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Precipitation is a vital component of the hydrologic cycle, and successful

hydrological modeling largely depends on the quality of precipitation input.

Gridded precipitation datasets are gaining popularity as a convenient alternative

for hydrological modeling. However, many of the gridded precipitation data

have not been adequately assessed across a range of conditions. This study

compared three gridded precipitation datasets, Tropical Rainfall Measuring

Mission (TRMM), Climate Forecast System Reanalysis (CFSR), and Parameter-

elevation Relationships on Independent Slopes Model (PRISM). This study used

the conventional gauge observation as reference data and evaluated the

suitability of the three sources of gridded rainfall data to drive rainfall-runoff

simulations. The Soil and Water Assessment Tool (SWAT) and Artificial Neural

Network (ANN) were used to create daily streamflow simulations in the Leon

Creek Watershed (LCW) in San Antonio, Texas, with the TRMM, CFSR, PRISM,

and gauge rainfall data used as inputs. A direct comparison of the gridded data

sources showed that the TRMM data underestimates the volume of rainfall,

while PRISM data most closely matches the volume of rainfall when compared

to the gauge rainfall observations. The hydrological simulation results showed

that the PRISM and TRMM rainfall data driven models had preferable results to

the CFSR and gauge driven models, in terms of both graphical comparison and

goodness-of-fit indicator values. Additionally, no significant discrepancy was

found between SWAT and ANN simulation results when the same precipitation

data source was used, while SWAT and ANN simulation results varied in an

identical pattern when different precipitation data sources were applied.
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1 Introduction

Precipitation is a critical input variable in hydrological

modeling. In the past, records from rain gauges have been the

primary data sources used to drive watershed level rainfall-runoff

models (Beven, 2011) and are often recognized as the most

accurate surface precipitation measurement (Stampoulis and

Anagnostou, 2012). However, some apparent limitations exist

when gauge rainfall data is applied. Most notably, the rain gauge

data are point measurements that may have a poor

representation of precipitation across a watershed. Worqlul

et al. (2014) pointed out that capturing the spatial variation of

precipitation in a moderate-sized watershed can be difficult

unless a large number of rain gauges is available. In addition,

precipitation records from rain gauges are often incomplete both

spatially and temporarily (Fuka et al., 2014), especially in remote

regions where maintaining a rain gauge network can be

challenging and expensive.

In recent decades, alternative precipitation datasets using

different measurement approaches have become available. In

particular, the availability of satellite rainfall products (SRPs) has

vastly improved in the past few years, providing new

opportunities for hydrologists to obtain efficient precipitation

data in remote regions where ground-based rain gauges are

sparse (Worqlul et al., 2014). The Tropical Rainfall Measuring

Mission (TRMM) is one of the freely available SRPs. It was

designed by NASA and the Japan Aerospace Exploration Agency

(JAXA) to monitor and study tropical rainfall (Adler et al., 2003).

The TRMM 3B42 product contains a merged microwave/

infrared (IR) precipitation estimate band with a 3-h temporal

resolution and a 0.25-degree spatial resolution. The TRMM

3B43 dataset is gauge-adjusted and covers the global latitude

belt from 50°S to 50°N (Li et al., 2018). Recent studies have

evaluated the performance of TRMM products in different

regions of the world. Ochoa et al. (2014) compared TRMM

data with an interpolated gauge dataset in the Pacific–Andean

region in western South America. They concluded that TRMM

could capture the seasonal features of precipitation but suggested

that TRMM systematically overestimated precipitation in some

parts of the study area. Stampoulis and Anagnostou (2012)

compared TRMM 3B42 version 6 data against a network of

rain gauges over continental Europe, and the authors came to a

similar conclusion that TRMM generally overestimated rainfall.

Worqlul et al. (2014) compared TRMM 3B42 dataset with two

other gridded rainfall products, Multi-Sensor Precipitation

Estimate–Geostationary (MPEG) and Climate Forecast System

Reanalysis (CFSR), in the Lake Tana Basin in Ethiopia. Their

analysis found that MPEG and CFSR have a lower root mean

square error (RMSE) with ground observations than TRMM,

whereas TRMM had an overall lower logarithm bias over the

ground observations than the other two. Li et al. (2018)

conducted a study in a large watershed in southern China

using TRMM and gauge data to drive the SWAT model. They

found that TRMM rainfall data showed superior performance at

monthly and annual time steps in terms of the Nash-Sutcliffe

Coefficient of Efficiency (NSE) and relative bias ratio (BIAS).

Furthermore, Himanshu et al. (2018) investigated the TRMM

3B42 dataset over an agricultural watershed in Krishna River

Basin of India using the SWATmodel and found that the TRMM

driven model always performed worse than that gauge driven

model on daily and monthly simulation time steps. To date, the

accuracy of TRMM rainfall estimates when used for hydrological

modeling is questionable. As pointed out by Li et al. (2018), the

satellite may fail to detect the ground-based precipitation event.

Therefore, it should be verified in more regions with different

geological and climatological conditions before its extensive

application in hydrological problems.

Climate Forecast System Reanalysis (CFSR) also provides

freely available spatially distributed rainfall estimates widely used

in hydrological modeling. CFSR was developed based on surface

and satellite observations with a 38-km resolution. It covers a 32-

year period from January 1979 to March 2011 and has complete

global coverage at 6-hourly and monthly time steps. (Saha et al.,

2014). Several studies have used the CFSR dataset for driving

hydrological model. Radcliffe and Mukundan (2017) compared

the effects of CFSR and the Parameter-elevation Relationships on

Independent Slopes Model (PRISM) data on SWAT model

streamflow prediction in two small watersheds in the southern

United States, and concluded that the PRISM data produced

better streamflow prediction. Roth and Lemann (2016) applied

the CFSR and rain gauge data to streamflow and soil loss

modeling using SWAT in Ethiopia and concluded that

conventional rain gauges produce much better simulation

results than the CFSR data. The authors also pointed out that

the CFSR data could not sufficiently represent the spatial

variability of regional climate in some of their study

watersheds. However, in another study conducted by Fuka

et al. (2014), which applied the CFSR data to a few small to

moderate-sized watersheds in the United States and Ethiopia

using the SWAT model, the authors found that the CFSR data

produced streamflow simulations that are as good or better than

models using rain gauge data. In a more recent study,

Mararakanye et al. (2020) compared CFSR data with rain

gauge measurement and used both for streamflow simulation

in an agricultural watershed in South Africa. Their results

suggested that the statistical agreement between CFSR and

gauge rainfall data is low, and the model using gauge data

slightly outperformed the model using CFSR data.

Two ground-based precipitation measurement sources are

compared with the TRMM and CFSR datasets in this study,

including conventional gauge data and the Parameter-elevation

Regressions on Independent Slopes Model (PRISM) data. The

PRISM datasets are gridded climate datasets that cover the

conterminous United States In particular, the PRISM AN81d

daily spatial climate dataset covers the period from 1981 to the

current date. It has 2.5 arc-minute spatial resolution and multiple
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bands, including precipitation, temperature, and vapor pressure

deficit. The PRISM datasets were developed by interpolating

available ground-based weather observations using routines that

simulate how weather changes with elevation (Daly et al., 2008).

Given their comprehensive coverage over the continental

United States, the PRISM datasets have been widely applied in

previous hydrological modeling studies and were proven to be a

reliable source of weather input. Chen et al. (2020) used PRISM

climate data to drive the SWAT model for predicting monthly

streamflow for the Upper Mississippi River Basin in the

United States; they reported satisfactory results of NSE values

ranging between 0.50 and 0.79 of ten sites in their study area.

Muche et al. (2019) compared four gridded datasets using the

SWAT model. The authors set up streamflow simulations in a

Kansas Agricultural Watershed and found that the PRISM-

driven model performed better during dry years than wet

years. Yen et al. (2016) used Hydrologic and Water Quality

System (HAWQS) for watershed modeling at the Illinois River

Basin in the United States, the PRISM data was used as the

climate input, and the monthly streamflow prediction result was

at a very good level with an NSE value of 0.70. Gao et al. (2017)

compared SWAT streamflow prediction driven by PRISM, Next

Generation Weather Radar (NEXRAD), and a network of land-

based National Climatic Data Center (NCDC) weather stations.

They concluded that the PRISM-based model generated a smaller

bias than the models utilizing NEXRAD and land-based weather

stations.

In addition to direct comparison, hydrological models are

often used to evaluate the accuracy of different weather products

(Guo et al., 2004). The Soil and Water Assessment Tool (SWAT)

is one of the most widely used rainfall-runoff models. It is a

physically-based, semi-distributed, deterministic model

developed to assess water quality and quantity at the

watershed level (Arnold et al., 2012). The climatic inputs of

the SWAT model can be measured records or generated by the

model itself (Gassman et al., 2007). The measured weather data

can be input into the SWATmodel in a point source data format,

thus giving modelers significant flexibility in manipulating the

weather data.

Artificial Neural Networks have become a popular rainfall-

runoff modeling tool in the past 3 decades (ASCE, 2000a). An

ANN model identifies nonlinear relationships from given

patterns and fits nonparametric models on multivariate input

data without considering any of the physical processes involved,

typically referred to as a data-driven model (Govindaraju and

Rao, 2013). Compared to the SWAT model, ANN models have

straightforward setup and execution procedures, while the

modelers have ample flexibility to determine the model inputs

(Minns and Hall, 1996). Both SWAT and ANNmodels are found

to have excellent performance producing streamflow estimation

when accurate meteorological data were provided in many

previous studies (Srivastava et al., 2006; Ahmed and Sarma,

2007; Demirel et al., 2009; Tuppad et al., 2011; Kim et al.,

2015; Yaseen et al., 2015; Jimeno-Sáez et al., 2018; Zakizadeh

et al., 2020).

While plenty of previous studies have explored the

hydrologic application of the weather products mentioned

above, the applicability of the CFSR, TRMM, and PRISM

datasets have not been adequately investigated in central

Texas. In addition, there has been no detailed investigation of

the effect that the alternative weather products have on

streamflow simulation outcomes in SWAT and ANN.

Therefore, this study seeks to use these two hydrological

models to evaluate the suitability of the aforementioned

gridded weather products. Specifically, the objectives of this

study are to: 1) directly compare the TRMM, CFSR, PRISM,

and conventional gauge rainfall datasets, 2) use the four rainfall

data sources to separately calibrate/train the SWAT and ANN

models for the same evaluation period, 3) compare the

hydrological model performance when using each rainfall data

source.

2 Materials and methods

2.1 Study area

The Leon Creek Watershed (LCW) in the San Antonio

region of central south Texas was chosen as the study

watershed due to the authors’ familiarity with the area. The

San Antonio region in central south Texas has a subtropical,

semi-humid climate, with an average annual precipitation of near

750 mm (Cepeda, 2017). The study watershed was delineated

using ArcSWAT by selecting the watershed outlet at USGS

surface water gage 08181480 (United States Geological Survey,

2016). The delineated watershed has a drainage area of

535.76 km2. It covers the western part of downtown San

Antonio and centers at 98.67° west longitude, 29.56° north

latitude. The LCW is heavily urbanized with extensive

impervious covers. 47.2% of the LCW is classified as

developed urban land according to the 2011 National Land

Cover Database (NLCD2011). The elevation of LCW declines

from its highest point of 548 m in the northern part of the

watershed to the lowest point of 176 m in the south near the

watershed outlet (Figure 1). Leon Creek is the main waterway in

LCW, which originates from multiple smaller creeks in the

northern part of the study area and flows southward. Leon

Creek is a tributary of the Medina River, and it merges into

the Medina River further south outside of the delineated study

watershed.

2.2 Data acquisition

Weather records from 1998 to 2009 of TRMM, CFSR,

PRISM, and conventional rain gauges were collected to drive
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the hydrological models. The conventional weather gauge station

data was obtained from the National Oceanic and Atmospheric

Administration’s (NOAA) National Centers for Environmental

Information (NCEI) climate data archive (https://www.ncdc.

noaa.gov/cdo-web/search). A large number of weather stations

have operated in the San Antonio region in the past.

Nevertheless, only five stations proximate to LCW were found

to have long-term precipitation records on a daily basis, none of

which is physically located within the study watershed. The

locations and station IDs of these five NOAA stations are

shown in Figure 1. The precipitation, maximum, and

minimum temperatures of the five stations were collected. The

conventional gauge data was found to have multiple missing

values during the study period, therefore, days with missing data

were removed.

The CFSR weather data was downloaded from the Texas

A&M University Global Weather Data for SWAT website

(https://globalweather.tamu.edu/). The website provides CFSR

data aggregated to a daily time step and interpolated to a SWAT

input file format. The rectangular extent of the study watershed

was used to extract the CFSR data. Within the study watershed,

one CFSR gauge was available (Figure 1).

The TRMM and PRISM datasets were accessed using Google

Earth Engine (GEE), a cloud-based geospatial analysis platform

that provides easy access to many free geospatial data archives

(Gorelick et al., 2017). The shapefile of the LCWwas uploaded to

FIGURE 1
Location and digital elevation model of the Leon Creek Watershed (LCW) in Texas.
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the GEE platform to retrieve the pixels within the study

watershed. The merged microwave/IR precipitation band of

the TRMM 3B42 product at a 3-h temporal resolution was

downloaded. The TRMM rainfall data was further aggregated

into daily time steps for comparison with the other precipitation

data sources at the same temporal resolution. The TRMM

3B42 3-Hourly Precipitation Estimates dataset has a spatial

resolution of 2.5°. Additionally, the daily precipitation, mean,

minimum, and maximum temperature are collected for the

PRISM Daily Spatial Climate Dataset AN81d dataset, which

has a much finer spatial resolution of 2.5 arc-minute. To

enable comparison among the different data sources with

different spatial resolutions, the GEE platform was used to

conduct map algebra that calculates the areal-averaged

weather data from TRMM and PRISM of the study watershed.

Other data required for this study was obtained from

multiple sources. ANNs require only metrological data and

streamflow observation for model training, whereas SWAT

requires additional spatial characteristics data, including the

digital elevation model (DEM), land use land cover (LULC)

map, and soil map. In this work, the state soil geographic

(STATSGO) database preloaded with the ArcSWAT interface

was used as the soil map (Schwarz and Alexander, 1995). The

National Elevation Dataset (NED) with 30 m resolution was used

as the input DEM, and the 2011 National Land Cover Data Set

(NLCD2011) was used as the LULC map. The NED and

NLCD2011 datasets were accessed from the USDA Natural

Resources Conversation Service (NRCS) geospatial data

gateway (USDA-NRCS, 2014). In addition, the daily

streamflow used for model calibration/training was obtained

from USGS surface water gage 08181480 (U.S. Geological

Survey, 2016) in Leon Creek from 2000 to 2009.

2.3 Hydrological simulations

2.3.1 SWAT modeling approach
This study used the ArcSWAT 2012 built for ArcGIS 10.5 to

construct the rainfall-runoff model for LCW. First, a threshold of

1,500 ha was applied for stream definition. The threshold

determines the minimum area for initiating stream networks.

As a result, 25 subbasins were created. The study area was further

discretized into 298 hydrological response units (HRUs) by

applying a 10% threshold to remove minor slope, soil, and

land cover classes. This procedure reduced the total number

of HRUs, which improves computational efficiency. A detailed

description of the SWAT modeling process can be found in the

SWAT theoretical documentation (Neitsch et al., 2011).

The weather data sources discussed in Section 2.2 were used

as the SWAT weather input. The CFSR and conventional gauge

data were in point source format, the format of SWAT weather

input files (Arnold et al., 2012). The longitude/latitude

coordinates and elevation of the CFSR gauge and

conventional gauges were directly used to create the

precipitation and temperature files. The TRMM and PRISM

data were originally in gridded format and converted into

areal-averaged point source files using GEE. The location and

elevation of the watershed centroid were obtained using ArcGIS

and set as the “virtual rain gauge” (Elhassan et al., 2016), as

displayed in Figure 1. In total, four SWAT modeling scenarios

were created, SWAT-CFSR, SWAT-GAUGE, SWAT-TRMM,

and SWAT-PRISM. The TRMM dataset only provides rainfall

estimates; hence the temperature data from PRISM was used to

drive the SWAT-TRMM model. Meanwhile, the temperature

data from the other three sources were used to drive their

corresponding modeling scenarios.

The four SWAT modeling scenarios were run for a 12-year

simulation period on a daily time step. The year 1998–1999 was

used for model warm-up, 2000 to 2006 was used for calibration,

and 2007 to 2009 for model validation. The model calibration

and validation processes were carried out in the SWAT

Calibration and Uncertainty Programs (SWAT-CUP) using

the SUFI-2 procedure. This study selected 15 parameters that

are considered sensitive for streamflow simulation according to

the literature (Arabi et al., 2007; Kim et al., 2015; Qi et al., 2017;

Jimeno-Sáez et al., 2018; Koycegiz and Buyukyildiz, 2019; Chen

et al., 2020). Their description and corresponding error range are

summarized in Table 1.

2.3.2 Artificial neural network modeling
approach

A comprehensive review of the conception and application of

ANNs as rainfall-runoff models can be found in ASCE (2000a)

and ASCE (2000b). Three-layered feed-forward neural networks

are widely applied in hydrological modeling and were used in this

study. The ANNs use a training process to estimate free model

parameters. Routinely, a range of neural networks with different

structures is trained, after which a model selection process is

implemented to determine the model that makes the best

prediction outcome. In this study, three model structures that

only utilize meteorological data as input were explored (Table 2).

The input variables combinations were determined in reference

to the review by Yaseen et al. (2015), which summarized the

ANN model input combinations for streamflow forecasting of

multiple previous studies. The ANN-TRMM, ANN-CFSR,

ANN-PRISM, and ANN-GAUGE models were trained using

weather inputs corresponding to each of the rainfall datasets. The

Thiessen polygon method was applied to interpolate the weather

observations from the five gauging stations to the areal-averaged

data of LCW, which was used as input to the ANN models.

Multiple missing dates were removed frommodel training for the

ANN-GUAGE model. As for SWAT, the temperature data from

the PRISM dataset was used in the ANN-TRMM model. The

predictors included daily precipitation (Pt), precipitation of the

previous n days (Pt-n), daily mean air temperature (Tt), and total

precipitation for the preceding n days (Pn). The training target
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was observed streamflow (Q) at the watershed outlet. The back-

propagation algorithm was used for model training, and the

logistic function was set as the transfer function at the hidden

layer units. All input variables and the training target are

normalized to the range of 0–1 to speed up model training.

In ANN rainfall-runoff modeling, too few hidden neurons

may cause the model to fail to capture the complex nonlinear

relationship between the predictors and targets, while too many

hidden neurons can cause model overfitting (Demirel et al.,

2009). In this work, the number of hidden layer units of all

three input combinations was explored from 1 to 10, close to the

experimental procedure of previous studies (Ha and Stenstrom,

2003; Kalin et al., 2010; Noori and Kalin, 2016). To select the best

model among the trained models with different input

combinations and hidden layer size, the Blocked Cross-

Validation (BlockedCV) approach was applied with the root

mean square error (RMSE) used as the model selection criteria.

Cross-validation is the most widely used method for estimating

prediction error in statistical modeling (Hastie et al., 2009). In

rainfall-runoff modeling, the meteorological and hydrological

data usually have strong autocorrelation and time dependency.

BlockedCV groups the data points into sequentially consistent

blocks and maintains sequential order within the blocks in the

data splitting and cross-validation process (Bergmeir and

Benítez, 2012). A more detailed description of the BlockedCV

procedure conducted in this study is presented in Section 3.2.2.

Data from 2000 to 2006 was used to train the model, and data

from 2007 to 2009 was used for standalone model testing. The R

software (R Core Team, 2019) was used for all ANN simulations

in this study.

2.4 Precipitation and hydrological models
evaluation

2.4.1 Rainfall products evaluation
The rainfall products comparison was conducted on the

areal-averaged value of the study watershed, with calibration

and validation phases evaluated independently. The

Thiessen Polygon method areal-averaged precipitation

from the conventional gauges, was compared with the

other three gridded precipitation products. The

relationship between the daily time series was evaluated

using the Pearson correlation coefficient (CC) and percent

bias (PBIAS), which mathematical formulation can be

expressed in Eqs 1, 2:

CC � COV(Pgrid, Pgauge)
σ(Pgrid)σ(Pgauge)

(1)

TABLE 1 Description of the calibrated SWAT parameters.

Hydrology
Parameter

Description File
extension

Value
range

CN2a SCS runoff curve number for antecedent moisture condition II .mgt (–10%, 10%)

ALPHA_BF Base flow alpha factor (days) .gw (0, 1)

GW_DELAY Delay time for aquifer recharge (days) .gw (0, 500)

GWQMN Threshold depth of water in the shallow aquifer required for return flow to occur (mm H2O) .gw (0, 5,000)

GW_REVAP Groundwater “revap” coefficient .gw (0.02, 0.2)

REVAPMN Threshold depth of water in the shallow aquifer for “revap” or percolation to the deep aquifer to occur
(mm H2O)

.gw (0, 500)

RCHRG_DP Deep aquifer percolation fraction .gw (0, 1)

SOL_AWCa Available water capacity of the soil layer (mm H2O/mm soil) .sol (-5%, 5%)

SOL_Ka Soil saturated hydraulic conductivity (mm/h) .sol (-5%, 5%)

ESCO Soil Evaporation compensation factor .hru (0.6, 0.95)

CANMX Maximum canopy storage (mm H2O) .hru (0, 100)

CH_K1 Effective hydraulic conductivity in tributary channel alluvium (mm/hr) .sub (5, 130)

CH_K2 Main channel hydraulic conductivity (mm/h) .rte (5, 130)

CH_N2 Manning’s “n" value for the main channel .rte (0.01, 0.3)

SURLAG Surface runoff lag coefficient (days) .bsn (1, 24)

aParameters using relative Change are marked by a, indicating parameter value is multiplied by 1 plus the given value.

TABLE 2 ANN model input combinations.

Prediction scenario Input combination Output

1 Pt, Pt-1, Pt-2, Pt-3, Pt-4, Tt Q

2 Pt, Pt-1, Pt-2, Pt-3, Pt-4, Pn Q

3 Pt, Pt-1, Pt-2, Pt-3, Pt-4, Pn, Tt Q
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PBIAS � 100 · ∑i(Pgrid − Pgauge)i
∑iPgauge,i

(2)

where Pgrid and Pgauge denote the daily precipitation from the

gridded weather products and conventional gauge data,

respectively. The precipitation data were also aggregated to

monthly resolution and evaluated graphically using box plots

and scatter plots.

2.4.2 Hydrological models evaluation
The hydrological modeling results were evaluated using the

Nash–Sutcliffe coefficient of efficiency (NSE) and percent bias

(PBIAS). The NSE is a normalized statistic that determines the

magnitude of residual variance compared to observed data

variance. NSE ranges from –∞ to 1.0, with NSE =

1.0 representing the optimal fitting (Nash and Sutcliffe, 1970).

The PBIAS measures the average tendency of model

overestimation or underestimation. A smaller absolute PBIAS

indicates better model fit to observed data. NSE and PBIAS were

adopted in this study because they are commonly used in the

literature, and extensive information regarding these two

indicators is available from previous studies (Moriasi et al.,

2015). The model performance evaluation criteria were

adopted from (Moriasi et al., 2007), which recommended

performance ratings for monthly time step hydrological

simulations. Hydrological models are known to typically

perform better at coarser temporal resolutions; hence, the

performance ratings were slightly relaxed in this study (Kalin

et al., 2010). The mathematical formulations of NSE and PBIAS

and their corresponding performance criteria for daily

streamflow simulation are presented in Table 3.

3 Results and discussion

3.1 Precipitation data analysis

The areal-averaged gauge rainfall data from NOAA was

used as the reference to analyze the precipitation of the three

gridded weather datasets (TRMM, CFSR, and PRISM).

Table 4 summarized the daily average precipitation depth

(Mean), the standard deviation (Std), and the maximum

daily precipitation (Max) of the four data sources. The

correlation coefficient (CC) and percent bias (PBIAS)

between the gridded rainfall data and the reference data

are also presented. Since the conventional gauge

precipitation records were incomplete during the study

period, the missing dates were removed from all datasets

for the calculation of CC and PBIAS.

The statistical summary shows that the daily rainfall during

the calibration and validation periods are close inmagnitude. The

TRMM data had the lowest mean, maximum, and standard

deviation of the rainfall, significantly lower than the estimates

from the CFSR, PRISM, and conventional gauge data. However,

TABLE 3 Goodness-of-fit indicators and model performance evaluation criteria for the hydrological models.

Performance rating NSE NSE � 1 − ∑i
(Si−Oi)2

∑i
(Oi− �O)2 PBIAS (%) PBIAS � 100p

∑i
(Si−Oi)
∑i

Oi

Very good NSE≥ 0.7 |PBIAS|≤ 25

Good 0.5≤NSE< 0.7 25< |PBIAS|≤ 50

Satisfactory 0.3≤NSE< 0.5 50< |PBIAS|≤ 70

Unsatisfactory NSE< 0.3 |PBIAS|> 70

Si is the ith simulated data; Oi is the ith observed data; �O is the mean of the observed data.

TABLE 4 Statistical summary of all precipitation data and comparison between the areal-averaged gridded rainfall with conventional gauges data.

Weather
data

Calibration period precipitation Validation period precipitation

Mean
(mm/
d)

Std (mm) Max (mm/d) CC PBIAS Mean
(mm/
d)

Std (mm) Max (mm/d) CC PBIAS

TRMM 0.84 3.15 39.92 0.65 −65.4 0.79 3.01 44.28 0.65 -63.7

CFSR 2.56 8.37 130.42 0.55 5.5 2.32 6.28 104.71 0.55 5.6

PRISM 2.46 8.75 180.92 0.71 2.4 2.36 9.52 173.79 0.65 16.6

GAUGE 2.35 7.50 80.50 2.44 8.49 96.22
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the mean daily rainfall values from the CFSR, PRISM, and

conventional gauge datasets were relatively close. The CFSR

data had the highest average daily rainfall estimation

(2.56 mm/d) for the calibration period, while in the validation

period, the gauge data has the highest average daily value

(2.44 mm/d). The PRISM data had the highest estimates of

the maximum daily rainfall for both the calibration

(180.92 mm/d) and validation periods (173.79 mm/d), and the

largest standard deviations (8.75 mm for calibration and

9.52 mm for validation period). The CC values indicated that

the PRISM data has the strongest correlation with the

conventional gauge data among the three gridded rainfall

datasets, and the CFSR data has the weakest correlation. The

TRMM data has relatively strong correlation with the gauge

rainfall data despite of its severe underestimation. It can therefore

be assumed that the TRMM rainfall estimates capture the timing

of the precipitation events quite well although missing their

precise magnitudes. The PBIAS values agree with the daily

mean estimates that the TRMM estimation of daily

precipitation was significantly lower than that from gauge

observation. Meanwhile, the CFSR and PRISM estimation of

daily rainfall was slightly higher than the gauge observation.

Furthermore, the precipitation data were aggregated to

the monthly time step to make graphical comparisons. The

box plots of the aggregated monthly precipitation value of

the four precipitation data sources are displayed in Figure 2.

Some of the extremely high values were removed when

creating the box plots to make the figure more readable.

In both the calibration and validation periods, the TRMM

3B42 product had the lowest estimate of the median, lower

and upper quartiles, and maximum values. In the calibration

period, the monthly median rainfall estimation from CFSR

(45.15 mm), PRISM (52.64 mm), and conventional gauge

(52.51 mm) were relatively close compared with that from

TRMM (16.98 mm). In the validation period, the PRISM data

provided the highest estimates of median monthly

precipitation of 46.68 mm, while the CFSR (31.14 mm)

and conventional gauge (33.63 mm) had similar but

smaller estimates.

The scatter plots that compare aggregated monthly

TRMM, CFSR, and PRISM precipitation data with the

conventional gauge reference data are presented in

Figure 3. In agreement with the results suggested by

Table 4 and Figure 2, the least square regression lines for

the TRMM data (Figures 3A,D) have slopes that are

significantly lower than that for the CFSR and PRISM data

(Figures 3B,C,E,F), which indicates substantial

underestimation of precipitation. Meanwhile, the least

square regression lines for the CFSR and PRISM data were

closer to the 1:1 reference line, indicating a closer

approximation between these two datasets with the

reference data. In particular, the PRISM data points

(Figures 3C,F) were distributed nearer to the 1:1 reference

line, while the CFSR data points (Figures 3B,E) were spread

further apart, suggesting the PRISM data better approximates

the gauge observations.

FIGURE 2
Monthly precipitation of TRMM, CFSR, PRISM, and conventional gauge for the (A) calibration and (B) validation period.
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3.2 Hydrological simulations

3.2.1 Soil and water assessment tool calibration
and validation

SWAT calibration results are conditioned on the selected

procedure, objective function, and availability of data over the

time period (Abbaspour, 2011). The iterative SUFI-2 procedure

was used in this study, and 500 simulations were run in each

calibration iteration. The parameter values were updated after

each iteration, and the iterations ended after the objective

function ceased to improve. The Nash-Sutcliffe Coefficient of

Efficiency (NSE) was used as the objective function. The four

modeling scenarios were calibrated against the observed daily

streamflow at the watershed outlet, and separate calibrations

were made for each scenario. The calibration process minimized

the difference between simulated and observed streamflow

(Abbaspour et al., 2018). The last iteration of the calibration

was used to define the parameter output ranges, which were used

in the corresponding validation iterations without further

modification. The calibration outcome and the best-fitted

value in the validation iteration were presented in Table 5.

The SCS (Soil Conservation Service, the United States

Department of Agriculture) runoff curve number (CN2.mgt)

was reduced in the SWAT-CFSR, SWAT-PRISM, and SWAT-

GAUGEmodels but significantly increased in the SWAT-TRMM

model, compensating its lower precipitation. Similarly, the

maximum canopy storage (CANMX.hru) of SWAT-TRMM

was kept at 0, while in other models, the CANMX.hru value

was increased by different extents from the default. The hydraulic

conductivity of the tributary channel (CH_K1.sub) and main

channel (CH_K2.rte) for the SWAT-TRMM model was notably

lower than the other models, while the Manning’s n, the

coefficient for the main channel (CH_N2.rte), which

represents the roughness of the channel, was higher in the

SWAT-TRMM model. The adjustments conducted on the

channel-related parameters reduce streamflow velocity in the

FIGURE 3
Comparison of the griddedmonthly precipitation estimates with the conventional gauge data of the calibration period (A) TRMM, (B)CFSR, and
(C) PRISM data; and the validation period (D) TRMM, (E) CFSR, and (F) PRISM data.
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SWAT-TRMM model compared to the other models. The soil

parameters were adjusted through a percent change due to their

spatial heterogeneity. In this study, the available water capacity of

the soil layer (SOL_AWC.sol) and the soil saturated hydraulic

conductivity (SOL_K.sol) were only slightly adjusted for all four

SWAT modeling scenarios, which indicated that the streamflow

was not sensitive to soil parameters in the study watershed.

The groundwater parameters (.gw) govern the speed and

volume of groundwater recharge and discharge in the study

watershed, which can be vital to the simulation performance

since the San Antonio region is situated above Edwards

Aquifer, which stores an enormous amount of

groundwater and supplies much of the municipal

consumption for San Antonio (Loáiciga et al., 2000;

Elhassan et al., 2016). The relatively large base flow alpha

factor (ALPHA_BF.gw) for the SWAT-TRMM, SWAT-

CFSR, and SWAT-GAUGE models suggests the study

area’s groundwater has a rapid response to recharge.

Furthermore, the higher than default groundwater “revap”

coefficient (GW_REVAP.gw) indicates the water transfer

from the shallow aquifer to the root zone occurs at a

relatively high rate. Meanwhile, the threshold depth of

water in the shallow aquifer required for return flow to

occur (GWQMN.gw) was markedly increased from the

default value for all SWAT model scenarios, which likely

suggested the study area has a large water storage capacity in

its shallow aquifer, typically of karstic geology. In addition,

the delay time for aquifer recharge (GW_DELAY.gw) was

increased from the default value for all modeling scenarios,

suggesting a longer time for water to exit the soil profile and

enters the shallow aquifer in the study area.

3.2.2 Artificial neural network training andmodel
selection

All nodes in the neural networks were fully connected to

nodes in their adjacent layers in this study. The links connecting

the nodes contain weight and bias information which were

optimized in the training process (ASCE, 2000a). The three-

layer feed-forward neural network structure only contains one

hidden layer besides the input and output layers. Thus, the

primary purpose of the model selection process was to decide

the number of hidden layer units that produces the best

simulation outcome. As mentioned in Section 2.3.2, the

available data was split 70/30 ratio into the training and

testing groups, respectively. The training data was further

divided into ten blocks. In each BlockedCV iteration, nine

blocks were used for model training, while the other block

was used to calculate cross-validation statistics. The root mean

square error (RMSE) of the standalone block was calculated in

each training cross-validation iteration. The RMSE values were

averaged after the training iterations finished. Themodel with the

smallest averaged RMSE was selected as the best model. The

models that produce the smallest cross-validation RMSE for each

prediction scenario are displayed in Table 6.

TABLE 5 Calibrated SWAT parameter ranges and the best-fitted validation values.

Hydrology
Parameter

Default
value in
SWAT

Calibrated Parameter range Best fitted validation value

TRMM CFSR PRISM GAUGE TRMM CFSR PRISM GAUGE

CN2.mgta 35 to 98 (20.7%,
30.5%)

(−18.3%,
-12.3%)

(−15.5%,
-8.3%)

(−8.2%,
-5.6%)

27.5% −13.2% −14.7% −7.5%

ALPHA_BF.gw 0.048 (0.958, 1.000) (0.377, 0.550) (0.075, 0.224) (0.649, 0.820) 0.968 0.537 0.086 0.671

GW_DELAY.gw 31 (123, 166) (422, 461) (228, 420) (144, 235) 137 426 363 163

GWQMN.gw 1,000 (2,964, 3,536) (2,239, 3,753) (3,712, 4,378) (2,463, 3,442) 3,227 3,348 4,268 2,660

GW_REVAP.gw 0.02 (0.170, 0.190) (0.129, 0.162) (0.125, 0.150) (0.158, 0.187) 0.185 0.155 0.136 0.168

REVAPMN.gw 750 (175, 249) (236, 324) (331, 412) (124, 206) 225 259 348 171

RCHRG_DP.gw 0.05 (0.003, 0.085) (0.055, 0.159) (0.049, 0.159) (0.000, 0.169) 0.016 0.150 0.157 0.032

SOL_AWC.sola 0.01 to 0.42 (−1.2%, 0.7%) (−1.3%, 0.4%) (−5.3%, 1.5%) (−5.2%,
-1.1%)

0.4% −1.2% −2.6% −1.1%

SOL_K.sola 0 to 2000 (−2.6%,
-1.4%)

(−0.9%, 0.4%) (−3.2%, -1.6%) (−1.6%, 1.8%) −1.5% −0.7% −2.1% −1.3%

ESCO.hru 0.95 (0.911, 0.950) (0.713, 0.764) (0.862, 0.921) (0.600, 0.653) 0.938 0.740 0.872 0.614

CANMX.hru 0 (0, 4) (51, 65) (65, 82) (40, 57) 0 62 79 50

CH_K1.sub 0 (11, 24) (85, 113) (77, 114) (116, 130) 17 86 107 129

CH_K2.rte 0 (16, 29) (116, 130) (43, 60) (8, 26) 28 120 51 21

CH_N2.rte 0.014 (0.114, 0.190) (0.013, 0.032) (0.010, 0.031) (0.112, 0.180) 0.126 0.015 0.014 0.156

SURLAG.bsn 4 (6.09, 12.67) (19.93, 23.16) (3.81, 9.75) (8.25, 12.73) 7.30 20.91 7.94 12.62

aParameters using percent change to existing values are marked by “a”.
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The best models selected using the cross-validation RMSE

as criteria had their hidden unit sizes that fell between 5 and 9.

This finding is consistent with that of Wu et al. (2005), which

found the size of the hidden units to be near two-thirds of the

sum of the number of input and output neurons. The smallest

cross-validation RMSE values for each model were highlighted

with an underscore in Table 6. The ANN-TRMM, ANN-

PRISM, and ANN-GAUGE models selected scenario 2 as

having the best model input combination, which only used

precipitation data as predictors. The ANN-CFSR model

selected scenario 3 as the best input combination. The

inclusion of temperature as one of the predictors had

slightly improved the cross-validation performance of the

ANN-CFSR model. Overall, the NSE and PBIAS values

were close among the different prediction scenarios of a

particular ANN model.

3.2.3 Comparison of model performance
The ANN models summarized in Table 6 were further

screened based on the cross-validation RMSE, in which only

one prediction scenario for each model was chosen as the best

model. The best ANNmodels were compared with the calibrated

SWAT models, and their goodness-of-fit indicators were

summarized in Table 7. In the calibration period, the SWAT

models’ NSE performance ranged from satisfactory to very good

(0.48–0.90), and the ANN models’ NSE performance was all on

the very good level (NSE ≥ 0.7). However, the PBIAS values of the

calibration period suggested that the SWAT models, with the

exception of the SWAT-TRMM model, overestimated

streamflow. SWAT-TRMM, however, was the model which

had the much smaller rainfall input. Similarly, the ANN

models also showed notable forecasting bias. The ANN-

TRMM and ANN-PRISM model overestimated the streamflow

TABLE 6 Best model structure and performance results of all prediction scenarios.

Model Prediction scenario Hidden nodes Training period Testing period Cross-validation RMSE
(m3/s)

NSE PBIAS NSE PBIAS

ANN-TRMM 1 9 0.835 31.9 0.188 −58.2 1.908

2 6 0.825 40.0 0.491 −20.4 1.888

3 9 0.829 46.6 0.371 −37.0 1.923

ANN-CFSR 1 7 0.835 −45.3 −0.010 −93.4 1.855

2 8 0.819 −36.8 −0.003 −80.3 1.853

3 6 0.796 −23.7 −0.005 −76.1 1.852

ANN-PRISM 1 7 0.901 60.7 0.736 −16.9 2.247

2 5 0.891 59.4 0.671 1.3 2.178

3 6 0.908 68.3 0.760 −6.3 2.231

ANN-GAUGE 1 8 0.699 −40.5 0.030 −75.7 2.094

2 9 0.787 −44.2 0.091 −87.5 2.059

3 8 0.748 −47.3 −0.016 −75.1 2.199

TABLE 7 Statistical performance of SWAT and ANN models driven by different weather data.

Model Weather data Calibration/Training (2000-
2006)

Validation/Testing (2007-
2009)

NSE PBIAS NSE PBIAS

SWAT TRMM 0.48s 10.3vg 0.37s 1.1vg

CFSR 0.56g 52.4s 0.22u 0.9vg

PRISM 0.90vg 49.6g 0.72vg 36.8g

GAUGE 0.61g 29.2g 0.07u 35.5g

ANN TRMM 0.83vg 40.0g 0.49s −20.4vg

CFSR 0.80vg −23.7vg −0.01u −76.1u

PRISM 0.89vg 56.2s 0.76vg −13.4vg

GAUGE 0.79vg −44.2g 0.09u −87.5u

Superscripts represent the performance levels, “vg” - “very good”, “g” - “good”, “s” - “satisfactory”, “u” - “unsatisfactory”.
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by over 40%, while the ANN-GAUGE model underestimated the

streamflow by 44.2%.

The hydrological models’ performance were worse in the

validation period, during which only the TRMM and PRISM

driven models reached at least a satisfactory level NSE

performance. The SWAT-TRMM had a satisfactory

validation NSE performance of 0.37, and the SWAT-

PRISM model had a validation NSE value of 0.72, which

FIGURE 4
Hydrograph of the validation period for (A) TRMM, (B) CFSR, (C) PRISM, and (D) conventional gauge-driven SWAT and ANN models.
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was considered very good for daily streamflow simulation.

Meanwhile, the validation NSE performance of SWAT-CFSR

and SWAT-GAUGE models was below satisfactory level.

Surprisingly, the SWAT-TRMM and SWAT-CFSR models

had very minimal PBIAS values in the validation period,

although not performing well based on the NSE criterion.

Comparably, the ANN-TRMM model had a satisfactory

performance of 0.49 NSE value, and the ANN-PRISM

model had a very good performance of 0.76 NSE value,

while the ANN-CFSR and ANN-GAUGE models

performed poorly. Additionally, all ANN based models

underestimated the streamflow according to the PBIAS

values in the validation period, with ANN-CFSR and

ANN-GAUGE severely underestimating streamflow, and

FIGURE 5
Comparison of validation period simulated and observed streamflow of the (A) TRMM, (B) CFSR, (C) PRISM, and (D) conventional gauge-driven
models.
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ANN-TRMM and ANN-PRISM having a relatively a lower

magnitude of underestimation.

The hydrographs of the validation period with precipitation

records are displayed in Figure 4. Since gauge observations for

much of the validation period were missing, there were several

discontinuities in the ANN-GAUGE time series (Figure 4D) as

no streamflow predictions were made on the missing dates. The

observed streamflow time series suggests that the Leon Creek had

close to 0 discharge volume for most of the validation period with

only occasional moderate to high flows caused by intense storm

events. In general, the TRMM and PRISM driven models

captured the timing of major storm events rather well but had

different levels of bias in flow magnitude (Figures 4A,C). The

CFSR and conventional gauge driven models predicted the

streamflow peaks poorly. The simulated streamflow time

series also showed that the SWAT models generally made

higher peak discharge estimations than the ANN models.

A scatter plot comparison of the simulated versus observed

streamflow for the models driven by the different weather data

sources is shown in Figure 5. The deviation of streamflow

prediction increased with increasing discharge magnitude for

all ANN and SWAT models. The SWAT-PRISM and ANN-

PRISMmodels had least square regression lines comparably close

to the 1:1 reference line, suggesting a smaller deviation between

the simulated and observed data than other models. Meanwhile,

the ANN-CFSR and ANN-GAUGE models were found to

severely underpredict the streamflow with an extremely small

regression line slope, which is in agreement with the PBIAS

findings presented in Table 7. The regression line slope for all

SWAT models was below that of the 1:1 reference line, which

contradicts the PBIAS results that SWAT models overpredicted

the streamflow. A very few underpredicted high flow values could

be the cause of the small regression slope of the SWAT models,

indicating the SWAT models overestimated low flows but

underestimated high flows.

Overall, the performance of hydrological models in the

standalone validation/testing period showed that the SWAT

model overpredicted the streamflow and the ANN models

underpredicted the streamflow for all evaluated weather data

sources. The apparent underestimation made by the ANN

models could be attribute to their training patterns, in which

the overwhelming amount of low flow days in the training series

caused the tendency of making lower estimations. The PRISM

data was found to provide the most accurate hydrological

simulations for both SWAT and ANN. The TRMM data also

had satisfactory hydrological simulation performance, although

NSE values were not as good as the PRISM-driven models.

The CFSR and conventional gauge driven models performed

poorly according to the goodness-of-fit indicators and graphical

comparison. This finding is unexpected given the common

knowledge that rain gauges provide the most accurate

precipitation measurement. These results are likely due to the

lack of spatial representation of rain gauges and CFSR data in the

study watershed. The five conventional rain gauges that had

usable data in the region were spread outside the LCW boundary.

Interpolating the rainfall data to the study area may fail to

produce precise spatial representation. Another possible factor

for the rain gauge-driven models’ failure is that temporal

inconsistencies of gauge rainfall observations restrict the

hydrological models’ prediction capability. This is particularly

true for the ANN-GAUGE model, in which the temporal

inconsistencies in input data undermine the time-dependent

nature of streamflow series forecasting simulations. The CFSR

data was initially in gridded format but automatically

interpolated to the centroid point of the grid cell (Dile and

Srinivasan, 2014), which also lacks an accurate representation of

the study watershed. On the other hand, the TRMM and PRISM

data were precisely extracted and averaged for the study

watershed. By comparing the models driven by different

weather data sources, it can therefore be assumed that the

areal-averaged rainfall data input at the “virtual rain gauge”

(watershed centroid) is a viable option for making good

streamflow simulations in SWAT and ANN. Moreover, no

significant discrepancy was found between SWAT and ANN

simulation results when the same weather data source was used

in the two models. At the same time, both models were greatly

affected by the quality of precipitation inputs, and the results

from the two models varied in the same way when different

precipitation data sources were used.

4 Conclusion

SWAT and ANN are two widely used tools for streamflow

prediction in the hydrological science community. This study

evaluated the ability of four weather data sources to represent

precipitation and drive hydrological simulations in a small urban

watershed in central south Texas. The four different weather

sources were directly compared on daily and monthly time steps.

Furthermore, four SWAT models were calibrated and validated,

and a number of ANNmodels were trained and selected to assess

the relative performance of these different weather sources.

Finally, goodness-of-fit indicators and graphical comparisons

were employed to evaluate the results of hydrological

simulations and further evaluate the different weather data

source performance. The conclusions of this study can be

summarized as follows:

1) The Thiessen polygon method was adopted to interpolate

areal-averaged gauge rainfall for the study watershed. Using

the interpolated gauge rainfall as reference data, the TRMM

data was found to severely underestimate rainfall, while the

PRISM data most closely approximated the gauge

observations.
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2) Only meteorological data was applied as the ANN model

inputs. The ANN model selection results suggest that the

precipitation data is adequate to make satisfactory streamflow

prediction, except for the ANN-CFSR model, in which the

addition of temperature as a predictor slightly improved the

cross-validation RMSE performance.

3) The calibrated SWAT models and the selected best ANN

models had satisfactory to very good model performance

during the calibration/training period, while the model

performance significantly reduced in the validation/testing

period, with the exception of both PRISM driven models.

4) In the stand-alone validation/testing period, the PRISM data

was found to provide the most accurate hydrological

simulations for both SWAT and ANN. The TRMM data

also had satisfactory level hydrological simulation

performance. However, the CFSR and conventional gauge

driven models performed poorly. The most likely explanation

is that the interpolated CFSR and gauge rainfall data lacks

spatial representation in the study watershed. Hence, the

areal-averaged PRISM and TRMM data can offer a viable

alternative for rainfall-runoff modeling when ground-based

rainfall observation is limited.

5) The input of precipitation is vital for hydrological

simulations, and both the SWAT and ANN models were

strongly affected by the quality of precipitation inputs.

Specifically, the SWAT and ANN models varied in an

identical pattern when different precipitation data sources

were used as inputs, and there was no significant discrepancy

found between SWAT and ANN simulation results when the

same weather data source was applied.

This work tested and verified the method of converting gridded

format weather data into a point format for hydrological simulations

via calculating their areal-averaged values. Converted meteorological

data provided reliable inputs with the suitable format for the SWAT

and ANN models and produced satisfactory streamflow simulation

results. This method can be expanded into hydrological simulations

using other lumped or semi-distributed models in the future, as more

gridded weather products, either produced from satellite remote

sensing techniques alone or created as hybrid ground-based

measurement and remotely sensed estimates, are becoming

publicly accessible. Moreover, due to the limitation of time and

scope, this research only evaluated three common gridded-based

precipitation datasets. Further research could also be conducted using

radar estimated precipitation data that are gradually becoming

available on a more refined spatial scale.
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