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Although PM2.5 concentrations measured by the governmental air quality monitoring station
(AQMS) have been widely used for conducting exposure assessments, it might be not able to
reflect the residents’ exposures, especially for those associated with ground emissions. The
present study was conducted in a city area for 1 year. A mobile monitoring station (MMS) was
established to measure the PM2.5 concentrations at the ground level. A significant linear
relationship (R2 = 0.53) was found between the MMS-measured concentrations and the
corresponding concentrations obtained from the AQMS (15m above the ground level), and
the former was ~ 1.11 times (95% CI: 1.08-1.15) in magnitude higher than that of the latter. To
characterize the spatial variation of the area, the MMS-measured values were further classified
into three different regions. A consistent trend was found in the present study for all collected
data as industry regionjurban region > harbor region. The aforementioned results clearly
indicate that the residents’ ambient PM2.5 exposures do have spatial differences. Seven-year
AQMS-measured concentrations (i.e., AQMS7-yr) were used to establish the long-term PM2.5

concentrations at the ground level (i.e., MMS7-yr) of the three different regions using the linear
regression equations obtained from the MMS and AQMS. Health impact functions and local
health data were used to quantify the PM2.5-attributable health burden for both AQMS7-yr and
MMS7-yr, respectively. Results show that the former is ~ 10.4% lower inmagnitude than the latter
in the estimated lung cancer death attributed fraction (AF). In particular, the decrease of unit
PM2.5 (μg/m

3) would lead to a 0.75 and 0.71% decrease in the estimated AF of lung cancer
death for AQMS7-yr andMMS7-yr, respectively. As a result, directly using AQMS7-yr would lead to
an underestimation of ~ 1,000 lung cancer deaths annually in Taiwan in comparison with those
using MMS7-yr. The aforementioned results clearly indicate the importance of characterizing
ground-level exposures for assessing the health impact of residents, and the methodology
developed by the present study would be helpful for solving the aforementioned problem.
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INTRODUCTION

It has been reported that air pollution is responsible for ~ 2.9
million deaths per year accounting for ~ 35% of all
environmental pollution-related deaths (Fuller et al., 2019).
The International Agency for Research on Cancer (IARC)
has classified outdoor air pollution as Group 1 carcinogen
(i.e., carcinogenic to humans) (Straif et al., 2013). Among
various particulate matters (PMs), many pieces of evidence
have shown that PM2.5 (i.e., PM with a particle size less than
2.5 μm) has a much stronger impact on human health than
those with greater particle sizes (Environmental Protection
Agency U.S, 2019). PM2.5 is responsible for many adverse
health effects, including lung cancer, chronic obstructive
pulmonary disease (COPD), ischemic heart disease (IHD),
strokes, and acute lower respiratory infections (ALRIs).
(Mustafic et al., 2012; Forouzanfar et al., 2016; Monrad et al.,
2017). Therefore, the control of atmospheric PM2.5

concentrations has been considered as the primary concern
in many countries. However, it should be noted that the
initiation of appropriate abatement strategies for PM2.5

should start with knowing the correct PM2.5 exposure levels
and health impact on the residents in the target area.
Considering the existence of the intrinsic spatial and
temporal variations in residents’ PM2.5 exposure
concentrations, developing suitable exposure assessment (EA)
methodologies has become an important issue in the
environmental health science field.

At present, the methodologies used for conducting PM2.5 EA
can be classified into two categories: the non-ground level (also
called macroenvironment) and ground level (microenvironment)
(Straif et al., 2013; Dias and Tchepel, 2018; Li et al., 2018; Caplin
et al., 2019; Environmental Protection Agency U.S, 2019). For
non-ground-level EA methods, exposure data can be obtained
from governmental air quality monitoring stations (AQMS)
(i.e., fixed monitoring stations), model estimation, satellite
remote sensing, etc. (Ozkaynak et al., 2013; Environmental
Protection Agency U.S, 2019). The aforementioned
methodologies are widely used in conducting EA on a large
scale (such as on the whole country level, or even across-
country level) and assuming the uniformity of PM2.5

concentrations in each divided subarea. For example, PM2.5

AQMS data from many countries were collected by the World
Health Organization (WHO) for assessing the global exposure
and health burden assuming the uniformity of PM2.5

concentrations at a city level (W.H.O., 2012). However, the
aforementioned methods might not be feasible for conducting
PM2.5 EA in a small area (such as at a city level) because the
spatial heterogeneity might have a significant impact on the
residents’ PM2.5 exposure concentrations (Fishbain et al., 2017;
Malings et al., 2020).

It is known that urban traffic accounts for >50% of the total
PM10 emissions. In comparison with PM10, urban traffic has an
even greater contribution to PM2.5 concentrations at the ground
level (Han and Naeher, 2006). The main traffic emission sources
include road traffic, airport, and port operations (Kingham et al.,
2013; Mazaheri et al., 2018). Among them, urban ground PM2.5

concentrations are mainly influenced by road traffic contributed
by both traffic exhaust and non-traffic exhaust (e.g., brake wear
and road dust) (Jeong et al., 2019). Considering the proximity of
residents to ground PM2.5 emission sources (such as traffic),
higher exposure concentrations at the ground level are expected
than those obtained from the non-ground level (e.g., AQMS).
Therefore, many methodologies have been developed to measure
ground-level PM2.5 concentrations (such as the mobile
monitoring station (MMS) (Hankey and Marshall, 2015;
Okokon et al., 2017; Lin et al., 2018; Cheng et al., 2019; Shen
and Gao, 2019), air box (Lee et al., 2019; Lin et al., 2020), and
modeling estimation (Hu et al., 2016; Jung et al., 2018)) for better
characterizing residents’ exposures in the small area of interest.
Although the air box and modeling methods are less expensive
and provide real-time information, many limitations are involved
if they are used for conducting EA, including the accuracy and
reliability of the collected data (Cabada et al., 2004; Snyder et al.,
2013; Castell et al., 2017; Morawska et al., 2018; Williams et al.,
2019; Li et al., 2020; Zamora et al., 2020; Environmental
Protection Agency U.S, 2021). For the MMS, it has been
found to be more accurate and reliable than the
aforementioned two methodologies. On the condition of the
existence of an AQMS in the target area, the use of the MMS
method provides the possibility for better characterizing
spatiotemporal personal exposures in a given
microenvironment by combining with the AQMS data
(Hankey and Marshall, 2015; Droge et al., 2018; Piotrowicz
and Polednik, 2019).

In Taiwan, at least one AQMS is installed in every city or
township for characterizing PM2.5 concentrations in different
areas. Although concentrations obtained from the AQMS provide
longitudinal information of the area, however, they are
inadequate to characterize the residents’ PM2.5 exposures in
different regions of the area because of their intrinsic spatial
heterogeneity (Borge et al., 2016). Therefore, developing new
monitoring strategies with the aid of long-term AQMS data to
characterize the residents’ both temporal and spatial exposures
has become an important issue for conducting PM2.5 EAs. In
principle, the development of predicting models between PM2.5

concentrations of the AQMS and MMS would be helpful for
establishing the residents’ long-term PM2.5 exposure
concentrations at the ground level in different regions.
However, it should be noted that before the establishment of
the aforementioned predicting models, possible interference
factors should be considered, including meteorological factors
(e.g., temperature, humidity, (RH), wind speed, etc.) (Ye et al.,
2018; Zhang et al., 2018; Lee et al., 2020; Rittner et al., 2020;
Yousefian et al., 2020; Yang et al., 2022) and other co-emission
pollutants (e.g., primary pollutants of NO2, SO2 etc. and
secondary pollutants of O3) (Saraswat et al., 2013; Zhang
et al., 2018; Guo et al., 2019).

Since PM2.5 concentration plays a significant role in human
health, conducting a health impact assessment (HIA) would
provide better evidence to help decision-makers for developing
proper control strategies (W.H.O., 2022). For any given air
pollutant, the calculation of the burden of disease (BOD) is
widely adopted for conducting the HIA (van der Kamp and
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Bachmann, 2015; W.H.O., 2016; Maji et al., 2017; Malmqvist
et al., 2018;Wu et al., 2018). In principle, four components should
be collected for conducting the HIA: the exposure and reference
concentrations of the air pollutant of interest, the resultant health
outcomes, associated concentration–response functions (CRFs)
and attributed fractions (AFs), and incidence rate (IR) of the
health effect. CRFs can be determined using the novel Global
Exposure Mortality Model (GEMM). If the exposure and
reference concentrations of the air pollutant of interest were
measured, the CRF can be determined, and finally, the burden of
disease associated with the given air pollutant can be estimated
(Ostro and WHO, 2004). This process has been widely adopted
by WHO and others for conducting HIAs associated with PM2.5

exposures.
The present study is set out to establish an effective

methodology for assessing PM2.5 exposures at the ground
level in an urban region. Considering the existence of an
AQMS, an MMS was established to collect concentrations of
PM2.5 at the ground level of different regions of the study area to
characterize its spatial variation. Since continuous longitudinal
data were collected by the AQMS, the AQMS data were used to
determine the temporal variation in PM2.5 concentrations in the
study area. By combining the obtained MMS data with AQMS
results, both temporal and spatial variations in PM2.5

concentrations were characterized. Finally, HIAs were
conducted to quantify the PM2.5-attributable health burden
for those data simply considering the temporal variation
(i.e., directly obtained from the AQMS) and those
considering both temporal and spatial variations (i.e., by

combining both those directly obtained from the AQMS and
measured by the MMS) of different regions of the study area.
The obtained PM2.5-attributable health burdens were used for
showing the importance of characterizing temporal and spatial
variations in conducting PM2.5 exposure and HIAs.

MATERIALS AND METHODS

Study Area
The whole study was conducted in the Shalu area (including
Shalu, Wugi, and Longjing districts with a total area of 95 km2),
located in west Taichung City (the second largest city in Taiwan),
with a population of 220,000 residents, 216,000 vehicles
(locomotives accounting for ~ 58%), and five industrial/science
parks (~ 1,300 manufacturing industries) in 2014. From
2014–2019, there were 5.1, 5.7, and 13.7% increases annually
for the number of residents, vehicles, and manufacturing
industries, respectively. The region is adjacent to three main
traffic roads including one highway (Chen et al., 2015),
comprising one coal-fired power plant, one big steel factory,
and one harbor located on the west (Kuo et al., 2014) (Figure 1).

PM2.5 Monitoring Stations
On the north-western side of the Shalu area, one AQMS (latitude:
24.22563, longitude: 120.5688.) operated by the Taiwan EPA has
been installed. In the present study, an MMS was established to
collect concentrations of PM2.5 at the ground level of different
regions of the study area.

FIGURE 1 | Location of Taichung City and the study area, Shalu.
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The Air Quality Monitoring Station
The AQMS is 15 m above the ground level with a sampling
inlet at 19.5 m in height. The main monitoring items include
fine suspended particulates (PM2.5), coarse suspended
particulates (PM10), carbon monoxide (CO), sulfur dioxide
(SO2), ozone (O3), nitrogen dioxide (NO2), and
meteorological data (UVB, rainfall, wind direction and
wind speed, temperature, and humidity). The installed
PM2.5 monitoring instrument (model BAM-1020, Met One
Instruments Inc., Grands Pass, OR) uses beta-rays for
detecting the relative concentration of PM2.5 (detection
range: 0–10 mg/m3, resolution: 2 μg/m3, beta-ray source: C-
14, filter paper: glass fiber, capture efficiency: 0.3 μm
particulate matter> 99.999%, sampling flow rate: 16.7 LPM)
once per hour automatically.

The Mobile Monitoring Station
An electric car (LUXGEN MPV EV+, battery module: lithium-
ion) was chosen as a mobile platform for the MMS to avoid
influences from vehicle self-emissions. The MMS is equipped
with a DUSTTRAK II Aerosol Monitor (model 8,530, TSI Inc.,
St. Paul, MN, United States; detection range: 0.001–150 mg/
m3, resolution: 1 μg/m3, sampling flow rate: 3 L/min, time
resolution: one reading per second) to monitor PM2.5 real-
time concentrations and a GPS to record the
latitude–longitude information. To prevent collected
samples from being affected by road contaminants, the
sampling inlet of the MMS is set at a height of 2.2 m and
air samples are collected isokinetically. Table 1 shows the
information on the station height, monitoring instrument,
data collection frequency, and resolution for both the
AQMS and MMS. Considering the intrinsic differences in
the monitoring instruments of the AQMS and MMS, both
the collected data (i.e., AQMSm and MMSm) were calibrated
(i.e., AQMSc and MMSc) by reference to the Federal Reference
Methods/Federal Equivalent Methods (FRM/FEM)
(Environmental Protection Agency U.S, 2022).

Sampling Campaign
A sampling route ~ 80 km in length was designed for the
MMS to collect PM2.5 concentrations in the study area.
Samplings were conducted from September 2013 to
August 2014 covering the four seasons. For each sampling
day, samplings were conducted approximately from 6:00 to
17:00 and 18:00 to 23:00 during the daytime and nighttime,
respectively. Details of the MMS and its QA/QC can be

found in our previous work (Lin et al., 2018). To compare
with AQMS-collected data (i.e., hourly data), all MMS-
collected data were further processed as the hourly
average values. All collected MMS data in the study area
were classified into three regions as follows based on the
obtained GPS records: the urban region, industrial region,
and harbor region (Figure 2). Table 2 shows the details of
the whole MMS sampling campaign. In the present study,
the corresponding AQMS data were also recorded in
accordance with the aforementioned MMS sampling
campaign.

Statistic Methods
Since the obtained PM2.5 concentrations were lognormally
distributed, logarithmic conversion was applied to both
AQMS and MMS data. One-way ANOVA/paired t/t-tests
were applied to examine the differences between the MMS
and the AQMS in seasons, day/night, commute periods, and
different areas.

To develop predicting models for establishing residents’
long-term PM2.5 exposure concentrations at the ground level
in different regions, MMS-measured data were compared
with those obtained from the AQMS. Before the
establishment of the aforementioned predicting models,
possible interference factors were first identified, including
three atmospheric variables [temperature (TEMP), relative
humidity (RH), and wind speed (WS)], three primary
pollutants (CO, NOx, and SO2), and one secondary
pollutant (O3) according to literature reviews (Cabada
et al., 2004; Borge et al., 2016; Mazaheri et al., 2018;
Adams et al., 2020; Liu et al., 2020). The hierarchical
regression analysis was used to further confirm
interference factors for the final predicting models. All
data aggregation and statistics were performed using the
Excel 365 software (Microsoft), R software (R x64 3.6.2)
(R-Core-Team, 2019), and SPSS17 (IBM SPSS, 2008).

Conducting Health Impact Assessment
In the present study, ground-level PM2.5 concentrations derived
from predicting models were used for deriving the PM2.5

mortality hazard ratio (HR) through the application of the
GEMM as follows:

HR � GEMM(z)
� exp[θ p log(z/α + 1)/(1 + exp[ − (z − μ)/ν])], (1)

TABLE 1 | Basic information for the AQMS and MMS used in the present study for measuring PM2.5 concentrations.

Station AQMS MMS

Station height 15 m above the ground level Ground level
Monitoring instrument BAM-1020 (beta-rays) DUSTTRAK II Aerosol Monitor 8,530 (90° light scattering)
Monitoring frequency per hour real-time (1s–1 h)
Monitoring resolution 2 μg/m3 1 μg/m3

Calibrated concentrations by reference to
FRM/FEMa method

AQMSc = 0.96*AQMSm-9.33 (R2 = 0.92) (Environmental
Protection Administration, T.R.O.C, 2020)

MMSc = 0.33*MMSm + 2.25 (R2 = 0.859) (Yanosky et al.,
2002; TSI_Incorporated, 2013)

aFRM/FEM, Federal Reference Methods/Federal Equivalent Methods.
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where z = max (0, C - Crf), C = the exposed PM2.5

concentration, and Crf = the counterfactual PM2.5

concentration (=2.4 μg/m3).
θ, SEθ, α, μ, and ν = parameters can be determined based on

the cause of death (for the present study: lung cancer) by referring
to Table 3.

Since the mortality probability of lung cancer is quite small,
the resultant HR could serve as a surrogate for the relative risk
(RR) (Burnett et al., 2018). The attributed fraction for the
population (AF) of lung cancer can be calculated as follows
(Ostro and WHO, 2004):

AF � (RR − 1)/RR. (2)

RESULTS AND DISCUSSION

Comparisons of AQMS- and
MMS-Measured PM2.5 Concentrations
PM2.5 concentrations of the whole sampling year, seasonal,
diurnal, and rush/non-rush hour obtained from both the
AQMS and MMS are compared and shown in Table 4. From
the whole sampling year aspect, MMS results (GM = 25.9 μg/m3;
95% CI = 24.8–27.1 μg/m3) are significantly higher than those of

FIGURE 2 | MMS sampling route in the three regions: urban (yellow), industrial (red), and harbor regions (green).

TABLE 2 | Description of the whole MMS sampling campaign classified into the whole sampling days/hours by the season, day/night, rush/non-rush, and area.

n Seasona Day/nightb Rush_or_notc Region

Fall Winter Spring Summer Daytime Nighttime Rush Non-rush Urban Industry Harbor

Days 59 16 19 8 19 56 49 58 41 59 — —

Hours 694 148 233 78 235 465 229 584 110 330 248 116

aFall: Sep. 2013—Nov. 2013; winter: Dec. 2013–Feb. 2014; spring: Mar. 2014-May 2014; summer: Jun. 2014-August. 2014.
bDaytime: am 06–pm 17; nighttime: pm 18–am 05.
cRush hour: am7-9 and pm18-20; non-rush hour: excluding rush hours.

TABLE 3 | Values for the parameter used in the GEMM.

Cause of death Age range Parameters

θ SE θa α μ ν

Lung cancer >25 0.2942 0.06147 6.2 9.3 29.8
LRI >25 0.4468 0.11735 6.4 5.7 8.4
COPD >25 0.251 0.06762 6.5 2.5 32
Stroke >25 0.272 0.07697 6.2 16.7 23.7
IHD >25 0.2969 0.01787 1.9 12 40.2

aSE, standard error of θ, which is used for 95%CI, uncertainty estimation. Parameters
quoted from GEMM, study (with Chinese male cohort) (Burnett et al., 2018).
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the AQMS (GM = 23.3 μg/m3; 95% CI = 22.3–24.3 μg/m3) (t-test;
p < 0.01). The former is 1.23 times (95% CI = 1.18-1.27) higher in
magnitude than the latter. The aforementioned result is not so
surprising since the MMS was much closer to PM2.5 emission
sources (such as traffic) than the AQMS (Wu et al., 2014). In
addition, our results are also consistent with previous studies. For
example, a study conducted in Boston’s Chinatown (near a
highway) shows that the increase of building elevation from 0
to 35 m would result in a decrease of the PM2.5 mass
concentration by 5.1% (Wu et al., 2014). Another study
conducted in Pittsburgh, Pennsylvania, shows that the annual
MMS is higher than the annual average of the AQMS (14.6 and
10.2 μg/m3, respectively) (Li et al., 2016). Here, it should be noted
that the latter study was simply conducted in the 2013 winter and
2014 summer (i.e., does not cover four seasons), and hence no
statistical significance could be found.

For seasonal PM2.5 mass concentrations, MMS results are
statistically significantly higher than those of the AQMS in both
summer (GM = 23.4 and 16.1 μg/m3, 95% CI = 21.8–25.1 and
15.2–17.1 μg/m3, respectively; paired t-test; p < 0.001) and winter
(GM = 33.1 and 29.3 μg/m3, 95% CI = 30.3–36.2 and
27.1–31.7 μg/m3, respectively; paired t-test; p < 0.001).
However, an opposite trend is found in both spring (GM =
32.3 and 38.6 μg/m3, 95% CI = 29.4–35.6 and 35.7–41.8 μg/m3,
respectively; paired t-test; p < 0.001) and fall (GM = 18.5 and
22.3 μg/m3, 95% CI = 17.3–19.8 and 21.0, 23.6 μg/m3,
respectively; paired t-test; p < 0.001). The opposite trend
found in spring and fall might be associated with the lower
atmospheric boundary layer, and more significant temperature
inversions were found in these two seasons (Ye et al., 2018;
Yousefian et al., 2020).

Since the MMS was more proximal to traffic PM2.5 emission
sources than the AQMS, as expected, we found that the MMS
rush hour results (GM = 26.7 μg/m3, 95% CI: 25.4–28.0 μg/m3)

are significantly higher than those of the AQMS (GM =
23.7 μg/m3, 95% CI = 22.6–24.8 μg/m3) (paired sample
t-test; p < 0.001). Although the same trend can also be
found for data collected during non-rush hours, however,
no statistical significance is found in the present study (GM
= 22.4 and 21.4 μg/m3, 95% CI = 20.1–24.9 and 19.4–23.6 μg/
m3 for the MMS and AQMS, respectively; paired t-test; p =
0.234). Obviously, the aforementioned result could be due to
less traffic density during non-rush hours. The
aforementioned reason can also be used to explain the
diurnal sampling results. Here, the daytime sampling results
show that those of the MMS are significantly higher than those
of the AQMS (GM = 26.8 and 23.0 μg/m3, 95% CI = 25.4–28.3
and 21.8–24.2 μg/m3, respectively; paired t-test; p < 0.001)).
Although nighttime sampling results for the MMS are higher
than those of the AQMS, no statistical significance is found in
the present study (GM = 24.3 and 23.9 μg/m3, 95% CI =
22.5–26.2 and 22.3–25.6 μg/m3, respectively; paired t-test; p
= 0.635).

Comparisons of PM2.5 Concentrations of
the Urban, Industry, and Harbor Regions
Obtained From the MMS and Those
Simultaneously Obtained From the AQMS
Table 4 shows the PM2.5 concentrations of the urban, industry,
and harbor regions, and the whole Shalu area data obtained
from the MMS. No significant difference (ANOVA post hoc
test, p =0.978) could be found between PM2.5 concentrations of
the urban region (GM = 27.0 μg/m3, 95% CI = 25.3–28.7 μg/
m3) and industry region (GM = 26.7 μg/m3, 95% CI =
24.8–28.7 μg/m3). Considering that the dimension of the
whole Shalu area is less than 100 km2, the geographical
adjacency of both regions might lead to a similarity in their

TABLE 4 | Comparison of PM2.5 concentrations of the whole sampling year, seasonal, diurnal, and rush/non-rush hour for data obtained from both the AQMS and MMS.

Temporal/spatial Description n MMS AQMS MMS/AQMSa

GM (95% CI) μg/m3 Ratio (95% CI)

Season

Fall Sep. 2013–November. 2013 148 18.5 (17.3-19.8) 22.2 (21.0-23.6) 0.83 (0.79-0.87)
Winter Dec. 2013–February. 2014 233 33.1 (30.3-36.2) 29.3 (27.1-31.7) 1.13 (1.08-1.19)
Spring Mar. 2014–May 2014 78 32.3 (29.4-35.6) 38.6 (35.7-41.8) 0.84 (0.78-0.90)
Summer Jun. 2014–August. 2014 235 23.4 (21.8-25.1) 16.1 (15.2-17.1) 1.45 (1.38-1.53)

Rush hour

Rush (am7-9) and (pm18-20) 584 26.7 (25.4-28.0) 23.7; (22.6-24.8) 1.13 (1.09-1.17)
Non-rush Excluding rush hours 110 22.4 (20.1, 24.9) 21.4; (19.4-23.6) 1.05 (0.97-1.13)
Diurnal
Daytime Hour: 06-17 465 26.8 (25.4-28.3) 23.0 (21.8-24.2) 1.17 (1.12-1.21)
Nighttime Hour: 18-05 229 24.3 (22.5-26.2) 23.9 (22.3-25.6) 1.01 (0.96-1.08)

Region

Urban Dense residential area 330 27.0 (25.3-28.7) 22.3 (20.9-23.7) 1.21 (1.16-1.26)
Industry Factory area 248 26.7 (24.8-28.7) 24.4 (22.8-26.2) 1.09 (1.03-1.16)
Harbor Taichung harbor area 116 21.9 (19.5, 24.5) 23.9 (21.4, 26.6) 0.92 (0.84-1.00)
Whole — 694 25.9 (24.8-27.1) 23.3 (22.3-24.3) 1.11 (1.08-1.15)

aRatio of MMS/AQMS = exp (ln_MMS–ln_AQMS).
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PM2.5 concentrations. On the other hand, both PM2.5

concentrations of the aforementioned two regions were
significantly higher than those of the harbor region (GM =
21.9 μg/m3, 95% CI = 19.5–24.5 μg/m3) ug/m3 (ANOVA post
hoc test; p < 0.01). It could be due to fewer ground-level
pollution sources in the harbor region than that in others. In
addition, its remote location from the other two regions and
the effect of the monsoon wind direction could also be
considered contributors (Cheng and Hsu, 2019).

For the comparison purpose, PM2.5 concentrations of the
urban, industry, and harbor regions obtained from the MMS
were compared with those simultaneously obtained from the
AQMS. For both urban and industrial regions, the MMS
concentration (GM = 27.0 and 26.7 μg/m3, 95% CI = 25.3-
28.7 and 24.8–28.7 μg/m3, respectively) is significantly higher
than that of the AQMS (GM = 22.3 and 24.4 μg/m3, 95% CI =
20.9-23.7 and 22.8–26.2 μg/m3, respectively) (paired t-test; p <
0.001). For the harbor region, however, the MMS
concentration (GM = 21.9 μg/m3, 95% CI = 19.5–24.5 μg/
m3) is significantly less than that of the AQMS (GM =
23.9 μg/m3, 95% CI = 21.4–26.6 μg/m3) (paired t-test; p
=0.046). The aforementioned results might be because of
the existence of fewer ground-level pollution sources in the
harbor region. For both urban and industrial regions, the
PM2.5 concentration of the MMS is respectively 1.21 and
1.09 times higher in magnitude than that of the AQMS. The
aforementioned results might be because the urban region is
proximal to traffic pollution sources, and the industrial region
is mainly affected by pollution sources associated with
manufacturing and heavy truck emission.

Establishing the Relationship Between
PM2.5 Concentrations of the AQMS
and MMS
Multivariate linear regression (MLR) analyses (hierarchical
regression) were conducted to identify variables used for
establishing predicting models through examining the
variability and collinearity of candidate interference factors.
The statistical significance can be found for the four factors,
CO, SO2, WS, and AQMS PM2.5 concentrations. The
aforementioned four factors were first included for
establishing predicting models (R2 = 0.58). Considering
that the total contribution of SO2, CO, and WS to R2 is
less than 7%, they were removed from the prediction
models pragmatically for practical reasons (see
Supplementary Table S1). The ignorance of the
aforementioned factors is consistent with previous studies
conducted in Lubbock, Texas (Kelley et al., 2020), Tianjin,
Beijing, and Hebei provinces in China (Zhang et al., 2018).
Considering the intrinsic difference in PM2.5 concentrations
of the urban, industrial, and harbor regions, predicting
models were established not only based on the data
collected from the whole area but also each individual
region. The resultant predicting models are shown as follows:

Whole area:

ln_MMS � 0.839 + 0.768pln_AQMS, (RMSE � 1.50μg/m3,R2

� 0.54; n � 694). (3)

Urban region:

ln_MMS � 0.691 + 0.839pln_AQMS, (RMSE � 1.42μg/m3,R2

� 0.65; n � 330). (4)

Industrial region:

ln_MMS � 1.037 + 0.703pln_AQMS, (RMSE � 1.55μg/m3,R2

� 0.45; n � 248). (5)

Harbor region:

ln_MMS � 0.714 + 0.747pln_AQMS, (RMSE � 1.55μg/m3,R2

� 0.51; n � 116). (6)

Figures 3A–D show the scatter plots of the MMS and AQMS
for data collected from the whole study area, urban, industrial,
and harbor regions, respectively. The R2 obtained from the
present study is comparable with another study for predicting
outdoor personal exposures using nearby AQMS PM2.5

concentrations (Miller et al., 2019). In the present study, the
ANOVA (post hoc test) was performed to examine if there is a
statistical significance among the four predicting models (See
Supplementary Table S2). Results show that no significant
difference can be found among the three predicting models for
the whole area, urban region, and industrial region; however, the
slope of the predicting model for the harbor region was
significantly lower than that of others (all p < 0.05). The
aforementioned results are consistent with a study conducted
in Guangzhou, China, where the relationship between AQMS
PM2.5 concentrations and personal exposure varies greatly from
district to district (Jahn et al., 2013). Here, it should be noted that
it would be more reasonable to have one predicting model for
both urban and industrial regions from a statistical point of view.
However, considering the intrinsic difference in the emission
sources of the aforementioned two regions, using two separate
predicting models could be feasible to meet practical purposes. In
the present study, the established four predicting models were
adopted for predicting the residents’ exposures and further for
conducting health impact analyses of each individual region and
the whole area.

Health Impact Assessment for Each
Individual Region and the Whole Area
Seven-year (2013–2019) AQMS-measured concentrations
(i.e., AQMS7-yr) were used to establish the long-term PM2.5

concentrations at the ground level (i.e., MMS7-yr) of the whole
area and the three different regions using Eqs 3–6, respectively
(Table 5). Health impact functions and local health data were
used to quantify the PM2.5-attributable health burden for both
AQMS7-yr and MMS7-yr, respectively. The above ground-level
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PM2.5 concentrations together with the parameter values shown
in Table 3 for lung cancer were applied to the GEMM (Eq. 1) for
deriving the PM2.5 mortality hazard ratio (HR). Since the
mortality probability of lung cancer is small, the HR obtained
from the present study was used as a surrogate for the relative risk
(RR) (Burnett et al., 2018). Table 5 also shows the lung cancer-
attributed fraction (AF) of the population using Eq. 2. Results
show that both AQMS7-yr and MMS7-yr decreased from
2013–2019, and the former is lower than the latter. As a
result, the same downward trend can also be seen in the
estimated RR and AF over the years.

For the whole area, AQMS PM2.5 concentrations from
2013–2019 are, in total, decreased by 56% (i.e., from 35.4 to
15.4 μg/m3), the resultant decrease for the RR was 20% (i.e., from
1.45 to 1.19) and AF was 48% (i.e., from 0.31 to 0.16). Therefore,
reducing the AQMS PM2.5 concentrations (i.e., AQMS7-yr) has a
high contribution to the lung cancer AF. Here, it should be noted
that even if the yearly average AQMS PM2.5 concentration meets
the government and WHO PM2.5 interim targets 3 and 4 (i.e., 15
and 10 μg/m3, respectively) (W.H.O., 2021), the resultant AFs
still cannot be ignored (= 16 and 11%, respectively). Similar
results can also be seen in MMS7-yr [i.e., PM2.5 concentrations

decreased by 47% in total (i.e., from 35.8 to 18.9 μg/m3), RR by
15% (i.e., from 1.46 to 1.24), and AF by 39% (i.e., from 0.31 to
0.19)]. Even if the yearly average AQMS PM2.5 concentration
meets the government and WHO PM2.5 interim targets 3 and 4,
the estimatedMMS7-y (i.e., 18.5 and 13.6, respectively) would lead
to even higher AFs (=19 and 14%, respectively) in comparison
with the corresponding values (= 16 and 11%, respectively)
associated with AQMS PM2.5 concentrations.

Table 5 also shows the estimated annual mean of PM2.5

concentrations at the ground level (MMS7-yr) of the urban,
industrial, and harbor regions, and the corresponding
attributed fraction of the population (AF) for lung cancer. The
trend in the decrease of PM2.5 concentrations from 2013 to 2019
and the decrease in the resultant RR are similar to those found in
the whole area. Moreover, it can also be seen that if AQMS7-yr is
used for estimating the AF for residents in the Shalu area, an
average underestimation of 10.4% was yielded in comparison
with those using MMS7-yr. The decrease of unit PM2.5

concentration would lead to the decrease in the AF of lung
cancer by 0.75 and 0.71% in AQMS7-yr and MMS7-yr,
respectively. By applying Eq. 3 to the whole Taiwan area,
directly using AQMS7-yr would lead to an underestimation of

FIGURE 3 | Scatter plots of the MMS and AQMS for the (A) whole area, (B) urban region, (C) industry region, and (D) harbor region.
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~ 1,000 lung cancer deaths annually in Taiwan during the period
from 2013 to 2019 in comparison with those using MMS7-yr (See
Supplementary Figure S3). The aforementioned results further
strengthen the importance of developing methodologies for
predicting PM2.5 concentrations at the ground level.

Limitations and Future Implications
Considering that there were annual increases in the number of
residents, vehicles, and manufacturing industries from 2014 to
2019, it would be more reasonable to establish predicting
models based on data collected from the same period of
time. In the present study, although before the
establishment of the predicting models, possible interference
factors were identified (including atmospheric variables,
primary pollutants, and secondary pollutants), which would
lead to the developed predicting models becoming more
suitable for complicated pollution scenarios. Nevertheless,
the establishment of the prediction model in the present
study is simply based on data collected from 2013 to 2014
for practical reasons. The aforementioned factor should be

considered a limitation of the present study. Moreover,
possible interference factors in the present study were
considered as those affecting PM2.5 concentrations. The
selection of possible interference factors was based on the
results of literature reviews and available information
collected by the AQMS. Indeed, some VOCs are known to
be associated with the formation of secondary aerosols, which
will also affect the concentrations of PM2.5. However,
considering no VOC information could be obtained from
the AQMS, only three atmospheric variables, three primary
pollutants, and one secondary pollutant were selected. The
aforementioned deficiency might explain the R2 of the
predicting models falling to the range 0.45–0.65. We believe
that the addition of some VOCs might increase the magnitude
of R2 of the predicting models. The aforementioned factor can
also be considered a limitation of the present study.

This study was set out to develop an integrated approach for
effectively predicting PM2.5 exposures for residents at the ground
level via the combination of the concentrations measured across
different seasons and regions using the MMS and those obtained

TABLE 5 | Annual mean of PM2.5 concentrations of AQMS7-yr and the ground level (MMS7-yr) of the whole Shalu area and their derived relative risks (RRs) and the attributed
fraction of the population (AF).

Year WHO interim target d

2013 2014 2015 2016 2017 2018 2019 Target
3

Target
4

PM2.5 (μg/M3)
AQMS7-yr

a 35.4 28.7 19.3 21.5 19.3 18.9 15.4 15 10
MMS7-yr

b

Whole area 35.8 30.5 22.5 24.4 22.5 22.1 18.9 18.5 13.6
Urban 39.8 33.4 23.9 26.2 23.9 23.5 19.8 19.4 13.8
Industry 34.6 29.9 22.6 24.4 22.6 22.3 19.3 18.9 14.2
Harbor 29.3 25.1 18.6 20.2 18.6 18.3 15.7 15.4 11.4

RR (95%CI) c

AQMS 1.45
(1.25, 1.69)

1.37
(1.2, 1.55)

1.24
(1.14, 1.36)

1.27
(1.15, 1.4)

1.24
(1.14, 1.36)

1.24
(1.13, 1.35)

1.19
(1.11, 1.28)

1.19
(1.11, 1.27)

1.12
(1.07, 1.17)

Whole area 1.46
(1.25, 1.7)

1.39
(1.21, 1.59)

1.28
(1.16, 1.42)

1.31
(1.17, 1.46)

1.28
(1.16, 1.42)

1.28
(1.16, 1.42)

1.24
(1.13, 1.35)

1.23
(1.13, 1.34)

1.17
(1.1, 1.25)

Urban 1.51
(1.28, 1.79)

1.43
(1.23, 1.65)

1.3
(1.17, 1.45)

1.33
(1.18, 1.5)

1.3
(1.17, 1.45)

1.3
(1.17, 1.44)

1.25
(1.14, 1.37)

1.24
(1.14, 1.36)

1.17
(1.1, 1.25)

Industry 1.44
(1.24, 1.68)

1.38
(1.21, 1.58)

1.29
(1.16, 1.43)

1.31
(1.17, 1.46)

1.29
(1.16, 1.43)

1.28
(1.16, 1.42)

1.24
(1.14, 1.36)

1.24
(1.13, 1.35)

1.18
(1.1, 1.26)

Harbor 1.37
(1.21, 1.56)

1.32
(1.18, 1.48)

1.23
(1.13, 1.35)

1.26
(1.14, 1.38)

1.23
(1.13, 1.35)

1.23
(1.13, 1.34)

1.2
(1.11, 1.29)

1.19
(1.11, 1.28)

1.14
(1.08, 1.2)

AF (95% CI)
AQMS 0.31

(0.2, 0.41)
0.27

(0.17, 0.36)
0.2

(0.12, 0.26)
0.21

(0.13, 0.29)
0.2

(0.12, 0.26)
0.19

(0.12, 0.26)
0.16

(0.1, 0.22)
0.16

(0.1, 0.22)
0.11

(0.07, 0.15)
Whole area 0.31

(0.2, 0.41)
0.28

(0.18, 0.37)
0.22

(0.14, 0.3)
0.24

(0.15, 0.32)
0.22

(0.14, 0.3)
0.22

(0.14, 0.29)
0.19

(0.12, 0.26)
0.19

(0.12, 0.26)
0.14

(0.09, 0.2)
Urban 0.34

(0.22, 0.44)
0.3

(0.19, 0.39)
0.23

(0.14, 0.31)
0.25

(0.16, 0.33)
0.23

(0.14, 0.31)
0.23

(0.14, 0.31)
0.2

(0.12, 0.27)
0.2

(0.12, 0.27)
0.15

(0.09, 0.2)
Industry 0.31

(0.19, 0.4)
0.28

(0.17, 0.37)
0.22

(0.14, 0.3)
0.24

(0.15, 0.32)
0.22

(0.14, 0.3)
0.22

(0.14, 0.3)
0.2

(0.12, 0.26)
0.19

(0.12, 0.26)
0.15

(0.09, 0.21)
Harbor 0.27

(0.17, 0.36)
0.24

(0.15, 0.32)
0.19

(0.12, 0.26)
0.2

(0.13, 0.27)
0.19

(0.12, 0.26)
0.19

(0.12, 0.25)
0.16

(0.1, 0.22)
0.16

(0.1, 0.22)
0.12

(0.07, 0.17)

aThe annual average concentration of PM2.5 (a large amount of data is assumed to be normal distribution) and the data are from the official annual report of TEPA (Environmental Protection
Administration,T.R.O.C, 2021).
bRegression prediction.
cGEMM prediction.
dWHO global air quality guidelines (2021) (W.H.O., 2021).
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from the nearby fixed-site AQMS. Our results strongly suggest
that using the ground-level concentrations would be more
accurate in assessing residents’ health impacts than those
directly obtained from the AQMS. Since the AQMS has been
intensively installed in many countries, AQMS data have been
widely used for pollution alerts for residents, policy-making for
pollution control strategies, and global disease burden
assessment. Therefore, the methodology developed from the
present study would provide us with a feasible approach for
predicting the ground-level concentrations which will effectively
enhance the value of the AQMS installed in many countries.
Moreover, the approach developed from the present study will be
also beneficial to the epidemiological research field for better
assessing health outcomes associated with residents’ PM2.5

exposures.

CONCLUSION

In this study, we presented a methodology for assessing the PM2.5

exposures of residents and their health impacts at a city level. We
found that there is a significant linear relationship betweenMMS-
measured ground-level concentrations and the corresponding
concentrations obtained from the AQMS of the area, and the
former is higher than that of the latter. A consistent trend in
PM2.5 exposures associated with the spatial difference was found
as industry region � urban region > harbor region. Our results
clearly indicate that residents’ ambient PM2.5 exposures do exist
with spatial differences in both vertical and horizontal spaces. The
health impact assessment results show that the use of AQMS data
would lead to an underestimation of ~ 10.4% in magnitude in the
estimated lung cancer death attributed fraction (AF) in
comparison with those using ground-level exposure
concentrations. Similarly, directly using the former would lead

to an underestimation of ~ 1,000 lung cancer deaths annually in
Taiwan during the period from 2013 to 2019, in comparison with
those using the latter. The present study clearly indicates the
importance of developing methodologies for predicting residents’
ground-level PM2.5 exposure concentrations in conducting
exposure and health impact assessments.
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