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Due to African dust, the Caribbean area is known to have one of the highest incidences of
asthma on the planet. Consequently, it is crucial to dissociate the impact of local sources
from large scale sources in this region. The aim of this study was to estimate the PM10

detection threshold for dusty events using a statistical approach and a dynamic approach.
To carry out this analysis, PM10 time series fromMartinique (MAR), Guadeloupe (GPE) and
Puerto-Rico (PR) were used between 2006 and 2016. The statistical analysis highlighted
that the distance from the African coast is a key feature for PM10 concentrations
distribution with the highest at MAR (26.52 μg/m3) and the lowest at PR (24.42 μg/m3).
The probability density function analysis showed that MAR-GPE-PR distributions
converge towards a same point between the first and the second maximum
probability value at 28 μg/m3. The dynamical analysis with the Complete Ensemble
Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) and the Improved
CEEMDAN (ICEEMDAN) validated the 28 μg/m3 found with the statistical analysis. The
analysis of HYSPLIT back trajectories confirmed this threshold. Thus, our results indicated
that 28 μg/m3 is the PM10 detection threshold for African dust in the Caribbean basin. It will
therefore be a good indicator allowing the competent authorities to take the appropriate
decisions to protect vulnerable populations during dusty events.
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1 INTRODUCTION

Mineral dust is themost abundant type of aerosol on Earth (Jaenicke, 1988; Ramanathan et al., 2001). The
Saharan and the Sahelian desert are the main mineral dust sources (d’Almeida, 1986; Tegen and
Schepanski, 2009; Knippertz and Todd, 2012). Since 1967, many studies have demonstrated that large
amount of African dust were routinely being transported across the Atlantic to the Caribbean (Delany
et al., 1967; Parkin et al., 1967; Huang et al., 2010; Adams et al., 2012; Chin et al., 2014; Kim et al., 2017;
Tegen and Schepanski, 2018; Euphrasie-Clotilde et al., 2020; Prospero et al., 2021), to mention a few.

In ecology, mineral dust plays a key role in nutrient cycling, allowing the fertilization of ecosystems in
the American continent. The transport of these nutrients helps nourish the Amazon, compensating for
the scarcity of nutrients in the soil of the region (Griffin, 2007). For example, soils in theAmazon Basin are
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deficient in phosphorus, essential to soil fertility (Prospero et al.,
2020). The iron found in mineral dust is also essential in the ocean
for the growth of phytoplankton, which is the basis of oceanic food
chains (Villar-Argaiz et al., 2018). These nutrients reach the surface
layer and the marine boundary layer through dry deposition or wet
deposition (Rizzolo et al., 2017; López-García et al., 2021). In
addition, the dry and hot conditions of dusty air masses alter
atmospheric stability, inhibiting the formation and intensification
of tropical cyclones (Dunion and Velden, 2004; Braun et al., 2012;
Huang et al., 2020). As some of the solar energy does not reach the
ocean surface when there is airborne dust, this lowers the
temperature and prevents evaporation of water which is essential
to the formation of hurricanes and tropical storms (Nowottnick
et al., 2018).

Despite all these positive aspects, mineral dust also has
harmful effects on health. In the literature, many studies
associated it with cardiovascular and respiratory diseases,
prematurity, general mortality, and a series of infectious
diseases (Comrie, 2005; Griffin, 2007; Chen et al., 2010;
Baughman et al., 2011; Tobías et al., 2011; Schweitzer et al.,
2018; Dominguez-Rodriguez et al., 2020; Urrutia-Pereira et al.,
2021), to cite a few. The populations most susceptible to short-
term effects of airborne dust are: 1) the elderly, due to their lower
immune capacity (Jiménez et al., 2010); 2) individuals affected by
chronic cardiopulmonary diseases (Dominguez-Rodriguez et al.,
2020); and (iii)children, whose lungs and airways are not fully
developed (Yu et al., 2012). Furthermore, African dust can also
carry bacteria, fungi and viruses (Sakhamuri and Cummings,
2019).

Many studies have highlighted the impact of desert dust on
Caribbean population. In Trinidad, Gyan et al. (2005) exhibited a
relationship between African dust and respiratory stress,
increased asthma exacerbations and emergency admissions,
and increased daily rates of pediatric hospitalization. In
Barbados and Trinidad, Monteil (2008) also observed a
significant increase in pediatric admissions 7 days after major
dust outbreaks. Cadelis et al. (2014) found the same behavior in
Guadeloupe with a relationship between particulate matter from
African dust and an increased risk for visits to emergency services
in children with asthma. In Grenada, Akpinar-Elci et al. (2015)
has shown that mineral dust coupled with seasonal humidity
allows the formation of inhalable particles that aggravate asthma
among residents. Thus, the Caribbean are known to have some of
the highest incidences of asthma on the planet due to dust
outbreaks (Urrutia-Pereira et al., 2021). A recent study made
by Viel et al. (2020) in Guadeloupe also indicated that Saharan
dust seems to influence weight but not length or head
circumference at birth. For all the reasons aforementioned, it
is therefore crucial to determine the detection threshold for
African dust in the Caribbean basin. Mineral dust is a mixture
of fine and coarse particles (Does et al., 2016). In this study, the
authors focused on particles lower or equal to 10 μm in diameter
called PM10 which are present in significant quantities in dust
plumes (Petit et al., 2005) and can reach the trachea and the
bronchi after inhalation (Urrutia-Pereira et al., 2021).

Previous studies have shown that the daily concentration of
PM10 in the Caribbean area frequently exceeds the 50 μg/m3

recommended by the World Health Organization for an average
of 24 h during the boreal summer (Martet et al., 2009; Prospero
et al., 2014). Recently, Euphrasie-Clotilde et al. (2020) highlighted
a dusty threshold of 35 μg/m3 using daily PM10 concentrations
and optical measurements, i.e. Aerosols Optical Depth (AOD).
However, for daily PM10 concentrations below 35 μg/m3, this
study showed that the associated daily AOD data are also
characterized by marine aerosols. The aim of this study is
therefore to refine this threshold using statistical and dynamic
methods with daily PM10 time series from three Caribbean
islands: Martinique, Guadeloupe and Puerto-Rico.

In nature, it is well known that physical processes are often
non-linear and non-stationary, showing the coexistence of
different spatial–temporal scales (Huang et al., 2003; Bai et al.,
2016; Plocoste et al., 2019). Many studies have demonstrated the
non-linear properties of PM10 time series in the Caribbean area
(Plocoste et al., 2017, 2020b, 2021b; Plocoste and Calif, 2021;
Plocoste, 2022a; Plocoste, 2022b). This is the reason why
multiscale decomposition methods were used to estimate PM10

detection threshold between local sources and large scale sources
in a dynamical way. Empirical Mode Decomposition (EMD) is an
adaptive time–frequency data analysis proposed by Huang et al.
(1998) whose objective is to decompose any time series into a sum
of different Intrinsic Mode Functions (IMFs) with a sifting
procedure (Huang et al., 1999; Flandrin and Goncalves, 2004;
Huang and Schmitt, 2014). However, this technique introduces a
serious drawback which is the mode mixing problem (Yeh et al.,
2010), i.e. the presence of very similar oscillations in different
modes (Cao et al., 2019). To overcome the scale separation
problem, the Ensemble EMD (EEMD) is introduced by Wu
and Huang (2009). In this approach, randomly generated
white noise series are added to the original signal to help the
sifting process to avoid mode mixing. Nevertheless, the EEMD
method cannot completely eliminate white noise after signal
reconstruction (Luukko et al., 2016). To solve this issue, the
Complete Ensemble Empirical Mode Decomposition with
Adaptive Noise (CEEMDAN) was proposed by Torres et al.
(2011). As CEEMDAN modes have some residual noise and
the signal information presents some spurious modes in the early
stages, Colominas et al. (2014) introduced the Improved
CEEMDAN (ICEEMDAN), obtaining components with less
noise and more physical meaning. Recently, CEEMDAN and
ICEEMDAN approaches have been applied in several fields such
as finance (Cao et al., 2019; Wu et al., 2020), entropy (Kuai et al.,
2018; Kou et al., 2020), air pollution (Du et al., 2020; Xiao et al.,
2021; Plocoste, 2022b) and renewable energy (Zhang et al., 2017;
Rezaie-Balf et al., 2019; Gao et al., 2020; Sibtain et al., 2021), to
mention a few. Usually, these methods are used for forecasting
purposes. To our knowledge, no study has yet used CEEMDAN
and ICEEMDAN frameworks to investigate the background
atmosphere of an air pollutant.

2 EXPERIMENTAL DATA

PM10 data of three Caribbean islands were included in this
analysis with respectively Martinique (MAR), Guadeloupe
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(GPE) and Puerto-Rico (PR) (see Figure 1). MAR and GPE
measurements are made by Les Associations Agréées de
Surveillance de Qualité de l’air, a national organization that
overseas air quality in each of the French administrative
regions while PR measurements is carried out by the

United States air quality network. For MAR-GPE-PR, PM10

data are respectively released by MadininAir, Gwad’Air and
Air Now agencies. It is important to emphasize that each
island uses the same sensor and the same measurement
protocol. Using the Thermo Scientific Tapered Element

FIGURE 1 |Overview of the Caribbean area with Puerto-Rico at the top (18.23°N, 66.50°W; PR in yellow) and Guadeloupe archipelago (16.25°N, 61.58°W; GPE in
orange) then Martinique (14.66°N, 61.01°W; MAR in purple) in the middle.

FIGURE 2 | Illustration of daily measurements sequences of PM10 times series in (A)Martinique (MAR), (B) Guadeloupe (GPE) and (C) Puerto-Rico (PR) between
2006 and 2009.
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Oscillating Microbalance (TEOM) models 1400 ab and 1400-
FDMS, PM10 data is continuously sampled and stored as 15 min
averages which were used to calculate daily averages
concentrations analyzed in this study. For 24 h, the
measurement accuracy is ±0.5 μg/m3 (Euphrasie-Clotilde et al.,
2020).

For MAR-GPE-PR, PM10 measurements are respectively
performed at Schoelcher (14.648°N 61.099°W, 2006–2016,
urban area); Pointe-à-Pitre (16.242°N 61.541°W, 2006–2014,
urban area) and Baie-Mahault (16.256°N 61.590°W,
2015–2016, suburban area); and Cataño (18.431°N 66.142°W,
2006–2016, suburban area). Consequently, 11 years of daily
database is available for MAR-GPE-PR with 3,903–3,503–3,718
data points. A sequence of PM10 time series is displayed in
Figure 2. One can observe that PM10 time series seem to
follow the same temporal pattern for the three islands.

3 THEORETICAL FRAMEWORK

3.1 Hybrid Single Particle Lagrangian
Integrated Trajectory
In literature, many studies have shown that Hybrid Single Particle
Lagrangian Integrated Trajectory (HYSPLIT) is a robust tool to
investigate the origin of air masses (McGowan and Clark, 2008;
Ashrafi et al., 2014; Stein et al., 2015). In air pollution, HYSPLIT
back trajectories are commonly performed to assess the origin of
dusty air masses in the Caribbean basin (Prospero et al., 2014;
Gläser et al., 2015; Euphrasie-Clotilde et al., 2020; Plocoste et al.,
2020a). In HYSPLIT, the meteorological database used is the
National Center for Atmospheric Research/National Centers for
Environmental Prediction (NCAR/NCEP) re-analysis data
(Kalnay et al., 1996). The following parameters are used to
generate all daily back trajectories for MAR, GPE, and PR
islands between 2006 and 2016: 1) Altitude: 1,500 m according
to the properties of the Saharan Air Layer (SAL); 2) Starting
locations: MAR (14.64°N; 61.09°W), GPE (16.24°N, 61.53°W), PR
(18.43°N; 66.14°W); 3) Start time: 12 UTC (8 a.m. local time); 4)
Duration: 10 days (240 h). Once back trajectories data as latitude/
longitude and positions are created by HYSPLIT, this latter are
transferred to QGIS geographic information system for
visualisation (version QGIS-2.18.14, http://www.qgis.org/fr/site/
). The protocol used in this study was validated and widely
explained by Euphrasie-Clotilde et al. (2020).

3.2 CEEMDAN
As CEEMDAN is based on EEMD frame, the decomposition
theory of EEMD is firstly presented. Let s the target signal. The
EEMD algorithm can be describe as follow (Wu andHuang, 2009;
Colominas et al., 2014):

• Step 1: Create s(i) = s + βw(i), where w(i) (i = 1, . . . , I) is a
different white Gaussian noise and β > 0.

• Step 2: Fully decompose each s(i) (i = 1, . . . , I) by EMD,
obtaining the modes IMF(i)

k , where k = 1, . . . , K represents
the mode.

• Step 3: Put IMFk as the kth mode of s, obtained by
averaging the corresponding modes: IMFk � 1

I∑
I
i�1IMF(i)

k .

In order to extract each IMF(i)
k , a different number of sifting

iterations is required. It can be underlined that in EEMD, each s(i)

is decomposed independently from the other realizations and for
every one of them a residue r(i)k � r(i)k−1 − IMF(i)

k is obtained at
each stage, with no connection between the different realizations.
Nevertheless, this latter introduces some problems in EEMD.
Firstly the decomposition is not complete. Then, different
realizations of signal plus noise might produce different
number of modes. To overcome these drawbacks, Torres et al.
(2011) and Colominas et al. (2012) introduced a new ensemble
method termed the CEEMDAN.

The main concept behind the CEEMDAN frame is the
following: s(i) are generated from s and the first mode ˜IMF1 �
IMF1 is calculated as in EEMD. Independently of the realization
of the noise, a first unique residue is then obtained by (Colominas
et al., 2012):

r1 � s − ˜IMF1. (1)
Thereafter, EMD first mode is computed from an ensemble of

r1 plus different realizations of a particular noise. The second
mode ˜IMF2 is the average of these modes. The next residue is
defined as r2 � r1 − ˜IMF2. Other modes continue this process
until a stopping criterion is met.

The following algorithm presents the CEEMDAN method in
details. Specify Ej(·) as the operator that creates the kth mode
obtained by EMD frame and let w(i) be a realization of zero mean
unit variance white noise. If s is the target signal (Torres et al.,
2011; Colominas et al., 2012):

• Step 1: For every i = 1, . . . I, decompose each s(i) = s + β0w
(i)

by EMD, until its first mode, and set the first CEEMDAN
mode as:

˜IMF1 � 1
I
∑
I

i�1
IMF i( )

1 � IMF1. (2)

• Step 2: For k = 1, compute the first residue as in Eq. (1):
r1 � s − ˜IMF1.

• Step 3: For every i = 1, . . . I, decompose each r1 = s +
β1E1(w

(i)) by EMD and define the second CEEMDAN
mode as:

˜IMF2 � 1
I
∑
I

i�1
E1 r1 + β1E1 w i( )( )( ). (3)

• Step 4: For k = 2, . . . , K, compute the k-th residue:

rk � r k−1( ) − ˜IMFk. (4)

• Step 5: For every i = 1, . . . I, decompose each rk +
βkEk(w

(i)) by EMD, until define the (k + 1)th
CEEMDAN mode as:
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˜IMF k+1( ) � 1
I
∑
I

i�1
E1 rk + βkEk w i( )( )( ). (5)

• Step 6: Go to the step 4 for next k.

Iterate the steps 4–6 until the obtained residue can no longer
be further decomposed by the EMD, because either it satisfies
IMF criteria or it has been less than the three local extrema.

After construction of CEEMDAN, the final residue can be
expressed as:

rk � s −∑
K

k�1
˜IMFk, (6)

with k the total number of modes. Thus, the given signal s can
be expressed as:

s � ∑
K

k�1
˜IMFk + rk. (7)

Equation 7makes the proposed decomposition complete and
gives an exact reconstruction of the original data. It is important
to emphasize that the final number of modes is determined only
by the data and the stop criterion. The selection of the Signal to
Noise Ratio (SNR) are determined by the coefficients βk = εk
std(rk).

3.3 ICEEMDAN
Even if CEEMDAN solved the problem of the number of
modes for different realizations of signal plus noise, it still
has some problems which may be improved (Colominas et al.,
2014; Thuraisingham, 2021). Indeed, its modes contain some
residual noise and the signal information presents some
spurious modes in the early stages of the decomposition
(Colominas et al., 2014). To improve on this, Colominas
et al. (2014) proposed the Improved CEEMDAN
(ICEEMDAN), obtaining components with less noise and
more physical meaning. The ICEEMDAN algorithm is
described based on CEEMDAN as follows (Colominas et al.,
2014):

• Step 1: Compute by EMD the local means of I realizations
s(i) = s + β0E1(w

(i)) to get the first residue:

r1 � 〈M s i( )( )〉. (8)

• Step 2: For k = 1, compute the first mode:

˜IMF1 � s − r1. (9)

• Step 3: Estimate the second residue as the average of local
means of the realizations r1 + β1E2(w

(i)); then the second
mode is defined as:

˜IMF2 � r1 − r2 � r1 − 〈M r1 + β1E2 w i( )( )( )〉. (10)

• Step 4: For k = 3, . . . , K, compute the kth residue:

rk � 〈M r k−1( ) + β k−1( )Ek w i( )( )( )〉. (11)

• Step 5: Calculate the kth mode:

˜IMFk � r k−1( ) − rk. (12)

• Step 6: Repeat step 4 for the next k.

4 RESULTS AND DISCUSSION

4.1 Descriptive Statistics
4.1.1 Overall Analysis
To understand the behavior of PM10 concentrations in the
Caribbean area, the descriptive statistics are firstly computed.
Figure 3 shows the box-plot of daily PM10 concentrations at
MAR, GPE and PR from 2006 to 2016. At first glance, the box-
plots seem to present the same pattern. The 25th percentiles and
themedians are almost similar atMAR-GPE-PRwith respectively
15.0-16.7-16.0 μg/m3 and 21.0-20.7-20.0 μg/m3. As regards the
75th and the 95th percentiles, a decrease is observed fromMAR to
PR with respectively 32.0-30.7-27.0 μg/m3 and 57.0-52.0-43.0 μg/
m3. For each island, one can observe the presence of outliers.
They are mainly due to African dust outbreaks. Indeed, a study
made by Euphrasie-Clotilde et al. (2020) with NOAA-HYSPLIT
day-to-day back trajectories highlighted that 98% of
concentrations higher or equal to 35 μg/m3 in the Caribbean
area are related to air masses coming from the African coast.

Table 1 presents the statistical parameters for each studied
island. The mean ( �M), standard deviation (σ), skewness (S) and
kurtosis (K) were chosen to respectively analyze the trend,
fluctuation, asymmetry and intermittency of PM10

concentrations. In pollution studies, highly intermittent time
series will have a higher kurtosis (Windsor and Toumi, 2001).
Overall, from MAR to PR, the values of �M and σ decrease while S

FIGURE 3 | Box-plot of daily PM10 concentrations at Martinique (MAR),
Guadeloupe (GPE) and Puerto-Rico (PR) from 2006 to 2016. The horizontal
lines within the box represent the median while the bottom and top of each
box are the 25th and 75th percentiles. The whiskers are the 5th and 95th
percentiles.
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and K values increase. However, we notice that MAR and GPE
which are geographically very close have roughly the same values
for �M, S and K. For PR, these values are different.

It is important to emphasize that PM10 concentrations in the
Caribbean (24.42≤ �M≤ 26.52 μg/m3) are lower than those
measured in Jawaharlal Nehru Port India 66.1 μg/m3 (Gupta
et al., 2004), Belgrade Serbia 68.3 μg/m3 (Mijić et al., 2009),
Nilai Malaysia 59.1 μg/m3 (Sansuddin et al., 2011), Beijing
China 145.1 μg/m3 (Xi et al., 2013), Anatolia Turkey 78.0 μg/
m3 (Ozel and Cakmakyapan, 2015) or Abadan Iran 186.1 μg/m3

(Momtazan et al., 2018) to name a few. In addition, the standard
deviation value computed (15.11 ≤ σ ≤ 17.65 μg/m3) is lower than
those found in megalopolis as Anatolia Turkey (Ozel and
Cakmakyapan, 2015), Abadan Iran (Momtazan et al., 2018),
Nilai Malaysia (Sansuddin et al., 2011) and Beijing China (Xi
et al., 2013) with respectively 26.0, 26.4, 28.6 and 91.4 μg/m3. This
is due to the wide heterogeneity of PM10 sources in these large
cities where anthropogenic pollution is high. Thus, if the standard
deviation is high, so is the variability, indicating large
concentrations (Plocoste et al., 2020a).

Moments of higher order, such as skewness (third order) and
kurtosis (fourth order) are often estimated for a sharp
characterization and therefore the highlighting of the Gaussianity
of the considered process. Note that the third moment is zero for
symmetric distributions. The kurtosis of a normal distribution is
equal to 3. A positive kurtosis is therefore an indicator of the degree
of intermittency. With 2.12 ≤ S ≤ 3.19 and 9.98 ≤ K ≤ 19.27, the
skewness and kurtosis are positive for all PM10 time series. For S, it
means that the frequency distribution moves away from a normal
distribution on the right with a larger right tail. As K > 3, this
indicates that the values we get are greater than the peak of a
Gaussian distribution (Dong et al., 2017). In other words, there is in
PM10 data some values related to extreme events and there is an
irregularity in the process of PM10 emissions.

4.1.2 Seasonal Analysis
To refine the analysis of PM10 concentrations behavior, a
statistical analysis is performed according to African dust
seasonality. In the literature, many studies have shown that
the low dust season runs from October to April while the high
dust season runs from May to September in the Caribbean area
(Prospero et al., 2014; Velasco-Merino et al., 2018; Plocoste and
Pavón-Domínguez, 2020b). As expected, Table 1 shows that
PM10 average concentrations are higher in the high dust
season. As observed in section 4.1.1, there is a decrease in the
average fromMAR to PR during that period which is not the case
in the low season. During summer months, a large amount of
sand travels from the African coast towards the Caribbean in a
Saharan Air Layer at an altitude between 1 and 5 km height
(Prospero and Carlson, 1972; Tsamalis et al., 2013) and at an
average speed of 10 ms−1 (Petit et al., 2005; Jury and Jiménez,
2021). Euphrasie-Clotilde et al. (2020) showed that ~ 84% of
dusty air masses in the Caribbean area come directly from the
East African coasts. Many studies have already shown that
Barbados (see Figure 1) is the first Caribbean island impacted
by dust outbreaks (Prospero et al., 1970; Chiapello et al., 2005;
Zuidema et al., 2019). Dry deposition (gravitational settling) and
wet deposition (precipitation and cloud sweeping) are the two
main processes that will remove these mineral dust from the
atmosphere (Schepanski, 2018; Plocoste et al., 2021a). In other
words, the further one moves away from the African coast, the
lower the concentrations of PM10 linked to mineral dust.

TABLE 1 | Statistical parameters (Mean ( �M), Standard deviation (σ), Minimum (Min), Maximum (Max), Skewness (S) and Kurtosis (K) of PM10 data at Martinique (MAR),
Guadeloupe (GPE) and Puerto-Rico (PR) over 11 years, for low (October to April) and high (May–September) dust seasons. �M, σ, Min and Max are in μg/m3 and N
represents the data point number.

Period Location �M σ Min Max S K

Overall MAR (N = 3,903) 26.52 17.65 2.0 200.2 2.12 9.98
GPE (N = 3,503) 26.34 15.61 3.3 164.4 2.27 10.98
PR (N = 3,718) 24.42 15.11 1.0 197.0 3.19 19.27

Low season MAR (N = 2,271) 21.19 13.79 2.0 200.2 3.55 25.97
GPE (N = 2,040) 21.80 11.49 3.3 164.4 3.86 29.60
PR (N = 2,217) 19.90 9.44 1.0 143.0 4.98 49.59

High season MAR (N = 1,632) 33.93 19.65 3.0 149.4 1.37 5.38
GPE (N = 1,463) 32.67 18.19 4.0 157.2 1.44 6.10
PR (N = 1,501) 31.09 18.96 7.0 197.0 2.27 11.55

FIGURE 4 | Probability Density Function (PDF) of PM10 concentrations at
Martinique (MAR), Guadeloupe (GPE) and Puerto-Rico (PR) from 2006 to
2016. The vertical purple dashed line indicates a point where all the
distributions converge.
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Due to insular context, PM10 are mainly composed by marine
aerosols and anthropogenic pollution in the low dust season (Clergue
et al., 2015; Rastelli et al., 2017). In other words, this season is more
representative of local pollution and sea spray. Contrary to African
dust (large scale source), marine aerosols and anthropogenic
pollution (mesoscale and local scale) fluctuate less over time.
Indeed, anthropogenic pollution is related to daily human
activities (Plocoste et al., 2018) while marine aerosols are advected
by the tradewindswhich blow continuously during the year (Plocoste
and Pavón-Domínguez, 2020a). This is the reason why σLow < σHigh.

In Table 1, one can observe that the minimum values are
higher for the high dust season. This is due to the fact that a
residual amount of dust remains in the atmosphere due to the
continuous alternation between African easterly waves and dust
outbreaks during that period (Plocoste et al., 2021c). As regards
the maximum values, the behavior is different between both
seasons. In the high dust season, these values correspond to
the same haze of sand that impacted the Caribbean basin from
May 14 to 20, 2007 with daily peaks on the 14 in MAR (149.4 μg/
m3), 15 in GPE (157.2 μg/m3) and 16 in PR (197.0 μg/m3). This
event seems special because although there is a daily lag between
these peaks, the phenomenon increases in intensity instead of
decreasing. One hypothesis would be the meeting between a mass
of air coming from Africa and another one coming from cold
higher latitudes, e.g., Alaska or Iceland, where main quantities of
dust are transported southward and deposited in the North
Atlantic (Prospero et al., 2012). This episode will be analyzed

more precisely in a future study. Contrary to PR, one can notice
that the higher maximum values for MAR and GPE are in the low
dust season. During that period, dust outbreaks from Africa are
more sporadic but can occur. With 200.2 μg/m3 on 16 February
2007 and 143.0 μg/m3 on 28 April 2010, MAR and PR are the
perfect example. For GPE, the 164.4 μg/m3 is due to the eruption
of Soufrière volcano at Montserrat in 13 February 2010
(mesoscale source) (Plocoste and Calif, 2019). All these results
show that dust outbreaks are not the only natural source that can
generate high PM10 concentrations in the Caribbean.

As regards the skewness and kurtosis, the same behavior is
observed for both parameters, i.e. SHigh < SLow and KHigh < KLow.
This may be due to the fact that African dust are recurrent in the
high dust season (Plocoste et al., 2020a). During this period, days
with PM10 concentrations exceeding the 50 μg/m

3 recommended
by the World Health Organization (2006) are more frequent.
According to Huang et al. (2010), there is an average of ~6 dust
outbreak days per month during the summer months. Whatever
the season, it may be noted that S and K values are higher for PR.
The authors believe this is mainly due to the location of PM10

sensor. MAR and GPE seem to be undergoing the same plume of
PM10 concentrations. To confirm this assumption, an analysis
will have to be carried out with PM10 sampled at high frequency.

4.2 Distribution Analysis
To sharply describe the statistical information contained in a
dataset, the probability density function (PDF) is a robust tool. It

FIGURE 5 | Probability Density Function (PDF) of PM10 concentrations at Martinique (MAR), Guadeloupe (GPE) and Puerto-Rico (PR) by year from 2006 to 2016.
The vertical purple dashed line shows the African dust detection threshold estimated at 28 μg/m3 over 11 years.

Frontiers in Environmental Science | www.frontiersin.org May 2022 | Volume 10 | Article 9074407

Plocoste et al. Quantification of African Dust Threshold

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


will allow to exhibit the entire range, mean and probability of
occurrences of PM10 data. Figure 4 presents the PDFs of PM10

time series at MAR, GPE and PR over 11 years. Overall, one

notice that all the PDFs show the same pattern. In “Area 1,” the
first maximum probability value (peak of the PDF) is close
between each island with 17.0 μg/m3 at MAR, 17.2 μg/m3 at

FIGURE 6 | Cluster of daily back trajectories (in percentage) with their descriptive statistics (Mean ( �M), Standard deviation (σ)) for (A) Martinique (MAR), (B)
Guadeloupe (GPE) and (C) Puerto-Rico (PR) from 2006 to 2016 associated with desert dusty days (PM10 ≥ 28 μg/m3) by path according to Euphrasie-Clotilde et al.
(2020) classification: NWAP, SWAP, NEAP, SA, North.
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PR and 19.2 μg/m3 at GPE. The higher value in GPE is due to the
fact that the measurements are taken very close to the largest
industrial area of the island (Plocoste et al., 2018). Then, all the

distributions converge towards a same point at 28 μg/m3. In
“Area 2,” it is important to underline that MAR and GPE
curves are almost similar while that of PR diverges. The

FIGURE 7 | Cluster of daily back trajectories (in percentage) with their descriptive statistics (Mean ( �M), Standard deviation (σ)) for (A) Martinique (MAR), (B)
Guadeloupe (GPE) and (C) Puerto-Rico (PR) from 2006 to 2016 associated with non-dusty days (PM10 < 28 μg/m3) by path according to Euphrasie-Clotilde et al. (2020)
classification: NWAP, SWAP, NEAP, SA, North.
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second maximum probability value is 46.2 μg/m3 at PR and
53.2 μg/m3 for MAR and GPE. Unlike the first peaks where
the values seem homogeneous, the second peaks present a
greater shift between PR and MAR-GPE. Intuitively, the first
peak seems more representative of PM10 from local and
mesoscale sources while the second seems strongly related to
PM10 from large scale source. These results confirm that the
further away from the African coast, the more the intensity of
dusts outbreaks seems to decrease. Consequently, the authors
believe that 28 μg/m3 is the detection threshold between local
sources and large scale sources, i.e., African dust detection
threshold.

Figure 5 shows the distribution plot of PM10 concentrations
by year. For some years, the same result as Figure 4 seems to be
observed while for the others, the convergence point of the
distributions, when it exists, is before or after the estimated
threshold over 11 years. From one year to another, one can
notice a strong heterogeneity in PM10 distribution for each
island. This behavior is mainly due to the activation of dust
sources in Africa. In summer, many African dust source in the
Sahara and Sahel region become more active (Schepanski et al.,
2007; Bou Karam et al., 2008; Kim et al., 2017). These activations
are related to the development and movement of African easterly
waves coupled with extra-tropical disturbances. The
modifications of terrain properties in these source regions

(vegetation cover or land use) combined with climate
processes that affect them will act to modulate transport to the
Caribbean area (Ginoux et al., 2012; Prospero et al., 2014).
Indeed, PM10 inter-annual variability is also connected to dust
removal and deposition mechanisms (e.g., changes in
precipitation) (Gavrouzou et al., 2021). Drought years in the
global dust belt zone are associated with a high presence of dust in
the atmosphere due to reduced wet deposition (Dey and Di
Girolamo, 2010; Prospero et al., 2021).

4.3 Air Mass Back Trajectory
In order to validate the threshold previously determined in
section 4.2, the daily HYSPLIT back trajectories are generated
for dusty days (PM10 ≥ 28 μg/m3) and non-dusty days (PM10 <
28 μg/m3) from 2006 to 2016 according to Euphrasie-Clotilde
et al. (2020) classification: North-West Atlantic Path (NWAP),
South-West Atlantic Path (SWAP), North-Est Atlantic Path
(NEAP), South America (SA) and North. NWAP and SWAP
are air masses coming directly from the dust belt while NEAP is a
circulation originating from the North of the United States which
rotates nearby the African coasts. The seasonal behavior of these
paths has been widely described in Euphrasie-Clotilde et al.
(2020) works. On Figures 6, 7, one can observe that these
paths (NWAP + SWAP + NEAP) correspond to the main air
masses routes moving towards the Caribbean with on average 89
and 80% respectively for dusty days and non-dusty days. For both
periods, the number of back trajectories passing near the eastern
part of SA is of the same order of magnitude. Concerning the air
masses coming directly from the North of the United States, these
cases are at least 3 times greater during non-dusty days. In
Figure 6, it is important to emphasize that PM10 average
concentrations related to the back trajectories are well above
the 28 μg/m3 threshold estimated. Furthermore, PM10 standard
deviations of Figure 6 are higher than those of Figure 7. All these
results highlight that dust sources activation in Africa is a key
process allowing the increase of PM10 concentrations in the
Caribbean area. Knowing that PM10 emissions from local
sources are frequently below this threshold (see low season
average in Table 1), these results confirm that 28 μg/m3 is a
transition value between local sources and large scale sources as
dust outbreaks. This threshold is lower than the 50 μg/m3

recommended by the World Health Organization for an
average of 24 h (World Health Organization, 2006). It refines
the threshold of 35 μg/m3 previously found in the literature to
detect dust events (Euphrasie-Clotilde et al., 2020).

FIGURE 8 | Residual (Re) from (A) CEEMDAN and (B) ICEEMDAN for
Martinique (MAR), Guadeloupe (GPE) and Puerto-Rico (PR) from 2006 to
2011. The horizontal purple dash-dot line represents the PM10 statistical
threshold estimated over 11 years at 28 μg/m3.

TABLE 2 | Statistical parameters (Mean ( �M), Standard deviation (σ), Minimum (Min), Maximum (Max)) of PM10 residual at Martinique (MAR), Guadeloupe (GPE) and Puerto-
Rico (PR) over 6 years with CEEMDAN and ICEEMDAN methods. For each island the data point number N is 2,190.

Method Location �M (μg/m3) σ (μg/m3) Min (μg/m3) Max (μg/m3)

CEEMDAN MAR 27.32 1.62 25.31 30.14
GPE 28.10 1.26 26.43 30.20
PR 26.83 2.18 24.47 30.52

ICEEMDAN MAR 27.40 1.41 25.41 29.61
GPE 27.62 0.55 26.35 28.29
PR 25.86 2.55 22.87 31.39
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FIGURE 9 | Residual (Re) from CEEMDAN for (A)Martinique (MAR), (B)
Guadeloupe (GPE) and (C) Puerto-Rico (PR) by year. The horizontal purple
dash-dot line represents the PM10 statistical threshold estimated over
11 years at 28 μg/m3.

FIGURE 10 | Residual (Re) from ICEEMDAN for (A) Martinique (MAR),
(B)Guadeloupe (GPE) and (C) Puerto-Rico (PR) by year. The horizontal purple
dash-dot line represents the PM10 statistical threshold estimated over
11 years at 28 μg/m3.
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4.4 Multiscale Analysis
After studying the detection threshold between the local sources
and large scale sources in a statistical way, we decide to analyze
this threshold dynamically. Unlike statistical analysis, temporal
analysis requires complete data to not compromise the dynamics
of the signal, i.e. not modify the physical meaning of the studied
parameter. Here, the difficulty was to have the maximum of
complete and continuous data simultaneously for the three
islands. This is the reason why 6 years were retained from
2006 to 2011 for this investigation.

In CEEMDAN and ICEEMDAN framework, the first mode
characterizes the fast fluctuations while the last mode
characterizes the slowest fluctuations (Torres et al., 2011;
Colominas et al., 2014). The trend of the data is given by
the residual part of the decomposition process (Hu et al.,
2013). To perform the CEEMDAN and ICEEMDAN
methods, the number of realizations was fixed at 300 and
the Gaussian noise amplitude was set to 0.15 (Plocoste, 2022b).
For each island, PM10 time series were decomposed into 10
IMFs and one residue. In order to assess the dynamic behavior
of the PM10 detection threshold between local sources and
large scale sources, the authors focused on the residual part of
both approaches by comparing them to the statistical
threshold estimated in section 4.2.

Figure 8 illustrates the residual from CEEMDAN and
ICEEMDAN between 2006 and 2011. One can notice a
heterogeneity in the residual behavior which seems to
stabilize over the period of 6 years. Table 2 presents the
statistical parameters for each method. Whatever approach
is used, both methods converge towards the same result.
Indeed, the average values of the residuals for each island
are close to the statistical threshold of 28 μg/m3. The difference
between the minimum and maximum values is smaller for
MAR and GPE. As regards the standard deviation, the higher
values is for PR. The authors assume that its greater distance
from the African coasts and the location of the sensor may play
a major role in this behavior for this location. In other words,
the dynamical results are in agreement with the statistical
results. Indeed, even with 6 years of data, the dynamic
approach confirms the statistical threshold estimated with
11 years of data.

Figures 9, 10 show the yearly residual part of PM10 times for
each island respectively with CEEMDAN and ICEEMDAN
methods. In both Figures one can observe that for some years
the residual follows a seasonal cycle while for the others the
residual can be almost constant. Overall, the residuals in
Figure 10 seem closer to the statistical threshold of 28 μg/
m3. It is important to recall that ICEEMDAN is the improved
version of CEEMDAN (Colominas et al., 2014). For those
following the seasonal cycle, the maximum values are generally
between June and August, i.e., the period when the African
dust sources are more active (Zuidema et al., 2019; Euphrasie-
Clotilde et al., 2021; Gavrouzou et al., 2021). We must
emphasize that the cases where the residue does not present
seasonality are not anomalies. As its definition indicates, the
residual gives the overall trend of PM10 time series, i.e., the
background atmosphere. As expected, between MAR-GPE-PR,

PR is the location where the seasonality is least marked in
Figure 10 due to the arrival of air mass in Cataño from San
Juan, i.e., the capital and the most populated area.

5 CONCLUSION

It is well known that air quality of the Caribbean basin is
frequently deteriorated by African dust. Thus, vulnerable
populations (the elderly, asthmatics or children) are often
exposed to particulate pollution. That is why the aim of this
study was to assess the PM10 detection threshold between local
sources and large scale sources. To carry out this investigation,
PM10 time series from Martinique (MAR), Guadeloupe (GPE)
and Puerto-Rico (PR) islands were used.

The statistical analysis showed that the distance from the
African coast is a key element for the distribution of PM10

concentrations during the high dust season in summer.
Indeed, MAR which is the closest island has the highest PM10

average and the lowest kurtosis. Conversely, PR which is the
furthest away has the lowest PM10 average and the highest
kurtosis. During this period, high PM10 concentrations are
mainly related to large scale sources. In the low dust season,
PM10 concentrations are mainly related to local sources. Using
the PDF analysis, a statistical threshold was estimated at 28 μg/
m3. HYSPLIT back trajectories analysis confirmed this threshold.
The authors assume that this value corresponds to the PM10

detection threshold between local sources and large scale sources.
In order to investigate this threshold in a dynamical way, the

residual part of two multiscale decomposition methods was
analyzed. CEEMDAN and ICEEMDAN results showed that
the behavior of the residuals of each island over time remains
close to the PM10 statistical threshold. Consequently, the
dynamical results validate the PM10 detection threshold found
with the statistical analysis.

To conclude, the results of this study are relevant because they
define a new detection threshold for dust outbreaks in the Caribbean
from ground measurements, i.e., after dry and wet deposition of
mineral dust. These phenomena being events that last several days,
this new threshold will make it possible to better determine the
beginning and the end of a dusty episode in the atmospheric
boundary layer. The competent authorities will therefore be able
to take adequate measures to protect vulnerable populations.
According to the European legislation, 28 μg/m3 corresponds to
“medium” air quality (from 21 to 40 μg/m3). In view of the high rate
of asthma in this area, the authors believe that this new threshold is
more related to “poor” air quality, which actually corresponds to
concentrations of 41–50 μg/m3 in European legislation. In this study,
the impact of weather conditions on PM10 concentrations were not
taken into account. This will be the aim of a future study.
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