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Landslides can be a major challenge in mountainous areas that are influenced by climate
and landscape changes. In this study, we propose a hybrid machine learning model based
on a rotation forest (RoF) meta classifier and a random forest (RF) decision tree classifier
called RoFRF for landslide prediction in a mountainous area near Kamyaran city, Kurdistan
Province, Iran. We used 118 landslide locations and 25 conditioning factors from which
their predictive usefulness was measured using the chi-square technique in a 10-fold
cross-validation analysis. We used the sensitivity, specificity, accuracy, F1-measure,
Kappa, and area under the receiver operating characteristic curve (AUC) to validate the
performance of the proposed model compared to the Artificial Neural Network (ANN),
Logistic Model Tree (LMT), Best First Tree (BFT), and RF models. The validation results
demonstrated that the landslide susceptibility map produced by the hybrid model had the
highest goodness-of-fit (AUC = 0.953) and higher prediction accuracy (AUC = 0.919)
compared to the benchmark models. The hybrid RoFRF model proposed in this study can
be used as a robust predictive model for landslide susceptibility mapping in the
mountainous regions around the world.
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1 INTRODUCTION

In recent years, population growth and urban development have contributed to an increase in natural
disasters in both developed and developing countries (Huppert and Sparks, 2006), but are generally
more serious in developing countries (Alcántara-Ayala, 2002). Landslides are among the most
common damaging geohazards, especially in the mountainous regions. Landslide is a general term
for a variety of mass movements in soil or rock moving downslope by gravity (Malamud et al., 2004).
Over the last century (1903-2004), landslides alone accounted for 17% of the world’s natural
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disasters, with the highest annual damage in Europe estimated at
US$17 million (Koehorst et al., 2005). Landslides have resulted in
hundreds of billions of dollars in damages to the built
environment, thousands of fatalities, and numerous
environmental impacts and are an important driver of
landscape change (Aleotti and Chowdhury, 1999; Schuster and
Highland, 2001; Geertsema et al., 2009; Fan et al., 2019;
Kadirhodjaev et al., 2020). In developing countries, more than
0.5% of the Gross Domestic Product (GDP) is lost every year due
to landslides (Chen et al., 2015).

The topic of landslide susceptibility mapping (LSM) has
become increasingly popular over the last decade and is being
continuously fine-tuned to mitigate landslide hazards, inform
land use planning, and improve the prediction accuracy of
upcoming landslides. The core idea of LSM has been to
explore the association between historical landslides and
different causing factors for the prediction of the likelihood of
upcoming landslides. To analyze the associations between
historical landslides and causing factors, researchers have
suggested and used many methods that range from simple and
straightforward expert-based and statistical methods to advanced
and complex methods derived frommachine learning. The expert
knowledge methods such as analytical hierarchy process (AHP)
(Althuwaynee et al., 2016) and spatial multicriteria evaluation
(SMCE) (Meena et al., 2019) and bivariate and multivariate
statistics such as frequency ratio (FR) (Chen et al., 2015),
weights of evidence (WoE) (Razavizadeh et al., 2017),
weighted linear combinations (WLC) (Hung et al., 2016),
statistical index (SI) (Razavizadeh et al., 2017), certainty factor
(CF) (Wang et al., 2019), index of entropy (IOE) (Chen et al.,
2015), and logistic regression (LR) (Sun et al., 2021b) are the first
generation methods used for LSMmapping worldwide, with clear
processes and are easy to understand and interpret outcomes.

The next generation of the methods used for LSM has
originated from machine learning that involves hundreds of
algorithms such as artificial neural network (ANN) (Lucchese
et al., 2021), adaptive neurofuzzy inference system (ANFIS)
(Jaafari et al., 2017), random forest (RF) (Park and Kim,
2019), support vector machine (SVM) (Yao et al., 2008),
decision tree (DT) (Dou et al., 2019a), Naïve Bayes (NB)
(Nguyen and Kim, 2021), Bayesian logistic regression (BLR)
(Abedini et al., 2019), best first decision tree (BFT) (Chen
et al., 2018), and deep learning neural network (Ghasemian
et al., 2022). With the improvement of artificial intelligence,
machine learning becomes the most applied approach for LSM
currently.

The other stream of research on machine learning modeling of
LSM has combined different methods/algorithms to achieve more
accurate prediction results. For example, Pham et al. (2017)
reported that the rotation forest (RoF) technique improved the
predictive ability of the Naïve Bayes tree landslide prediction.
Nguyen et al. (2017) showed that the landslide predictive ability
of the instance based learning classifier can be improved by the
RoF technique. He et al. (2019) combined the Creedal Decision
Tree with the RoF technique and achieved improved accuracy for
landslide prediction. In a recent study, Fang et al. (2021)
demonstrated that the performance of the decision tree models

could be significantly improved when they were integrated with
the RoF technique. The key advantage of the RoF technique as a
meta classifier is that it can balance accuracy and diversity and
decrease bias and overfitting of the modeling process.

Reliability and accuracy of future probabilities are the most
important characteristics of a landslide susceptibility map. While
machine learning is now widely used in LSM, there is no best
method for accurately predicting landslides, especially not for the
regions of varying levels of geoenvironmental complexity.
However, the experience, to date, suggests comparing several
different methods and selecting the optimal one to generate an
accurate landslide susceptibility map for a given region.
Furthermore, the evaluation of the usefulness of different
conditioning factors via feature screening techniques and the
optimization of different methods in terms of parameters are
other important subjects in the field of landslide modeling (Sun
et al., 2021a; Zhou X. et al., 2021).

Iran’s vast mountainous areas have been shaped and modified
by ongoing tectonic forces, producing faults, fractures, and
sensitive lithology, priming the country for landslides
(Shafizadeh-Moghadam et al., 2019). Increased developmental
activities and industrial and agricultural and human
encroachment on the natural environment due to the
extensive land use change in forested areas in recent decades
have increased the vulnerability to landslides. Susceptibility
mapping and understanding landslide mechanisms, in order to
reduce or control landslide damage, are necessary.

In this study, we combined a metaclassifier algorithm with a
standalone algorithm as a base classifier to increase the predictive
power of the base classifier by reinforcing the parameters used in
the model during the calibration phase. The main contribution of
our study is to explore how the RoF classifier and a random forest
(RF) decision tree classifier generate a hybrid predictive model,
called RoFRF, that provides an opportunity to pilot hybrid
modeling of LSM and insights into feature screening and
selection and parameter optimization. We developed the
hybrid RoFRF model using the datasets belonging to Asadi
et al. (2022) and Ghasemian et al. (2022) from the Kamyaran
area in the Kurdistan Province, Iran, but with a different set of
algorithms and results.

2 STUDY AREA

The study area is in the southwest of the Kurdistan Province
covering an area of about 150 km2 (Figure 1). The minimum and
maximum elevations of the study area are 850 and 2,328 m,
respectively, with a height difference of 1,478 m (Figure 1). The
average annual rainfall for the period from 2001 to 2019 ranges
from 438 to 560 mm and the average annual temperature is
14.15°C. Based on the De Martonne climatic classification index,
the climate of the study area is semi-arid climate (Asadi et al.,
2022). Bedrock geology belongs to the structural zone of
Sanandaj-Sirjan and the high Zagros zone, typified by basalts
and shales with the intercalations of volcanic rocks. The six main
land cover classes include dry farming, semi-dense forest, low-
dense forest, semi-dense pasture, dense pasture, and woodland.
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The predominant land covers in the study area are semi-dense
forests and dry farming (Ghasemian et al., 2022).

The study area involved by active faults from the Zagros Main
Recent Fault and its formations such as marl and shale and also
due to the topographical conditions and geomorphological
process (steep slopes and soil erosion) and also anthropogenic
factor or improper human interferences (e.g., road construction
on Kashtar to Yozidar route and the removal of slope bases)
resulted in some landslides occurrence, considering the study area
as one of the most susceptible regions of the Kurdistan Province
and the country (Asadi et al., 2022). Landslides of the study area
are typically shallow with the rupture surfaces less than 2–3 m
depth. Figure 2 shows photos of a number of the landslides that
occurred in the study area.

3 METHODOLOGY

The methodology of this research is shown in Figure 3. We
selected 25 conditioning factors for the terrain hosting landslides
derived from the topographical, geological and land cover maps,
meteorological data, digital elevation model (DEM),
documentary sources, field surveys, and Google Earth Imagery.

We classified our landslides into two groups; training landslides
(80%) and validation landslides (20%) (Xie et al., 2021a; Xie et al.,
2021b). We then developed the hybrid RoFRF model and
compared its performance to the four benchmark models
including RF, ANN, BFT, and logistic model tree (LMT) using
area under ROC and other statistical measures. The main steps of
the methodology are described in the following subsections.

3.1 Data Collection
3.1.1 Landslide Inventory
From a total of 118 landslide points detected in the study area, we
subdivided the landslides into two datasets with 80% (94
landslides) in a training dataset and 20% (24 landslides) in a
validation dataset. These 118 landslides were selected from the
175 landslides that have been previously used by Asadi et al.
(2022) and Ghasemian et al. (2022).

3.1.2 Landslide Conditioning Factors
In this study, we selected 25 landslide conditioning factors that
were, elevation, slope, aspect, annual solar radiation, curvature,
plan curvature, profile curvature, valley depth, vector ruggedness
measure (VRM), topographic wetness index (TWI), stream
power index (SPI), slope length (LS), topographic position

FIGURE 1 | Study area location in (A) Iran and (B) Kurdistan Province.
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index (TPI), terrain ruggedness index (TRI), normalized
difference vegetation index (NDVI), land use, lithology, soil
texture, rainfall, fault density, road density, river density, and
distance to faults, roads, and rivers (Table 1).

Topographic factors (slope, aspect, elevation, profile
curvature, plan curvature, and slope length), that have been
previously identified as the most influential landslide causing

factors, were derived from a DEM of the study area (Zhang et al.,
2019b; Wang et al., 2021). Another DEM-derived factor was
annual solar radiation, which may affect the incidence of
landslides. The land use and land cover were visually
interpreted using the high-resolution satellite imagery. NDVI
can show surface reflectance of the area and yield quantitative
estimates of the vegetation biomass and growth (Li J. et al., 2021;

FIGURE 2 | The photographs of the landslides occurred in the study area.

FIGURE 3 | Flowchart of the study.
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Liu et al., 2022), which can influence landslides. TWI, SPI, TPI,
VRM, and valley depth are the secondary DEM products that
have been widely used for landslide prediction modeling (Li and
Zhang, 2008; Zhang et al., 2019a; Dou et al., 2019b; Lan et al.,
2021; Zhao et al., 2021). We incorporated the mean annual
rainfall data from 2001 to 2019 to generate a rainfall map
using the inverse distance weighted (IDW) method (Chao
et al., 2021; de Jesus et al., 2021). The strength and
permeability of soils and rocks are controlled in parts by
structural variations and lithological formations (Jiang et al.,
2021). We extracted lithological units from the geological
maps (1:100,000 scale). Soil texture has a significant impact on
landslide occurrence (Geertsema et al., 2009). The density maps
that include fault density, road density, and river density were
prepared using the GIS-based techniques to quantify their effects
(Yin et al., 2022b; Chen et al., 2022) on landslide occurrences. The
distance maps that include distance to rivers, distance to rivers,
and distance to faults were also prepared using the GIS-based
techniques (Lee et al., 2017) (Table 2).

3.2 Machine Learning Algorithms
3.2.1 Artificial Neural Networks
ANN is one of the widely used ML algorithms to capture
complex trends in the multivariate datasets. The features in

ANN use independent statistical distribution, self-learning,
and interdependent memory (Zhang et al., 2021). Although
not known as a black box model where the modeling processes
are not specified, it has been widely used for pattern
recognition, classification, and solving regression problems
(Zhang et al., 2022). ANNs have multiple nodes that imitate
biological neurons in the human brain and therefore the ANN
model is often applied in the medical field. It is also being used
in landslide susceptibility mapping and drawing relationships
between landslides and a host of conditioning factors. The
ANN approach has certain advantages over the other statistical
techniques. ANNs have input layers (conditioning factors),
hidden layers (with activation functions), and output layers
(landslide and nonlandslide labels) (Yin et al., 2022a). The
neurons process inputs by multiplying each entry with the
corresponding weight and summing the product. In turn, the
sum is processed using a nonlinear transfer function. ANNs
learn by adjusting the weights between the neurons
associated with errors between the actual output values and
target output values. Then, a number of iterations and learning
the neural network created a model that predicts target
values from the given input values. We used a back
propagation (BP) algorithm, learning in the ANN
employing the error signal Es as a measure of the network’s
performance.

An ANN becomes a more robust model when relationships
between the training datasets are not known. The neurons
connect these layers, each using a direct link to connect with
other neurons. The links have weights that reflect the power of the
outgoing signal (Zhou et al., 2022).

The neurons in each layer were linked to the front and rear
neurons with each associated weight (Khandelwal et al., 2018). There
are two kinds of networks used in ANN: recurrent neural networks
and feed-forward neural networks (FNN). The FNN, based on BP, is a
well-known network used inmany studies with excellent performance
(Luan et al., 2022). Therefore, in this study, FNN was selected for the
prediction of the Cv. To validate the performance of FNN, we used
different quantitative validation indexes, namely the root means
square error (RMSE), the mean absolute error (MAE), and the
coefficient of determination (R2) (Li et al., 2021b; Li et al., 2021a).
A detailed description of such measurements is presented in several
previously published works. These indexes are expressed as follows
(Zhou et al., 2021a; Zhou et al., 2021b; Xu et al., 2021):

MAE � 1
m
∑m
i�1
(ei − ei), (1)

RMSE �
������������
1
m
∑m
i�1
(ei − ei)2

√
, (2)

R2 � 1 −
∑m
i�1
(ei − ei)

∑m
i�1
(ei − �e)

, (3)

where ei is the actual output, �ei infers the predicted output, �e
infers the mean of the ei, andm infers the number of used samples
(Li B. et al., 2021; Zhou W et al., 2021).

TABLE 1 | Data layers considered as effective factors in the analysis.

Category Parameter Scale/resolution

Topographic
map

Elevation ALOS PALSAR DEM resampled
into 10 m

Slope 10 m
Aspect 10 m
Curvature 10 m
Plan curvature 10 m
Profile curvature 10 m
Annual solar radiation 10 m
Slope length (SL) 10 m
Valley depth (VD) 10 m

Geological map Geology Geo-map, 1:100,000
Distance from fault Geo-map, 1:100,000
Faults density

Hydrological
map

Topographic Wetness
Index (TWI)

10 m

Stream Power
Index (SPI)
Distance to rivers (m) 10 m
River density
Rainfall (mm) Average rainfall data of different

stations

Land cover map Soil type Projected soil map (1:25,000)
Land use Iranian land use map
VRM
TRI
TPI 10 m
NDVI Landsat 8
Distance to Roads (m) Topographical map, 1:25,000,

Google Earth image
Road density
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3.2.2 Logistic Model Tree
The LMT is a recently developedML algorithm that combines the
model trees and logistic regression functionality, especially for
classification problems (Landwehr et al., 2005). Therefore, it is
advantageous in selecting relevant features in the data, and it is
considered an equivalent to the trees algorithm for categorical
outcomes (Landwehr et al., 2005). A simplified version of the
LMT equation is

P(M|X) � ∑exp(LM(X))
D

M�1 exp(LM(X)), (4)
whereD is the outcome category, the LMT has also proven to be a
better algorithm when dealing with spatial data extracted from
the remote sensing images (Colkesen and Kavzoglu, 2017). It
reduces the likelihood of overfitting by cross-validation and
logistic regression at each node in the tree where the tree
undergoes pruning (Breiman et al., 1984).

3.2.3 Best First Tree
BFT build binary trees in which each internal node has exactly
two outgoing edges. Here, the splitting process selects the “best”
node that reduces impurity among all the available nodes (Shi,
2007). Essential to BF trees is deciding which attribute to split on
and how to do so. Here, information and Gini gains are
employed. The information value is determined by an entropy
function, expressed as follows:

entropy(p1, p2, . . . , pn) � −p1 logp1 − p2 logp2 . . . − pn logpn, (5)
where pn, n = 1, 2,. . , n, is the probability of each class and the
sum of the pn is 1 (Quinlan, 1986).

Discovering the maximal Gini gain or information gain for a
split at a node demands the finding of minimal values of the
weighted sum of the information values (Gini index) of its
successor nodes (Shi, 2007). This process ends when all the
nodes reach a specific number of expansions. The best first
decision tree learning process handles both the categorical and
numerical variables, expanding the “best” node first.

3.2.4 Rotation Forest
RoF is a widely used ensemble method that was first introduced
by Rodriguez et al. (2006). In RoF, the Principal Component
Analysis (PCA) is used to extract features to build the training
sets. RoF can enhance the accuracy of base classifiers for both
individual and diverse applications simultaneously (Rodriguez-
Galiano et al., 2012). Because of this, the RF model is commonly
used in LSM to achieve a higher accuracy of the prediction
capacity (Hong et al., 2019). We assume that x = (x1, x2, . . . ,
xn) is considered as the vector of the conditioning factors, while v
= (v1, v2) is denoted as the vectors of landslides and
nonlandslides, and H symbolizes the training set. E1, E2, and
EL are represented as classifiers in the ensemble, and R is
designated as a feature set. First, R is separated into K subset,
where each subset has the number of condition factors equal to T
= n/k. Then, we can get Rij (the jth landslide influencing factors)
and Hij (the training set for the Rij features). According to the
bootstrap technique, R’ij is randomly generated from the original

training set Rij with 75% size. Subsequently, R’ij will be converted
to obtain a T × 1 coefficient vector, which can be presented as
{b1ij, . . . , bT1ij }. Then, by rearranging the matrix of Ri, the rotation
matrix Ra

i is formed as follows:

Ri �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
b(1)i,1 ,b

(2)
i,1 , . . . ,b

(T1)
i,1 0 / 0

0 b(1)i,2 ,b
(2)
i,2 , . . . ,b

(T2)
i,1 / 0

..

. ..
.

1 ..
.

0 0 / b(1)i,k ,b
(2)
i,k , . . . ,b

(TK)
i,k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.
(6)

After that, for a specified test sample, the confidence (μk(δ)) of
each class is determined from the mean combination method as
follows:

μk(δ) �
1
L
∑L
i�1
γi,k(δRa

i ), k � 1, . . . , c, (7)

where γi,k(δRa
i ) represents the probability produced by the

classifier, Ei, assume that class k contains δ, and c denotes the
sum of class number. In the end, the δwill be allocated to the class
that has the highest confidence.

3.3 Model Performance Evaluation
To evaluate the model performance, we employed a variety of
statistical index-based methods, including: Sensitivity (SST),
Specificity (SPF), Accuracy (ACC), F1-Measure, Matthew’s
correlation coefficient (MCC), Kappa, and Receiver operative
characteristic (ROC). All the statistical metrics were computed
based on the scores from true positives (TP), true negatives
(TN), false positives (FP), and false negatives (FN). TP
represents the number of pixels of landslides (value 1) that
are correctly classified as landslides. TN represents the number
of pixels of nonlandslides that are correctly classified as
nonlandslides and FP is the number of nonlandslide pixels
(value 0) that are incorrectly classified to be landslides while
FN is defined as the number of landslide pixels that have been
incorrectly classified as nonlandslide points (Zhou et al., 2022).
These statistical index-based metrics are described from Eq.
8–15 as follows:

SST � TP
TP + FN

, (8)

SPF � TN
FP + TN

, (9)

ACC � TP + TN
TP + TN + FN + FN

, (10)

F −measure � 2 × precision × recall

recision + recall
, (11)

Precision � TP
TP + FP

, (12)

MCC � TP × TN × FP × FN�������������������������������������(TP + FP)(TP + FN)(TN + FP)(TN + FN)√ , (13)

Kappa � Pc − Pexp

1 − Pexp
, (14)
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Pexp � ((TP + FN) × (TP + FP) + (FP + TN) × (FN + TN))������������������(TP + TN + FP + FN)√ ,

(15)

AUC � ∑TP + ∑ TN
P

+N, (16)

where SST is the ratio of landslide pixels that have been rightly
classified as landslides and this indicates the good predictability of
the landslide model for classifying the shallow landslide pixels
(Zhou et al., 2022). SPF is the ratio of the number of landslide
locations that are correctly classified as nonlandslides that indicate
good predictability of the landslide model for classifying the
nonlandslide pixels. ACC is the ratio of nonlandslide and
landslide pixels that are correctly classified (Bennett et al.,
2013). The ACC demonstrates how well the landslide model
works. The F1-Measure is used to assess the landslide diagnosis
function. The recall measure represents the number of rightly
retrieved pixels divided by the number of relevant pixels from the
test dataset. It is a way to combine and balance both precision and
sensitivity into a single measure (Konishi and Suga, 2018). The
precision measure is the ratio of the correctly retrieved pixels over
the number of retrieved pixels.

Mathew’s Correlation Coefficient (MCC) is a correlation
coefficient of the observed and predicted binary classifications
that yields a value from −1 to +1 (+1 represents a perfect
prediction, 0 no better than random, and −1 indicates total
disagreement). The Kappa index is used to assess the
acceptability of landslide models. The values of this index vary
from −1 (unacceptability) to +1 (acceptability) (Bennett et al.,

2013). The AUC is a measure used to assess the model
performance (Fawcett, 2006). The ROC curve is built with
sensitivity on the y-axis and 1-specificity on the x-axis with
some cut-off thresholds. The area under the ROC curve (AUC)
implies the capability of a model to distinguish between the shallow
landslide and nonlandslide pixels. A model is ideal or perfect if
AUC isone, and weak or inaccurate if AUC is near zero.

3.4 Chi-Square
A chi-squared test (χ2) is a statistical hypothesis test to determine
whether there is a significant statistical difference between the
model’s performance in one or more categories of variables or
not. The two factors include the number of cells found in the table
and the total number of observations of themain factors (Bryant and
Satorra, 2012). For the evaluation of the value of landslide predictors
by the chi-square algorithm, we defined the null hypothesis first.
This hypothesis shows that understanding the level of a landslide
predictor does not aid in the prediction of landslide incidence
(Sarkar and Kanungo, 2004). The variables are independent.

H1: There is no independent condition between variable X
(e.g., aspect) and variable Y (e.g., landslide occurrence).

H0: There is an independent condition between variable X
(e.g., aspect) and variable Y (e.g., landslide occurrence). This
method is calculated according to Eq. 16:

χ2 � ∑n
i�1

(Oi − Ei)2
Ei

, (17)

where χ2 is the chi-square, Oi is the observed value, and Ei is the
expected value.

TABLE 2 | Landslide conditioning factors with their classes.

Factors Classes

Slope (o) (1) 0–13; (2) 14–22; (3) 23–30; (4) 31–42, and (5) >43
Aspect 1) flat; (2) north; (3) north east; (4) east; (5) south east; (6) south; (7) south west; (8) west; and (9) north west
Elevation (m) (1) 850–1,000, (2) 1,000–1,200, (3) 1,200–1,400, (4) 1,400–1,600, (5) 1,600–1800, (6) 1800–2000, (7) 2000–2,200, and (8)

2,200–2,400
Curvature (1) highly concave (−51.20)–(−3.79), concave (−3.79)–(−1.12), (3) flat (−1.12)–(0.54), (4) convex (0.54)–(3.21), and (5) very

convex (3.21)–(33.9)
Plan curvature (1) [(−28.51)–(−1.43)], (2) [(−1.43)–(−0.44)], (3) [(−0.44)–(0.34)], (4) [(0.34)–(1.53)], and (5) [(1.53)–(21.09)]
Profile curvature (1) [(−23.05)–(−2.29)], (2) [(−2.29)–(−0.519)], (3) [(−0.519)–(0.272)], (4) [(0.272)–(2.05)], and (5) [(2.05)–(27.4)]
Solar radiation (1) 80,000–43,000, (2) 440,000–540,000, (3) 550,000–630,000, (4) 640,000–700,000, and (5) 710,000–810,000
VRM (1) 0–0.0302, (2) 0.0303–0.0795, (3) 0.796–0.151, (4) 0.152–0.274, and (5) 0.275–0.699
VD (1) 0–37.9, (2) 38–87.7, (3) 87.8–149, (4) 150–233, and (5) 234–508
SPI (1) 0–1,510, (2) 1,520–1,600, (3) 1,610–3,110, (4) 3,120–26,500, and (5) 26,600–390,000
TWI (1) 0.0895–2.62, (2) 2.63–3.32, (3) 3.33–4.15, (4) 4.16–6.26, and (5) 6.26–10.70
TRI (1) 0–2.64, (2) 2.65–4.75, (3) 4.76–7.74, (4) 7.75–13.4, and (5) 13.5–44.9
TPI (1) (−75.7)–(−9.77), (2) (−9.77)–(−2.83), (3) (−2.83)–(2.94), (4) (2.94)–(11.03), and (5) (11.03)–(71.7)
LS (1) 0–6.88, (2) 6.89–13.1, (3) 13.2–19.6, (4) 19.7–28.2, and (5) 28.3–87.8
Land cover (1) Dry farming; (2) Semi-dense forest; (3) Low-dense forest; (4) Semi-dense pasture, (5) Dense pasture, and (6) Woodland
NDVI (1) (−0.351)–(−0.064), (2) (−0.064)–(0.008), (3) (0.008)–(0.099), (4) (0.099)–(0.260), and (5) (0.260)–(0.759)
Rainfall (mm) (1) 438–440, (2) 440–480, (3) 480–520, and (4) 520–560
Distance to fault (m) (1) 0–100, (2) 101–200, (3) 201–300, (4) 301–400, and (5) >400
Distance to road (m) (1) 0–100, (2) 101–200, (3) 201–300, (4) 301–400, and (5) >400
Distance to river (m) (1) 0–100, (2) 101–200, (3) 201–300, (4) 301–400, and (5) >400 m
Fault density (km/km2) (1) 0–0.67, (2) 0.671–1.84, (3) 1.85–3.01, (4) 3.02–4.41, and (5) 4.42–7.12
Road density (km/km2) (1) 0–0.440, (2) 0.440–1.210, (3) 1.210–1.914, (4) 1.914–2.772, and (5) 2.772–5.610
River density (km/km2) (1) 0–0.5551, (2) 0.5551–1.4608, (3) 1.4608–2.4542, (4) 2.4542–3.7983, and (5) 3.7983–7.4505
Lithology (1) OLc, (2) QT1, (3) Residential area, (4) Ksh, (5) Kul, (6) Mb, (7) Kpl, (8) Pel, (9) PEf, and (10) MZD. P.2pL
Soil (1) Silty Loam, (2) Clay Loam, (3) Loam, (4) Sandy Loam, and (5) Silty Clay
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4 RESULTS AND ANALYSIS

4.1 The Most Important Factors in the
Modeling Procedure
Figure 4 shows the role and relative importance of the
conditioning factors on the shallow landslide occurrence in
our study area based on the average merit (AM) of the chi-
square feature selection technique in a 10-fold cross-validation
analysis. The results indicate that the distance to road has the
highest impact (AM = 235.737) on landslides in the study area,
followed by road density (AM = 124.198), lithology (AM =
108.694), land use (AM = 80.921), NDVI (AM = 42.228), soil
(AM = 31.774), elevation (AM = 30.733), aspect (AM = 27.662),
annual solar radiation (AM = 25.426), slope (AM = 15.538), VRM
(AM = 13.489), rainfall (AM = 12.521), TWI (AM = 12.391), LS
(AM = 11.563), distance to fault (AM = 11.210), and TRI (AM =
9.064).

4.2 Model Result, Validation, and
Comparison
Table 3 shows the performance of the models using various
statistical measures including specificity, sensitivity, accuracy,
F1-measure, Kappa, and AUC obtained using the training
dataset. The results show that the hybrid RoFRF model has the
highest sensitivity (1.000), which points out that all of the
landslide locations (100%) have been correctly classified as
nonlandslide. However, RF has the highest specificity (1.000;
100%), indicating that 100% of the nonlandslide locations
have been correctly classified and known as nonlandslide

locations. This is followed by the RoFRF (0.989; 98.9%),
LMT (0.750; 75%), BFT (0.725; 72.5%), and ANN (0.624;
62.4%) models. The accuracy metric state that the hybrid
RoFRF model has the highest value (0.999; 99.9%), indicating
that this model is able to correctly classify the landslide and
nonlandslide locations as landslide and nonlandslide
situations, respectively.

The LMT model was ranked as the second with an accuracy =
0.934, followed by the RF, BFT (0.931), and ANN (0.914) models.
F1-measure shows the highest value of 0.999 for the hybrid
RoFRF model, and the least value of 0.912 for ANN.
Moreover, this value for the RF, LMT, and BFT models are
0.993, 0.931, and 0.929, respectively. The lowest and highest
Kappa values are 0.544 and 0.994, respectively for the RoFRF
and ANNmodels. Meanwhile, RF (0.963), LMT (0.634), and BFT
(0.628) was ranked in other positions. The AUC value of the
hybrid RoFRF model is 100, which shows that the power
performance or goodness-of-fit of the hybrid RoFRF model is
the highest (100%), followed by the RF (0.999), LMT (0.944),
ANN (0.918), and BFT (0.860) models (Table 3).

Table 4 shows the prediction accuracy of the five models of
the study that were obtained based on the validating dataset.
These results are important for assessing the power prediction,
applicability, and robustness of the models. According to Table 4,
the sensitivity values for BFT, RoFRF, ANN, RF, and LMT are
0.953, 0.944, and 0.938, respectively. However, specificity is the
highest for the hybrid RoFRF model (0.684; 68.4%) and then for
the ANN (0.650; 65%), BFT (0.625; 62.5%), LMT, and RF (571;
57.1%) models, respectively. The highest value of accuracy is
0.921 (92.1%) for the hybrid RoFRF model, next for the ANN
and BFT (0.917; 91.7%) and the RF and LMT (0.903; 90.3%)
models. The F1-measure for the hybrid RoFRF model and the
BFT model is 0.917 as the highest value, whereas this value is
0.913 for ANN and 0.900 for RF and LMT. Although the BFT
model has the highest Kappa (0.578), it had the lowest value of
AUC (0.829). Hence, the hybrid RoFRF model with a Kappa
value of 0.561 has the AUC value of 0.933, indicating that the
power prediction of the hybrid model is 93.3%. This indicates
that this model with an AUC of 93.3% is highly capable of
predicting landslides. The LMT model has the second-highest
value of AUC (0.904; 90.4%) and ANN, RF, and BFT have AUC
equal to 0.888 (88.8%), 0.853 (85.3%), and 0.829 (82.9%),
respectively (Table 4).

TABLE 3 | Model results using the training dataset.

ANN LMT BFT RF RoFRF

TP 720 733 730 752 751
TN 53 57 58 88 94
FP 32 19 22 0 1
FN 41 37 36 62 0
Sensitivity (%) 0.946 0.952 0.953 0.924 1.000
Specificity (%) 0.624 0.750 0.725 1.000 0.989
Accuracy (%) 0.914 0.934 0.931 0.931 0.999
F1-measure 0.912 0.931 0.929 0.993 0.999
Kappa 0.544 0.634 0.628 0.963 0.994
AUC 0.918 0.944 0.860 0.999 100

FIGURE 4 | Factor selection using the chi-square technique with 10-fold
cross-validation.
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4.3 Parameter Optimization
In the modeling procedure, successful and reasonable results are
thoroughly dependent on the values of the parameters that are
defined by the users. The parameter’s tuning procedure is done by
trial-and-error technique and checking the obtained results such
as AUC (Janizadeh et al., 2019; Pham et al., 2020a; Hong et al.,
2020). We have presented the values of the parameters employed
in each model in Table 5.

4.4 Landslide Susceptibility Maps
We assigned the landslide susceptibility index (LSIs) computed
for each pixel of our study area by using the probability
distribution function in the machine learning models. In this
study, we classified the LSIs of RoFRF and LMT maps using the
quantile classification method and the BFTree, RF, and ANN
using the geometric interval classification method. The LSIs were
reclassified into five susceptibility classes including very low
susceptibility (VLS; dark green color), low susceptibility (LS;
light green color), moderate susceptibility (MS: yellow color),
high susceptibility (HS: orange color), and very high susceptibility
(VHS; red color). Figure 5 shows the landslide susceptibility
maps produced by the hybrid RoFRF model and the benchmark
models used in this study.

Since the distance to road and road density factors were
identified as the most important factors in the modeling
process, the HS and VHS classes are located around the road

networks. We enlarged a rectangle on the left side of the
susceptibility maps to show graphically how many landslide
occurrence locations (training and validation) are

TABLE 4 | Model results using the validation dataset.

ANN LMT BFT RF RoFRF

TP 185 183 183 183 186
TN 13 12 15 12 13
FP 7 9 9 9 6
FN 11 12 9 12 11
Sensitivity (%) 0.944 0.938 0.953 0.938 0.944
Specificity (%) 0.650 0.571 0.625 0.571 0.684
Accuracy (%) 0.917 0.903 0.917 0.903 0.921
F1-measure 0.913 0.900 0.917 0.900 0.917
Kappa 0.544 0.479 0.578 0.479 0.561
AUC 0.888 0.904 0.829 0.853 0.933

TABLE 5 | Parameters of machine learning algorithms for shallow landslide
susceptibility mapping.

RoFR Debug: true; max
Depth: 0; numFeatures:0;
numbTrees: 10; seed:1

RF Debug: False; maxGroup: 1; min Group: 3; numIterations:10;
numberOfGroup: False; RemovedPercentage: 50; and seed:1

ANN Debug: False; ClusteringSeed: 1; min Std Dev: 0.1; numClusters: 2; and
ridge: 1.0E-8

BFT Debug: False; heuristic: True; minNumObj: 2; numFoldspruning: 5;
pruningStrategy: post- pruning; seed: 1; size per: 1.0; useErrorRate: True;
useGini: True; and useOneSE: False

LMT Debug: False; convertNominal: False; errorOnprobabilities: False;
fastRegression: True; minNumInstances: 15; numBoostingIterations: 1;
SplitOnResiduals: False; use AIC: False; and WeightTrimBeta: 0.0

FIGURE 5 | Landslide susceptibility maps produced using the (A)
RoFRF, (B) RF, (C) ANN, (D) LMT, and (E) BFT.
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corresponding to the areas in terms of susceptibility to landslide
occurrence.

4.5 Accuracy Assessment and Comparison
We tested and evaluated the performance and prediction accuracy of
the hybrid model and the four soft computing benchmark models
using the training and validating datasets, respectively (Figures 6, 7).
From Figure 6A, the results indicate that the hybrid model with
AUC equal to 0.953 (95.3%) has the highest performance compared
with the other models, while according to Figure 6B, the power
prediction of the hybrid model is 0.919 (91.9%). In comparison
(Figures 7A,B), the hybrid RoFRFmodel ismore capable in terms of
both the performance and prediction accuracy than the LMT (AUC
train = 0.903; AUC validating = 0.909), ANN (AUC train = 0.869;
AUC validating = 0.894), RF (AUC train = 0.833; AUC validating =
0.878), and BFT (AUC train = 0.827; AUC validating = 0.798)
models.

5 DISCUSSION

The main objective of our study was to model the spatial
distribution of landslide susceptibility and to produce a
susceptibility map with high prediction reliability. Therefore,
we focused on evaluating the performance of different
machine learning methods as the crucial step of a landslide
modeling project (Brenning, 2005; Reichenbach et al., 2018).
While numerous methods have been suggested and used for
landslide modeling over the past decades, machine learning
methods have been preferred by many researchers (Merghadi
et al., 2020). In recent years, the efficiency of ensemble learning
techniques in improving the performance of the machine
learning methods has been acknowledged by some researchers
(Pham et al., 2020b; Nhu et al., 2020). To test the performance of
single models against an ensemble model, we first measured the
significance of the conditioning factors using the Chi-square

FIGURE 6 | Performance and prediction accuracy of the RoFRF model using ROC curve (A) training dataset, (B) validation dataset.

FIGURE 7 | Areas under the curve (AUC) for (A) training dataset, (B) validation dataset.

Frontiers in Environmental Science | www.frontiersin.org June 2022 | Volume 10 | Article 89725410

Ghasemian et al. Novel Hybrid Machine Learning Algorithm in Shallow Landslide Susceptibility Mapping

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


technique with 10-fold cross-validation and identified the
distance to roads and road density as the most significant
factors related to landslide occurrences in the study area.
Similar results have also been reported from other regions,
where transport infrastructure cross-steep terrain (Jaafari et al.,
2017; Schlögl and Matulla, 2018). Old road networks, which were
once planned for low traffic and axle loads, are at extremely high
risk of landslides. Hence, maintenance and landslide mitigation
measures for these roads should be considered (Schlögl et al.,
2019).

We assessed the models’ results via a validation process to
compare the ability of four models developed to spatially
predict landslides. 10 performance measures indicated that
the RF model had a better goodness-of-fit (using the training
dataset) and prediction ability (using the validation dataset)
than that of the other three single models (i.e., ANN, LMT, and
BFT). Many other studies have demonstrated the superiority of
the RF model to other machine learning methods, such as best-
first decision tree and Naïve Bayes tree (Chen et al., 2018),
artificial neural network, and logistic regression (Smith et al.,
2021). RF is a powerful nonlinear machine learning method
intended for solving classification problems that can overcome
the multicollinearity and nonlinear dependencies among the
variables (Boulesteix et al., 2012). Being a nonparametric
method, RF can be regarded as the most flexible machine
learning method (James et al., 2021) with the ability to handle
multiclass and skewed datasets (Guyennon et al., 2021). Given
this superiority, we selected the RF model as the base model for
combining it with the RoF technique to develop a hybrid
predictive model, i.e., RoFRF. The new hybrid RoFRF model
significantly improved the prediction performance of the base
RF model. This is reasonable because the models developed
based on the ensemble learning techniques can reduce both the
variance and bias of the modeling process and avoid overfitting
to gain the highest prediction performance (Nhu et al., 2020;
Tran et al., 2020). The key point for the efficiency of the RoF
technique is to increase the diversity and individual accuracy
of the ensemble classifier simultaneously. Diversity is
promoted via the principal component analysis (PCA) to
perform feature extraction for the base classifier, whereas
accuracy is achieved by using all the principal components
and also the whole dataset to train the base classifier (Park
et al., 2019). Similar studies have also shown that the RoF
technique can improve the training performance
(i.e., goodness-of-fit) and validation performance
(i.e., predictive ability) of the base classifiers for landslide
prediction. In sum, the RoF technique with a fast
performance has a decent generalization capability and low
implementation complexity, that make it a favored choice for
developing powerful ensemble models for landslide prediction.

Overall, our study demonstrated that for a certain study area it
is reasonable to select the most influential controlling factors via
the feature screening methods and to identify the most accurate
method via parameter optimization and comparing multiple
models. A comparative approach allows for investigating the
capability of multiple models for producing the most accurate
and reliable susceptibility maps. This approach is an

improvement to the traditional approach that often selects a
single model and may ignore the other potentially better models
for prediction. Therefore, the hybrid modeling provides a
framework that accurately analyzes the historical landslides
and conditional factors and improves the reliability of the
prediction of future landslides.

6 CONCLUSION

The aim of this study was to perform a hybrid model of
Rotation Forest - Random Forest (RoFRF) and its
comparison with the Artificial Neural Network (ANN),
Logistic Model Tree (LMT), Best First Tree (BFT), and
Random Forest (RF) models to map landslide susceptibility
in the part of Kamyaran area in Kurdistan Province, Iran. To
achieve this goal based on different sources, 25 landslides
affecting (or controlling) factors: elevation, slope angle,
aspect, curvature, profile curvature, plan curvature, solar
radiation, VRM, VD, SPI TWI, TRI, TPI, LS, NDVI,
rainfall, distance to fault, distance to road, distance to river,
fault density, road density, river density, lithology, land use,
and soil were selected and applied as inputs to the models.
Then, the relative importance of each factor was examined
based on the Average Merit (AM) score. Among all the factors,
16 factors were importantly selected and used for the modeling
procedure. In the next step, after drawing the landslide
inventory map, a set of training and validation datasets
were divided respectively, for modeling and evaluation
processes. The hybrid proposed method can derive the
benefits of basic classifiers using different group learning
strategies. The present study demonstrated an efficient way
to combine different types of landslide susceptibility methods,
hybrid learning, and deep learning to obtain a more accurate
map. Based on this, the most important findings of our study
are summarized as follows:

1) Identifying the most influential controlling factors in the
occurrence of shallow landslides and the preparation of
susceptibility maps are the basic strategies to control this
phenomenon and select the most appropriate and practical
options. Although according to the AM score, 16 factors
affected the occurrence of shallow landslides, and the most
important factor was the distance to roads, followed by the
road density factor. Our results demonstrated that more
careful road construction, maintenance, and route planning
needs to be considered to reduce future landslide occurrence.

2) The parameter optimization contributes to the best
performance of the models, and thereby the prediction
accuracy of future landslides.

3) Sensitivity, accuracy, specificity, Kappa, RMSE, and AUC
metrics were used to evaluate the models that showed that
the hybrid RoFRF model had a better goodness-of-fit and
prediction accuracy than the ANN, LMT, BFT, and RF
models. This model had a successful estimate and
significant performance in predicting shallow landslide
occurrence.
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4) Our results showed that hybrid modeling using group techniques,
such as RF is promising for the shallow landslide susceptibility
mapping. This approach can then be used as a tool for shallow
landslide hazard avoidance and mitigation worldwide.
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