.6 3.5 ± 0.3 6.3 ± 1.7 1.9 ± 0.2 170.9 ± 0.0 12.7 ± 0.5 124.2 ± 0.0 7.8 ± 0.2 0.0 ± 0.0 3.2 ± 0.0 0.2 ± 0.0

P2 D1 Wet 20.0 ± 0.1 7.8 ± 0.0 8.8 ± 0.0 229.7 ± 0.6 4.3 ± 0.2 0.1 ± 0.0 0.9 ± 0.3 119.2 ± 6.9 14.0 ± 0.5 155.7 ± 3.8 6.3 ± 0.0 0.0 ± 0.0 4.8 ± 0.1 0.2 ± 0.0

Dry 19.1 ± 0.0 5.7 ± 0.0 7.5 ± 0.0 242.0 ± 0.0 3.2 ± 0.1 2.7 ± 3.2 2.2 ± 0.4 131.1 ± 0.0 9.6 ± 0.0 118.7 ± 0.0 7.2 ± 0.0 0.0 ± 0.0 2.1 ± 0.0 0.1 ± 0.0

D2 Wet 19.6 ± 0.0 6.9 ± 0.0 7.6 ± 0.1 250.3 ± 0.6 5.1 ± 0.4 0.0 ± 0.0 7.7 ± 0.1 123.2 ± 0.0 10.8 ± 1.5 120.2 ± 11.4 6.9 ± 0.2 0.0 ± 0.0 2.4 ± 0.3 0.3 ± 0.0

Dry 19.0 ± 0.0 6.0 ± 0.0 7.1 ± 0.0 240.3 ± 1.2 4.9 ± 0.0 6.2 ± 1.2 2.2 ± 0.3 131.1 ± 0.0 10.8 ± 2.8 117.2 ± 0.0 7.2 ± 0.2 0.0 ± 0.0 1.7 ± 0.1 0.3 ± 0.0

D3 Wet 19.7 ± 0.0 6.8 ± 0.0 7.3 ± 0.2 230.7 ± 0.6 6.3 ± 0.2 0.1 ± 0.0 12.8 ± 0.3 135.1 ± 6.9 8.3 ± 0.5 119.2 ± 4.0 6.5 ± 0.2 0.0 ± 0.0 1.3 ± 0.1 0.3 ± 0.0

Dry 19.4 ± 0.0 6.4 ± 0.0 7.3 ± 0.0 242.0 ± 0.0 5.4 ± 0.1 12.8 ± 2.3 2.1 ± 0.3 131.1 ± 0.0 10.2 ± 0.5 123.2 ± 0.0 8.6 ± 0.0 0.0 ± 0.0 1.5 ± 0.0 0.3 ± 0.0

P3 D1 Wet 19.7 ± 0.1 6.9 ± 0.0 7.8 ± 0.0 231.0 ± 0.0 4.6 ± 0.1 0.1 ± 0.0 0.6 ± 0.1 139.1 ± 16.6 10.8 ± 0.6 159.2 ± 0.9 6.5 ± 0.0 0.0 ± 0.0 0.9 ± 0.2 0.3 ± 0.0

Dry 19.2 ± 0.0 5.6 ± 0.0 7.2 ± 0.0 241.0 ± 0.0 2.8 ± 0.2 18.5 ± 4.3 2.4 ± 0.2 119.2 ± 0.0 10.8 ± 2.2 123.2 ± 2.6 6.7 ± 0.2 0.0 ± 0.0 1.5 ± 0.0 0.2 ± 0.0

D2 Wet 19.4 ± 0.0 6.9 ± 0.0 8.3 ± 0.0 231.0 ± 0.0 5.0 ± 0.2 0.1 ± 0.0 11.3 ± 0.0 119.1 ± 6.9 8.3 ± 0.6 116.7 ± 1.7 7.2 ± 0.0 0.0 ± 0.0 2.7 ± 0.3 0.4 ± 0.0

Dry 19.0 ± 0.0 5.8 ± 0.0 7.5 ± 0.0 240.0 ± 0.6 3.1 ± 0.2 12.0 ± 5.5 2.4 ± 0.2 143.0 ± 0.0 13.1 ± 0.0 126.2 ± 0.0 6.2 ± 0.0 0.0 ± 0.0 3.6 ± 0.0 0.3 ± 0.0

D3 Wet 19.6 ± 0.0 6.8 ± 0.0 7.7 ± 0.0 231.0 ± 0.0 4.8 ± 0.1 0.1 ± 0.0 10.4 ± 0.2 123.2 ± 6.9 12.1 ± 0.6 111.7 ± 0.9 6.1 ± 0.2 0.0 ± 0.0 1.5 ± 0.2 0.2 ± 0.0

Dry 19.0 ± 0.0 5.9 ± 0.0 7.2 ± 0.0 242.3 ± 0.3 2.8 ± 0.2 0.7 ± 0.3 1.5 ± 0.4 123.2 ± 27.5 14.3 ± 2.2 124.7 ± 1.7 6.8 ± 0.0 0.0 ± 0.0 2.6 ± 0.0 0.3 ± 0.0

P4 D1 Wet 19.7 ± 0.0 6.7 ± 0.0 7.7 ± 0.0 231.0 ± 0.0 4.6 ± 0.1 0.2 ± 0.0 1.2 ± 0.2 127.2 ± 6.9 11.1 ± 0.6 153.7 ± 0.9 5.8 ± 0.0 0.0 ± 0.0 1.5 ± 0.1 0.2 ± 0.0

Dry 19.4 ± 0.0 6.8 ± 0.0 7.4 ± 0.0 239.3 ± 0.6 3.7 ± 0.0 4.8 ± 0.3 2.5 ± 0.3 143.0 ± 0.0 11.5 ± 0.5 120.2 ± 0.0 6.1 ± 0.0 0.0 ± 0.0 2.8 ± 0.0 0.2 ± 0.0

D2 Wet 19.7 ± 0.1 6.9 ± 0.0 8.0 ± 0.0 225.0 ± 0.0 5.3 ± 0.2 0.1 ± 0.0 8.4 ± 0.1 135.1 ± 6.9 8.3 ± 0.6 118.2 ± 0.9 6.5 ± 0.0 0.0 ± 0.0 3.4 ± 0.0 0.2 ± 0.0

Dry 19.2 ± 0.0 6.2 ± 0.0 7.3 ± 0.0 242.0 ± 0.0 3.0 ± 0.2 15.8 ± 0.3 1.7 ± 0.2 143.0 ± 6.9 9.6 ± 0.0 123.2 ± 2.6 8.2 ± 0.0 0.0 ± 0.0 2.3 ± 0.1 0.2 ± 0.0

D3 Wet 19.5 ± 0.1 7.1 ± 0.0 8.3 ± 0.0 231.0 ± 0.0 4.8 ± 0.2 0.1 ± 0.0 13.3 ± 4.6 127.2 ± 6.9 10.5 ± 1.0 116.7 ± 0.9 6.3 ± 0.2 0.0 ± 0.0 2.4 ± 0.3 0.2 ± 0.0

Dry 19.0 ± 0.0 6.0 ± 0.0 7.6 ± 0.0 241.7 ± 0.6 2.3 ± 0.1 17.7 ± 4.0 1.5 ± 0.2 143.0 ± 0.0 11.5 ± 0.0 120.2 ± 0.0 4.1 ± 0.2 0.0 ± 0.0 2.1 ± 0.0 0.2 ± 0.0

Sampling point (p), depth (D), seasonal epoch (EE), temperature (T °C), dissolved oxygen (DO), hydrogen potential (pH), electrical conductivity (EC), total dissolved solids (TDS), biochemical oxygen demand (BOD), nitrates (NO3
−), nitrites (NO2

−),

sulfates (SO4
2-), and ammonium (NH4

+).
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TABLE 2 Concentration of metals and metalloids in the water and sediment.

p Matrix D EE Mg
(mg/L)

Al
(mg/L)

Ca
(mg/L)

Na
(mg/L)

K
(mg/L)

Zn
(mg/L)

Cd
(mg/L)

Cu
(mg/L)

Pb
(mg/L)

B
(mg/L)

As
(mg/L)

P1 Water D1 Wet 3.70 ± 0.0 0.40 ± 0.0 43.43 ±
0.2

3.75 ± 0.0 4.24 ±
0.0

0.01 ± 0.0 0.00 ± 0.0 0.01 ± 0.0 0.03 ± 0.0 0.06 ±
0.0

0.12 ± 0.1

Dry 3.68 ± 0.0 0.31 ± 0.0 25.98 ±
0.2

3.94 ± 0.0 4.61 ±
0.0

0.00 ± 0.0 0.00 ± 0.0 0.01 ± 0.0 0.12 ± 0.0 0.06 ±
0.0

0.14 ± 0.1

D2 Wet 3.92 ± 0.0 0.14 ± 0.0 43.47 ±
0.4

4.06 ± 0.0 4.35 ±
0.0

0.01 ± 0.0 0.00 ± 0.0 0.01 ± 0.0 0.02 ± 0.0 0.07 ±
0.0

0.03 ± 0.0

Dry 3.74 ± 0.0 0.18 ± 0.0 26.79 ±
0.7

5.79 ± 2.5 4.46 ±
0.0

0.00 ± 0.0 0.07 ± 0.0 0.01 ± 0.0 0.05 ± 0.0 0.11 ±
0.0

0.13 ± 0.0

D3 Wet 3.99 ± 0.0 0.18 ± 0.0 44.38 ±
0.0

3.76 ± 0.0 4.31 ±
0.0

0.02 ± 0.0 0.00 ± 0.0 0.01 ± 0.0 0.02 ± 0.0 0.05 ±
0.0

0.03 ± 0.0

Dry 3.71 ± 0.0 0.16 ± 0.0 26.19 ±
0.0

3.67 ± 0.0 4.52 ±
0.0

0.01 ± 0.0 0.00 ± 0.0 0.01 ± 0.0 0.05 ± 0.0 0.04 ±
0.0

0.06 ± 0.0

Sediment - Wet ─ ─ ─ ─ ─ 3.13 ± 0.1 0.00 ± 0.0 5.12 ± 0.0 0.00 ± 0.0 ─ ─

Dry ─ ─ ─ ─ ─ 1.85 ± 0.2 0.00 ± 0.0 3.44 ± 0.0 0.00 ± 0.0 ─ ─

P2 Water D1 Wet 3.94 ± 0.0 0.03 ± 0.0 43.98 ±
0.2

3.74 ± 0.0 4.28 ±
0.0

0.01 ± 0.0 0.00 ± 0.0 0.01 ± 0.0 0.03 ± 0.0 0.01 ±
0.0

0.08 ± 0.1

Dry 3.69 ± 0.0 0.19 ± 0.0 25.61 ±
0.4

3.80 ± 0.0 4.51 ±
0.0

0.00 ± 0.0 0.00 ± 0.0 0.01 ± 0.0 0.06 ± 0.0 0.06 ±
0.0

0.13 ± 0.0

D2 Wet 3.98 ± 0.0 0.06 ± 0.0 44.32 ±
0.2

4.74 ± 0.0 5.07 ±
0.0

0.05 ± 0.0 0.00 ± 0.0 0.01 ± 0.0 0.03 ± 0.0 0.05 ±
0.0

0.08 ± 0.0

Dry 3.71 ± 0.0 0.19 ± 0.0 25.93 ±
0.1

3.56 ± 0.0 4.40 ±
0.0

0.00 ± 0.0 0.01 ± 0.0 0.01 ± 0.0 0.04 ± 0.0 0.01 ±
0.0

0.06 ± 0.0

D3 Wet 3.95 ± 0.0 0.01 ± 0.0 44.34 ±
0.0

4.45 ± 0.0 4.65 ±
0.1

0.02 ± 0.0 0.09 ± 0.0 0.01 ± 0.0 0.02 ± 0.0 0.05 ±
0.0

0.05 ± 0.1

Dry 3.79 ± 0.0 0.19 ± 0.0 26.69 ±
0.1

4.35 ± 0.0 4.62 ±
0.0

0.03 ± 0.0 0.0 0 ± 0.0 0.01 ± 0.0 0.04 ± 0.0 0.09 ±
0.0

0.11 ± 0.0

Sediment - Wet ─ ─ ─ ─ ─ 3.30 ± 0.1 0.00 ± 0.0 5.62 ± 0.0 0.00 ± 0.0 ─ ─

Dry ─ ─ ─ ─ ─ 5.42 ± 0.0 0.00 ± 0.0 4.03 ± 0.0 0.00 ± 0.0 ─ ─

P3 Water D1 Wet 3.98 ± 0.1 0.05 ± 0.0 44.47 ±
0.4

4.40 ± 0.0 4.64 ±
0.0

0.02 ± 0.0 0.09 ± 0.0 0.01 ± 0.0 0.02 ± 0.0 0.07 ±
0.0

0.10 ± 0.0

Dry 3.73 ± 0.1 0.18 ± 0.0 6.28 ± 0.1 5.26 ± 0.0 4.47 ±
0.0

0.00 ± 0.0 0.00 ± 0.0 0.01 ± 0.0 0.06 ± 0.0 0.02 ±
0.0

0.10 ± 0.0

D2 Wet 3.90 ± 0.1 0.01 ± 0.0 44.50 ±
0.1

4.05 ± 0.0 4.60 ±
0.0

0.01 ± 0.0 0.29 ± 0.0 0.01 ± 0.0 0.03 ± 0.0 0.06 ±
0.0

0.11 ± 0.0

Dry 3.73 ± 0.1 0.17 ± 0.0 25.90 ±
0.1

3.98 ± 0.0 4.48 ±
0.0

0.00 ± 0.0 0.00 ± 0.0 0.01 ± 0.0 0.05 ± 0.0 0.04 ±
0.0

0.08 ± 0.0

D3 Wet 3.97 ± 0.1 0.00 ± 0.0 43.94 ±
0.0

4.12 ± 0.0 4.46 ±
0.1

0.02 ± 0.0 0.00 ± 0.0 0.01 ± 0.0 0.03 ± 0.0 0.05 ±
0.0

0.11 ± 0.0

Dry 3.74 ± 0.1 0.19 ± 0.0 27.61 ±
0.1

8.73 ± 0.0 4.66 ±
0.0

0.02 ± 0.0 0.00 ± 0.0 0.01 ± 0.0 0.06 ± 0.0 0.11 ±
0.0

0.09 ± 0.1

Sediment D1 Wet ─ ─ ─ ─ ─ 4.41 ± 0.1 0.00 ± 0.0 5.66 ± 0.1 0.00 ± 0.0 ─ ─

Dry ─ ─ ─ ─ ─ 0.98 ± 0.1 0.00 ± 0.0 4.05 ± 0.0 0.00 ± 0.0 ─ ─

P4 Water D1 Wet 3.98 ± 0.1 0.01 ± 0.0 44.64 ±
0.3

3.98 ± 0.0 4.54 ±
0.0

0.03 ± 0.0 0.06 ± 0.0 0.01 ± 0.0 0.02 ± 0.0 0.06 ±
0.0

0.04 ± 0.0

Dry 3.72 ± 0.1 0.16 ± 0.0 26.19 ±
0.1

3.91 ± 0.0 4.40 ±
0.0

0.00 ± 0.0 0.01 ± 0.0 0.01 ± 0.0 0.13 ± 0.0 0.05 ±
0.0

0.19 ± 0.1

D2 Wet 3.91 ± 0.1 0.07 ± 0.0 43.69 ±
0.2

3.98 ± 0.0 4.45 ±
0.0

0.02 ± 0.0 0.00 ± 0.0 0.01 ± 0.0 0.02 ± 0.0 0.06 ±
0.0

0.04 ± 0.0

Dry 3.70 ± 0.1 0.19 ± 0.0 26.36 ±
0.1

4.18 ± 0.0 4.51 ±
0.0

0.00 ± 0.0 0.00 ± 0.0 0.01 ± 0.0 0.04 ± 0.0 0.11 ±
0.0

0.05 ± 0.0

D3 Wet 3.90 ± 0.1 0.09 ± 0.0 46.01 ±
0.2

4.20 ± 0.0 4.24 ±
0.0

0.01 ± 0.0 0.00 ± 0.0 0.01 ± 0.0 0.06 ± 0.0 0.07 ±
0.0

0.04 ± 0.1

(Continued on following page)
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The water’s hydrogen potential (pH) values at the three

depths ranged from 6.89 to 8.76, with a mean of 7.68,

indicating a near neutral pH environment. The lowest

dissolved oxygen (DO) values, which occurred in the dry

season (S), ranged from 5.59 mg/L to 5.96 mg/L. Turbidity

values are influenced by the wet season (H), with the highest

values occurring at the sampling points and depths. TDS

generally did not show significant variations, nor did

conductivity whose mean value was 236.87 μs/cm2.

Biochemical oxygen demand (BOD) values ranged from

1.11 mg/L to 13.25 mg/L, with a mean of 4.95 mg/L.

Concentration of metals and metalloids in
the water and sediment profile

The concentrations of metals and metalloids in the water and

sediment profile are shown in Table 2. At thewater profile, the highest

concentration of aluminum (Al) was found at point 1 (P1) at depth 1

(D1), as well as lead (Pb) and zinc (Zn), and arsenic (As) at depth 2

(D2). Cadmium (Cd) presented the highest concentration value at

point 4 (P4), depth 2 (D2), lead (Pb) presented the highest values at

points 1 and 2 (P1, P2), and boron (B) presented its highest value at

point P2 depth 1 (D1). In the sediments, zinc (Zn) was reported with

its highest concentration value at point 4 (P4) in the dry season, aswell

as copper (Cu).

Behavior of physicochemical parameters
and toxicological elements of the water
profile at depth and seasonal period

From the evaluating parameters in the water for both

seasonal periods and each depth, seven main components

(PC) were selected that explain 42.3% of the total variance.

The value of each parameter by component was evaluated,

considering a moderate correlation (p ≥ ± 0.50), from which

it is reported that T°, DO, pH, EC, turbidity, BOD,Mg, Al, Ca, Zn,

and Pb are the parameters with more significant weight for

CP1 are shown; for CP2, pH, BOD, hardness, Al, and K; for

CP3, chlorides, Na, and Zn; for CP4, chlorides; for PC5, nitrates,

and ammonium; for PC6 and As; and for PC7 and Cu (Table 3).

The principal component analysis shows the distribution of

the physicochemical parameters and toxicological elements

determined in the water by seasonal period. This shows a

grouping of those variables that are representative of the wet

season, such as BOD, Zn, Mg, turbidity, Ca, DO, T, and pH,

whereas for the dry season Pb, EC, and TDS. The analysis of the

water profile at the three depths shows an overlap that

demonstrates that Pb and TDS behaved similarly at the three

depths, whereas other variables differed or were not influenced

by depth (Figure 2).

The PERMANOVA analysis of the concentration of

physicochemical parameters and toxicological elements

TABLE 2 (Continued) Concentration of metals and metalloids in the water and sediment.

p Matrix D EE Mg
(mg/L)

Al
(mg/L)

Ca
(mg/L)

Na
(mg/L)

K
(mg/L)

Zn
(mg/L)

Cd
(mg/L)

Cu
(mg/L)

Pb
(mg/L)

B
(mg/L)

As
(mg/L)

Dry 3.75 ± 0.1 0.20 ± 0.0 26.41 ±
0.2

3.87 ± 0.0 4.48 ±
0.0

0.01 ± 0.0 0.00 ± 0.0 0.01 ± 0.0 0.04 ± 0.0 0.10 ±
0.0

0.12 ± 0.1

Sediment - Wet ─ ─ ─ ─ ─ 2.86 ± 0.1 0.00 ± 0.0 5.65 ± 0.0 ─ ─ ─

Dry ─ ─ ─ ─ ─ 9.5 ± 0.2 0.00 ± 0.0 6.05 ± 0.0 ─ ─ ─

Sampling point (p), depth (D), magnesium (Mg), aluminum (Al), calcium (Ca), sodium (Na), potassium (K), zinc (Zn), cadmium (Cd), copper (Cu), lead (Pb), boron (B), and arsenic (As).

TABLE 3 Results of the principal component analysis of all parameters evaluated in the Lake Pomacochas.

PC1 PC2 PC3 PC4 PC5 PC6 PC7

Standard
deviation

2.68 1.85 1.53 1.36 1.27 1.05 1.01

Proportion of
variance

0.29 0.14 0.09 0.07 0.06 0.04 0.04

Accumulated
proportion

0.29 0.42 0.52 0.59 0.66 0.70 0.74

Loads T° (−0.74), DO (−0.80), pH (−0.70), EC
(0.74), turbidity (−0.78), BOD (−0.62), Mg
(−0.85), Al (0.66), Ca (−0.94), Zn (−0.51),
and Pb (0.66)

pH (0.57), BOD (−0.57),
hardness (0.76), Al (0.53),
and K (−0.73)

Chlorides (−0.57),
Na (−0.57), and
Zn (−0.54)

Chlorides
(−0.53)

NO3
− (−0.75)

and
NH4

+ (−0.51)

As
(0.56)

Cu
(0.66)

Temperature (T °C), dissolved oxygen (DO), hydrogen potential (pH), electrical conductivity (EC), biochemical oxygen demand (BDO), nitrates (NO3
−), nitrites (NO2

−), total dissolved

solids (TDS), ammonium (NH4
+), sulfates (SO4

2-), chemical oxygen demand (BOD), magnesium (Mg), aluminum (Al), calcium (Ca), sodium (Na), potassium (K), zinc (Zn), cadmium

(Cd), copper (Cu), lead (Pb), boron (B), and arsenic (As).
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present in the water indicates no significant differences by the

sampling point (F = 1.694, p = 0.099), whereas at the depth and

seasonal level, there are significant differences (F = 6.129, p =

0.001; F = 15.024, p = 0.001). Regarding the concentration of

toxicological elements evaluated in the sediment, the

PERMANOVA analysis indicates a significant difference in

the concentrations by the sampling point (F = 2.701, p =

0.043), whereas at the seasonal period level, there is no

significant difference (F = 2.186, p = 0.97).

Differences between parameters present
in water and sediment

About the parameters present in water and sediment, only

pH, Cu, and Zn were selected as they are the only parameters

whose values are available for both matrices. It was found that

there are no significant differences between the matrices for

pH (W= −1.168, p = 0.245). However, it is observed that there are

significant differences between the concentrations of Cu

(W = −9.474, p = 0.000) and Zn (W = −7.442, p = 0.000),

with values higher in the sediment.

Comparison of parameters against
international and national standards

The concentration of the elements presents at each sampling

point, at each depth level, and by seasonal period was contrasted

with the concentration of the elements established by CCME

standards. Overall, collected concentrations from this study are

mainly above the established limit concentrations. Concerning

the EQS and EPA standards, the concentrations of elements such

as Cu, Pb, and As exceed the established limit values. About the

national environmental quality standards for water (ECAs) in

conservation of the aquatic environment (C4) and extraction and

cultivation of hydrobiological species in lakes or lagoons (C2),

the concentration of elements such as As and Pb present the

highest risk by exceeding the limit concentrations (Figure 3).

After comparing the concentrations of heavy metals found in

the sediments with the CEQG standard, it was found that both

Cu and Zn values do not exceed the values established by the

standard, for both the ISQG limit and the PEL limit (Figure 4).

Discussion

Physicochemical parameters of the water
profile

The biochemical oxygen demand in the water profile of Lake

Pomacochas presents lower values of 2 mg/L, more severe at

points P1 and P3, at depth 1 in the wet season. These values per

sampling point may be due to various external causes, such as

land use and agricultural practices that enrich the lake with

nutrients (Kemp et al., 2005). For example, P1 is influenced by

urban effluent discharges and P3 by tourist activity (Rascón et al.,

2021). Small BOD values at depth may be due to nocturnal

FIGURE 2
Principal component analysis describing the concentration of physicochemical parameters and toxicologically important elements by seasonal
period (A) and depth level (B) in Lake Pomacochas. Temperature (T°C), dissolved oxygen (DO), hydrogen potential (pH), electrical conductivity (EC),
biochemical oxygen demand (BDO), nitrates (NO3

−), nitrites (NO2
−), total dissolved solids (TDS), ammonium (NH4

+), sulfates (SO4
2-), chemical oxygen

demand (BOD), magnesium (Mg), aluminum (Al), calcium (Ca), sodium (Na), potassium (K), zinc (Zn), cadmium (Cd), copper (Cu), lead (Pb), boron
(B), and arsenic (As).
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oxygen depletion by plant respiration (Caraco and Cole, 2002),

stratification events (Özkundakci et al., 2010), and wind-

generated turbulence, leading to deoxygenation of the water

column (Townsend and Edwards, 2003). With all these

factors, water quality worsens in the wet season (Jia et al.,

2021). Dissolved oxygen values do not present multiple

variations possibly because the lake remains in continuous

movement. This implies that the water column is frequently

oxygenated, and the in situ parameter sampling shows relatively

homogeneous values (Wang et al., 2022). Behavior was

FIGURE 3
Concentration of metals and metalloids in the water and its contrast with international standards and the Peruvian standard. Arsenic (A),
cadmium (B), copper (C), zinc (D), and lead (E). (CCME: Canadian standard set by the ministers of the environment for the protection of aquatic life
(CCME, 2007); EQS: international standards established by the European Union for environmental quality in the field of water policy (EU, 2008);
USEPA: National Primary DrinkingWater Regulations (EPA, 2009); ECAs C2 and C4: National Environmental Water Quality Standards of Peru, for
the category of conservation of the aquatic environment and the category of extraction and cultivation of hydrobiological species in lakes or lagoons
(MINAM, 2017)).
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completely different with biochemical oxygen demand, whose

digestion procedure allows for more concise data on the amount

of organic matter present (Abd El-Mageed et al., 2022). There are

similar studies where biochemical oxygen demand values are

near 1 mg/L, as in the case of Lake Veeranam, where it is

presumed that these values are the result of organic

pollutants, which cause an oxygen demand that causes the

death of aquatic life (Ramya et al., 2021). Since 2015, in Lake

Pomacochas, values of biochemical oxygen demand between

7.2 and 8.1 mg/L have been reported. Research where

microbiological parameters and physicochemical parameters,

together with the trophic pollution index (ICOTRO), reported

moderate pollution in the lake (Chávez et al., 2016). For 2016 and

2017, monitoring was developed in Lake Pomacochas. In this

monitoring, Carlson’s trophic state index, Aizaki’s modified

trophic state index, Toledo’s modified trophic state index, and

Vollenweider’s trophic state index were calculated. These indices

reported that Lake Pomacochas is in a very advanced eutrophic

state due to the waste generated by livestock and agriculture

carried out in the area. The highest levels of trophism were

observed in the wet period, so the trophic state depends on the

rainfall regime (Rascón et al., 2021). These results are similar to

the data obtained since they show an increase in multiple

parameters in the wet season. Special mention should be

made of the pH, which increases in the wet season. This

increase is mainly due to the geology of the High Andean

basins, given that it is composed chiefly of calcium carbonate

(limestone and calcite) (Benito et al., 2018; Schmidt et al., 2019).

These characteristics suggest that Lake Pomacochas, having these

high pH values, has a high buffering capacity in terms of acid

contaminations related to agriculture and livestock (Ogato et al.,

2015). The sulfate concentrations also showed an increase during

the wet season, possibly due to diffuse pollution sources that

carry pollutants from urban and agricultural areas. This would

also justify the increase in chloride, nitrite, and nitrate values at

some points and depths during the wet season (Ahmed et al.,

2018; Wei et al., 2019).

Physicochemical parameters and toxicological
elements of the water profile at depth and
seasonal points

The temporal variation of the parameters shows BOD, Zn,

Mg, turbidity, Ca, DO, T, and pH values higher in the wet season.

This variation is because the main source of organic matter enters

the aquatic ecosystem as an allochthone input due to rainfall and

runoff during the wet season (Derrien et al., 2019). The lake has

two-point surface sources of inflow, the Congona and Fichac

streams feed the lake after crossing the locality, and multiple

other temporary inflows (Chávez et al., 2016). The dry season’s

parameters are EC, TDS, and Pb, which are higher at this season.

These characteristics are due to the metals being weakly bound to

the suspended particulate fraction (Kamala-Kannan et al., 2008).

Also, variation in parameters evaluated can modify the solubility,

mobility, and availability of the element (Kannan and

Krishnamoorthy, 2006). Seasonal variation in Lake

Pomacochas, which can also be considered a peri-urban lake

due to its proximity to the town of Florida-Pomacochas, suggests

that municipal wastewater is the major contributor pollutant in

the dry season. The main concentration variation source in

parameters in the wet season is due to surface runoff and soil

leaching processes (Rahman et al., 2021). The analysis of water

parameters at depth shows significant differences because the

elements that enter the lake tend to adsorb, mobilize, and settle to

the bottom (Tang et al., 2016). The presence of macrophytes is

also directly related to sediment resuspended due to their ability

to contain wind and waves (Miranda et al., 2021). This suggests

FIGURE 4
Concentration of zinc (A) and copper (B) in sediments and their contrast to the international standard: (CEQG: Canadian sediment quality
standard for the protection of aquatic life in fresh waters (CCME, 2001), ISQG: interim freshwater sediment quality guidelines; PEL: probable effect
level).
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an increase in parameter concentrations as depth increases

(Kong et al., 2021).

Toxicologically important elements of the water
and sediment profile

Zn, Ca, and Mg concentrations are partly due to

wastewater discharges, agricultural fertilizer leachates, and

natural geological processes such as weathering and rock

and soil erosion, which are accentuated during the rainy

season (Kang et al., 2019). The slope of the Lake

Pomacochas’s micro basin (Barboza-Castillo et al., 2014)

and the geological formation of the basin, whose geological

structure is limestone and calcareous siltstone, must also be

taken into consideration (Castro-Medina, 2007). The presence

of Cu evaluated in the water column is controlled by the Cu in

the sediment. In some cases, concentrations below 40 μg/L to

3 μg/L can be toxic for certain fish species such as trout

(Oncorhynchus mykiss) (Lynch et al., 2016; Ramrakhiani

et al., 2017).

The variation of sediment parameters in the sampling

points shows that the highest concentration is located in

P1, corresponding to the surface drainage area or drainage

channel. It is presumed that the high values are due to the

transport processes and sediment loading regime, considering

that this is the outflow area (Potemkina and Potemkin, 2021).

Variation of physicochemical parameters such as turbidity, T,

pH, and DO affect the distribution of heavy metals in lakes

(Jiang et al., 2018). Regarding pH, it is known that an increase

in pH can facilitate the release of suspended metals in the

sediment (Kang et al., 2019). On another side, an increase in

alkalinity enhances the adsorption and precipitation of heavy

metals such as Cu, Pb, and Zn (Wang et al., 2018). The

presence of Cu and Zn, the elements with the highest

concentrations in the lake sediments, primarily reflects the

impact of human activities on the aquatic system, such as

livestock and pasture production around Lake Pomacochas

(Oliva et al., 2015). These activities, through runoff processes,

insert pollutants into the water body. It is known that Cu is a

common component in many pesticides and herbicides

(Jančula and MarŠálek, 2011). Cu represents a risk for

biotic beings because it hurries through the food chain and

accumulates in organisms (Derrien et al., 2019).

This study does not report significant differences in the water

and sediment matrix seasonal period. However, as mentioned

before, the heavy metals’ distribution and concentration, such as

Cu and Zn in sediments, are related to complex physicochemical

processes. Any change in environmental conditions, such as

temperature, pH, organic matter, and redox potential,

markedly influence the compartment of Cu and Zn in

sediments (Pourabadehei and Mulligan, 2016; Kadhum et al.,

2017). At acidic pH, lower than 4, the adsorption of metals

decreases, whereas at more alkaline pH, the adsorption of metals

increases (Kouassi et al., 2019).

On the other hand, the presence of zinc (Zn) in the lake

sediment is considered typical because it can be found in

phosphate fertilizers, galvanizing, industrial and landfill

leachates, poultry wastewater, and compost, which makes it

more easy to contaminate natural water supplies

(Ramrakhiani et al., 2017). The presence of Zn in the water

column is mainly due to two factors: the complexation of the

element with organic matter and the development and zones

dominated by algae and macrophytes (Chen M. et al., 2019).

These organisms are Zn’s primary transporters and collectors

through their absorption processes and lacustrine systems

(Bonanno et al., 2018).

Toxicological elements and their relation to the
limit values established by international and
national standards for water quality

After contrasting the concentrations of heavy metals in

water, such as Zn, Cd, Cu, Pb, and As with the international

standards implemented by the European Union, Canada, and the

United States, it indicates the risk of contamination by these

metals in Lake Pomacochas. On the other hand, the Peruvian

standards show the latent risk of Cd and Pb contamination, both

for conserving the aquatic environment and for extracting and

cultivating hydrobiological species in lakes. Furthermore, the risk

of contamination by Zn, Cu, and As is accentuated in some

sampling stations, the most representative of the risk at point

P4 at depths one and 2. Regarding the concentration of heavy

metals in sediments in contrast with the international standard of

Canada, it is verified that there are no adverse biological effects

due to the presence of metals.

Conclusion

The concentration of physicochemical parameters in the

water profile, accentuated in the wet season, indicates a degree

of contamination and an increase in the inflow load of the various

tributaries that bring material dragged from the highlands. The

concentrations of toxicological elements such as Ca, Mg, Zn, Pb,

Cd, Cr, Pb, and As in the water profile, show the impact of the

surrounding land use on the lake, whose compounds are

transferred by runoff and leaching during the wet season. The

predominant toxicological elements in the sediments are Cu and

Zn and are localized in point P1 due to drainage and entrainment

from the lake. The contrast of the element concentrations in the

water profile with the international standards established by the

European Union, Canada, and the United States shows the

imminent risk of contamination by Zn, Cu, Cd, Pb, and As,

whereas the national standard shows the risk to hydrobiological

species, especially Cd and Pb. On the other hand, the

concentration of Zn and Cu in the sediments, in comparison

to the Canadian international standard, does not report

biological risk for the moment.
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