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Industrial carbon emissions efficiency requires a balance between economic

development and carbon reduction to be achieved through structural

adjustment and technological change, which is the key to low-carbon

economic development and the essence of China’s carbon reduction

commitment. Existing research has focused more on static carbon emission

efficiency and provides insufficient analysis of the internal causes of inter-

regional differences in carbon emission efficiency. This paper aims to fill this gap

in the existing research. The data of 30 provinces in China, obtained from the

Chinese Official Statistical Yearbook, were taken as the sample. We accurately

measured the dynamic carbon emission efficiency of industrial energy (DCEEIE)

in China by combining the three-stage slacks-based measure data

envelopment analysis (SBM-DEA) model and the Malmquist-Luenberger

model. This study further uses Dagum’s Gini coefficient decomposition and

the panel vector auto regression (PVAR) model to empirically estimate regional

differences in DCEEIE and the effects of its internal structure. The results show,

first, that DCEEIE in China is increasing, and that overall energy efficiency is at a

high level. Although both efficiency change and technological change are

fundamental to efficiency, an attenuation of efficiency and a diffusion of

technology are evident. Second, the total Gini coefficients of dynamic

efficiency, efficiency change (EC), and technological change (TC) are all

decreasing; regional differences and transvariation intensity are the main

reasons for long-term gaps. Third, TC improves dynamic efficiency in the

initial stages, but the main driving force in the long run is EC. The limitation

of this paper is that we do not fully discuss the external factors which might

impact TC and EC, nor do we continue the discussion on how to transform the

energy mix by improving carbon efficiency, which is the future direction for

green development. These issues represent avenues for future research.
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1 Introduction

Energy consumption is an important factor in economic

growth (Abbasi, et al., 2021b), and the circular economy is an

important means of achieving sustainable development goals

(Awan and Sroufe, 2022). According to a report by the IPCC

(2020)1, it is more than 90% probable that the observable rise in

global temperatures since themiddle of the 20th century has been

caused by CO2-based greenhouse gas emissions. The joint efforts

of all the countries in the world are needed to achieve the global

goal of reducing net CO2 emissions per capita to zero by 2050 and

limiting the temperature increase to 1.5°C. Although the Kyoto

Protocol does not stipulate quantitative emission reduction

obligations for developing countries, a general trend toward

low carbonization has taken shape. As the world’s largest

developing country, with the largest increase in CO2, China’s

performance in energy conservation and emission reduction has

become the focus of international attention in the negotiations

around the sharing of emissions reduction responsibilities in the

post-Kyoto era. To face the challenges of low-carbon competition

globally, as well as insufficient resource support and

environmental carrying capacity domestically, China supports

the development of a low-carbon economy and has committed to

achieving carbon-neutrality by 2060 and reaching its CO2

emissions peak by 2030. In the 14th Five-Year Plan

(2021–2025), the Chinese government has set more stringent

targets for energy conservation and emissions reduction: that by

2030, CO2 emissions per unit of GDP will be 18% lower than in

2020, and that energy consumption per unit of GDP will be

13.5% lower than in 2015. Therefore, promoting energy

conservation, achieving emissions reductions, and ensuring

sustainable economic development are issues of great concern

to the Chinese government. Carbon reduction is not only

necessary to satisfy commitments to the international

community, but fundamental to continued development: if

CO2 emissions are not reduced, the environment will continue

to deteriorate, which will have a negative impact on the

sustainable development of enterprises and on consumer

behavior (Awan andRaza, 2012; Abbas et al., 2019a).

Therefore, governments, enterprises and scholars must

promote economic development while improving the

efficiency of carbon emissions in the energy sector and

reducing the total amount of CO2 emissions.

China is a major carbon emitter and a rapidly developing

country, and the industrial sector is the main source of growth in

China’s real economy; the sector is also characterized by high

energy consumption and high levels of pollution. Studies have

found that the industrial sector consumes nearly 71% of the

energy used in China (Wu et al., 2016) and produces 85.3% of the

country’s greenhouse gas emissions (Zhu et al., 2021). Given the

new energy and carbon emissions constraints, China’s industrial

sector needs to transform from an extensive development model

with high energy consumption, high emissions, and low

efficiency to an efficient development model. Improvements in

the carbon emissions efficiency of industrial energy (CEEIE)

require structural adjustments and technological changes to

achieve a balance between economic development and carbon

emissions reductions, which are the key to low-carbon economic

development and central to the commitment of the Chinese

government (Teng et al., 2019; Zhang et al., 2020;Wang andWei,

2014; Zhang et al., 2021). Implementing the same low carbon

emission reduction policies in different regions may have a

negative impact on economic development, resulting in

inefficiency and inequality. Therefore, accurately calculating

and analyzing the true level of China’s CEEIE in order to

understand the differences in industrial development between

different regions is crucial to improving CEEIE and

implementing emission reduction policies that take account of

local conditions (Wang et al., 2020).

Taking the data of 30 provinces in China as the sample, this

study uses the three-stage super-efficiency slacks-based measure

data envelopment analysis (SE-SBM-DEA)

Malmquist–Luenberger model to measure DCEEIE in China

from 2001 to 2019, and expands the perspective of research

on the relationship between the different internal structures of

DCEEIE by using the panel vector auto regression (PVAR)model

to measure the interactions between efficiency changes and

technical changes.

The marginal contributions of this article are as follows. First,

through our use of the three-stage SE-SBM-DEA

Malmquist–Luenberger model, we improve the accuracy with

which China’s DCEEIE is measured. Second, we use Dagum’s

Gini coefficient to examine the regional differentials of DCEEIE

in China and to determine the causes of these differences. This

method could overcome the limitations of the traditional Gini

coefficient and the Theil index in terms of accuracy and

flexibility. Finally, in contrast to previous studies on dynamic

efficiency, our paper not only focuses on the regional differences

and causes of DCEEIE but also extends the research perspective

to the relationships between the internal structures of DCEEIE by

using the PVAR model. This approach is conducive to

understanding the mechanism by which regional differences

in DCEEIE are formed. We believe that our analysis will

identify and alleviate the problem of inter-regional DCEEIE1 IPCC. Global Warming of 1.5°C. https://www.ipcc.ch/sr15/.
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imbalances, which is crucial to the economic development of

relatively backward western regions. From a macroeconomic

perspective, reducing the DCEEIE gap between the backward

regions and other regions can improve the inter-regional

collaborative emission reduction mechanism in China, break

through the inter-provincial emission reduction barriers, and

provide a reference for the relevant departments to use when

planning and making decisions.

2 Review of the literature

2.1 The measurement of carbon emission
effeciency

A large and growing body of literature has investigated the

concept (Teng et al., 2019; Zhang et al., 2020; Wang and Wei,

2014; Zhang et al., 2021), measurement (Yao et al., 2015; Liu

et al., 2016a; Wang et al., 2017; Cai et al., 2019), impact factors

(Zhou et al., 2016; Zhang et al., 2017; Yu and Zhang, 2021; Zhang

et al., 2018; Li et al., 2021), and effects (Zhang and Cheng, 2009;

Zhang, 2011; Long et al., 2015; Lu et al., 2018; Zhu et al., 2019;

Gao et al., 2020; Wu and Gu, 2021) of carbon emission efficiency

(CEE). The indicators for measuring CEE have shifted from a

single factor measurement method (Ang, 1999; Mielnik and

Goldemberg, 1999; Pretis and Roser, 2017; Ferreira et al.,

2018) to a total factor measurement method (Kortelainen,

2008; Marklund and Samakovlis, 2007). The present study

draws on the framework of total factor production to measure

CEE. We believe that understanding CEE as an input–output

relationship can better interpret the goal of lower carbon dioxide

emissions to achieve higher economic growth. In the literature,

although both parametric (Färe et al., 2005; Marklund and

Samakovlis, 2007) and nonparametric (Wu et al., 2012)

methods have been used to measure total factor CEE,

nonparametric models are preferred because they avoid the

subjectivity of parameter weighting and do not require

functional forms or prior conditions to be established in

advance (Song et al., 2012; Molinos-Senante et al., 2016; Zhou

et al., 2010; Dong et al., 2017). The traditional DEAmodel, one of

nonparametric models, focuses on the correspondence between

input and output variables, but ignores the choice of radial and

angle (Song et al., 2012). Subsequent research has addressed this

shortcoming by proposing the SBM-DEA model (Tone, 2001;

Choi et al., 2012; Gómez-Calvet et al., 2014; Iftikhar et al., 2016).

For example, Zhou et al. (2019) used the super-efficiency SBM-

DEA model proposed by Tone (2002) to measure CEEIE, thus

avoiding the problem of not being able to carry out further

evaluation of efficient DMU at the same time. Likewise, by

combining the super-efficiency SBM model with the three-

stage DEA model, Ming et al. (2020) avoided problems caused

by environmental factors and random error. Our paper combines

the three-stage SE-SBM-DEA model with the

Malmquist–Luenberger model to measure the DCEEIE in

China. The improvement of the new method is its focus on

the dynamic efficiency change compared with previous studies.

2.2 The relationship between efficiency
change and technological change

Efficiency change (EC) and technological change (TC) can

be decomposed from the Malmquist-Luenberger (ML) index,

which can precisely measure dynamic efficiency. EC and TC

are important components of the internal structure of

dynamic efficiency. Initially, Färe et al. (1992) proposed

that the Malmquist index could be used to analyze dynamic

efficiency. Based on Färe et al. (1992), Chung and Fare, 1997

introduced a directional distance function into the Malmquist

index to deal with the undesired output problem and called

the resulting index the Malmquist-Luenberger (ML) index.

The ML index not only has all the advantages of the

Malmquist index, but also takes the undesired output into

account and considers both the decrease in undesired output

and the increase in desired output. This paper therefore uses

the ML index to measure the DCEEIE of 30 provincial regions

in China from 2001 to 2019.

Dynamic efficiency (measured by the ML index) can be

further decomposed into EC and TC. EC measures the change

in efficiency of the decision unit over two different periods and

measures the catch-up effect in economies. Scholars have found

that economic cycle fluctuations and macroeconomic policies

may affect efficiency changes.

TC incorporates the stock of technological knowledge into

the analysis and measures the change in the level of technology

over two periods. When the value of TC is greater than 1, this

indicates technological progress, or in other words technological

change that results in the expansion of desired output and

contraction of non-desired output. If TC is less than 1, this

indicates a regression in the level of technology (Ding et al.,

2019). Technological progress is the core force that drives

economic growth and the transformation, upgrading, and

optimization of industrial structure.

It has also been observed that there may be a relationship

of mutual influence between TC and EC. Although the

increase in production efficiency also benefits from the

increase in scale efficiency, it originates to a greater extent

from technological progress (Worthington, 2000; Giannakas

et al., 2001). TC can reduce the consumption of carbon-based

energy, reduce carbon emissions, and improve energy

efficiency without affecting economic development (Zhu

et al., 2018). The existing literature is limited in its analysis

of the interaction between EC, TC, and ML, and this paper

thus proposes that these interactions can be analyzed by

combining Dagum’s Gini coefficient decomposition method

and the PVAR model.
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2.3 Regional differential of dynamic
carbon emission efficiency in China

In-depth analysis of regional differences in carbon emission

efficiency in China and the factors which influence it is of

practical significance for determining local carbon quotas and

formulating regional carbon emission reduction policies (Chen

et al., 2014). The Intergovernmental Panel on Climate Change

(IPCC) report on global climate change focuses on the

differences in CO2 emissions among countries at different

stages of development, which has aroused interest in the study

of inter-regional carbon emission differences (Bruce et al., 1996),

and scholars have since expanded their research on this issue.

At the national level, income disparity indicators have been

used to measure and analyze regional differences in CO2

emissions (Heil and Wodon, 1997; Heil and Wodon, 2000;

Gantore and Padilla, 2010). The literature has also focused on

the Chinese regions by exploring the external influences on

regional differences in dynamic carbon emission efficiency.

The regional distribution of carbon emission intensity in

China is characterized by significant non-equilibrium, and the

differences in economic development, urbanization, population,

industrial structure, energy consumption structure, energy use

efficiency, and consumption patterns among regions have led to

regional differences in carbon emission efficiency (Zhang et al.,

2016; Zheng et al., 2020). In addition, the cooperation between

different regions or provinces, resulting in spillover and spatial

aggregation effects, has led to regional differences in carbon

emission efficiency (Yan et al., 2017). Liu et al. (2021) suggest that

some regions have become pilot regions for policy

implementation, resulting in higher carbon emission efficiency

in these regions compared to others.

In addition to external influences, the distribution

characteristics and internal structure of carbon emission

efficiency differences between regions have also been analyzed

in the literature. Scholars have measured regional differences in

CO2 emissions using concentration indices (e.g., the Gini

coefficient) and have decomposed regional differences in CO2

emissions using entropy indices (e.g., the Thiel index), revealing

the intra-group or inter-group differences of each region as

internal factors which influence regional differences in carbon

emission efficiency (Hedenus and Azar, 2005; Padilla and

Serrano, 2006; Zhang et al., 2013). In order to observe the

distribution characteristics of regional differences, some

scholars have analyzed the various influencing factors and

convergence of regional carbon emission differences by using

econometric regression (Xu et al., 2016). Some scholars have also

studied regional carbon emissions from a spatial econometric

perspective and found that there are strong spatial correlations

and different evolutionary trends of carbon emissions in different

provinces of China (Liu et al., 2016b).

Taken together, scholars have performed a great deal of

research on carbon emission efficiency, and these existing

studies provide important insights into China’s CEEIE.

However, a number of limitations remain. First, most

previous studies have measured and analyzed CEEIE in the

current period from a static perspective (Lin and Du, 2015;

Liu et al., 2017), overlooking improvements in efficiency (that

is, dynamic efficiency change). Second, most previous research

has used the traditional data envelopment analysis (DEA) model

or the SE-SBM model without considering the impact of

environmental factors, and this approach has severely limited

measurement accuracy. As Kumbhakar et al. (2014) have

proposed, the accuracy of carbon emission efficiency

estimation should be improved, and different methods should

be used to interpret carbon emission efficiency so that a deeper

and clearer understanding of the carbon emission efficiency of

focal industries can be obtained. Finally, and most importantly,

research on CEEIE has not fully discussed the relationships

between different internal structures. Existing research has

only focused on external influencing factors and the spatial

convergence of CEEIE, and policy recommendations based on

these findings are inadequate. Not enough attention has been

paid to disparities in carbon emission efficiency between regions,

and the reasons for these disparities are likely to be found in the

internal mechanism of DCEEIE. This has led to a lack of the

relevant analysis and evidence required to explain regional

differences in DCEEIE. Existing studies lack an analyze of the

internal structure of DCEEIE itself, in other words how the

interaction of TC and EC triggers variation in DEEIE and

specifically inter-regional variation in DEEIE. Complementary

analyses could better portray the internal mechanisms

underlying the formation of regional differences in DEEIE.

Scholars have also called for future studies to fully consider

the regional variability of carbon emission efficiency and the

internal causes of these differences (Chen et al., 2020; Wen et al.,

2020), so that the sources of differences in DCEEIE between

regions which are lagging behind and other regions can be better

analyzed (Wang et al., 2020).

To fill this gap, this paper uses the three-stage SE-SBM-DEA

Malmquist–Luenberger model to measure DCEEIE in China.

Dagum’s Gini coefficient decomposition method is then used to

analysis the regional differentials of DCEEIE, TC and EC. Finally,

the PVARmodel is used to test the internal structure of DCEEIE,

that is, the relationship between TC and EC, and this is used as

direct evidence of the formation mechanism of regional

differences in DCEEIE.

3 Methodology and data

3.1 The three-stage super-efficiency SBM-
DEA-malmquist luenberger model

We use the super-efficiency SBM-DEA model with

undesirable output to calculate the initial efficiency of each

Frontiers in Environmental Science frontiersin.org04

Li et al. 10.3389/fenvs.2022.946596

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.946596


decision-making unit and the slack variables of input and output.

The basic form of the SBM-DEA model is:

ρ � min

1 − 1
m

∑m
i�1

s−i
xi0

1 + 1
s1 + s2

⎛⎝∑s1
r�1

sgr
yg
r0

+∑s2
r�1

sbr
yb
r0

⎞⎠
subject to

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
x0 � Xλ + S−

yg
0 � Ygλ − Sg

yb
0 � Ybλ + Sb

S− ≥ 0, Sg ≥ 0, Sb ≥ 0, λ≥ 0

(1)

λ is the weight vector, x is the input variable, y is the output

variable, which means that there are m inputs, S outputs (S1
desirable outputs, S2 undesirable outputs), n decision-making

units; yg is the desirable outputs, yb is the undesirable outputs;

S−, Sg, Sb are the slack variables of input variables, desirable

outputs and undesirable outputs respectively. ρ is the objective

function, that is, the carbon emission efficiency value, and

0≤ρ ≤ 1, when ρ = 1, S− = Sg=Sb = 0. At this time, it is

completely efficient for this particular decision-making unit;

when ρ < 1, it means that the decision-making unit is

inefficient, and the input variables and output variables

need to be improved to improve efficiency.

First, we use the stochastic Frontier analysis (SFA) model to

take the input slack variables of the 31 provincial regions from

2000 to 2019 obtained in the first stage as the explained variables,

take six environmental factors as explanatory variables for

regression analysis. We adopt the method of year-by-year

analysis and establishes 54 regression equations.

Next, we separate environmental factors, management

inefficiency and random noise as follows:

E(μ/ε) � σp
⎡⎢⎣f(λ ε

σ)
φ(λ ε

σ) + λε

σ
⎤⎥⎦ (2)

σp � σμσv
σ

, σp �
������
σ2μ + σ2v

√
, λ � σμ/σv, ε � μij + vij.

E[vij/(vij + uij)] � Sij − f(Zj; βi) − E[uij/(vij + uij)] (3)

Finally, we adjust the input and output variables by adjust

decision-making units to a poor external environment, increase

the input and output of the other decision-making units, the

formula is:

XA
ij � Xij + {max[f(Zj; βi)] − f(Zj; βi)} + [max(vij) − vij]

(4)
XA
ij is adjusted input variable, Xij is original input variable, all

decision-making units will be placed in the same external

environment.

The adjusted input variable removes the external

environment and random interference factors, our paper

adopts the super-efficiency SBM-Malmquist-Luenberger

(ML) index to recalculate the total factor carbon emission

dynamic efficiency of 30 provincial regions from 2000 to

2019 by using the adjusted input variables and the initial

output variables, which can reflect the efficiency of each

decision-making units more accurately (Färe et al., 1992;

Chung and Fare, 1997). According to Chung and Fare,

(1997), it is assumed that “bad” output is weakly disposed,

and “good” output is freely disposed. gt= (yt, -bt) is the

direction vector.

MLt+1
t �

�����������������������������[1 + Dt
0

�→(xt, yt, bt;yt,−bt)][1 +Dt
0(xt+1 , yt+1 , bt+1 ;yt+1 ,−bt+1)]

√√√
•

[1 +Dt+1
0

���→(xt, yt, bt; yt,−bt)][1 +Dt+1
0 (xt+1 , yt+1 , bt+1 ;yt+1 ,−bt+1)] (5)

ML measures the change in productivity from period t to

period t+1. The ML index can be further decomposed into

two parts: one part measures efficiency change (EC) indicate

how close each observation value is to its respective

production Frontier, and the other part measures

technological change (TC) indicate the change in

the production possibility boundary from period t to

period t+1.

MLt+1
t � MLEFFCHt+1

t •MLTECHt+1
t (6)

MLEFFCHt+1
t � 1 + Dt

0

�→(xt, yt, bt;yt,−bt)
1 +Dt+1

0

���→(xt+1, yt+1, bt+1;yt+1,−bt+1) (7)

MLTECHt+1
t �

������������������������[1 +Dt+1
0

���→(xt, yt, bt ;yt,−bt)][1 +Dt
0(xt, yt, bt;yt,−bt)]

√√√
•
[1 +Dt+1

0

���→(xt+1 , yt+1 , bt+1;yt+1 ,−bt+1)][1 +Dt
0(xt+1 , yt+1 , bt+1;yt+1 ,−bt+1)]

(8)

Considering we divided the Chinese regions into three major

economic regions, i.e., the East, the Central, and the West,

Dagum’s Gini coefficient decomposition (Dagum, 1997) is

conducted to investigate the regional differences based on the

ML index. The formula of Dagum’s Gini coefficient

decomposition is as follows:

G � ∑K
i�1

∑K
j�1

∑ni
h�1

∑nj
r�1

∣∣∣∣∣yih − yjr

∣∣∣∣∣/2n2μ (9)

G represents the overall Gini coefficient; K represents the

three major economic regions: East, Central, andWest, yih and

yir represent the true level of industrial energy carbon

emission efficiency of any province in i (j) region

respectively, i = 1,2, . . . ,K; j = 1,2, . . . ,K. μ is the average

value of theML (EC or TC) of all provinces across the country,

n is the number of all provinces, ni and nj are the number of

provinces in the i (j) region.

Dagum (1997) divides Gini coefficient into three parts: the

within-regional differences Gw, the inter-regional net differences

Grb and the intensity of transvariationGt, and their relationship is

G = Gw + Grb + Gt. If Gt = 0, it means the cross-term representing

theML (EC or TC) between regions does not exist. The Dagum’s

Gini Coefficient Decomposition is:
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Gii � ∑ni
h�1

∑nj
r�1

∣∣∣∣∣yih − yjr

∣∣∣∣∣/2n2i μi (10)

Gw � ∑K
i�1
λisiGii (11)

Gij � ∑ni
h�1

∑nj
r�1

∣∣∣∣∣yih − yjr

∣∣∣∣∣/ninj(μi + μj) (12)

Grb � ∑K
i�2

∑i−1
j�1

(λjsi + λisj)GijDij (13)

Gt � ∑K
i�2

∑i�1
j�1

(λjsi + λisj)Gij(1 −Dij) (14)

(Eq. 10) and (Eq. 11) represents the regional Gini

coefficient Gii and the contribution rate of regional

disparity Gw, (Eq. 12) and (Eq. 13) represents the inter-

regional Gini coefficient Gij and the rate of contribution of

inter-regional disparity Grb, λi = ni/n, si = λiμi/μ, i = 1,2, . . .

,K. Dij=(dij−pij)/(dij + pij) is the economic impact of region i

and region j on each other; dij is the total impact between

region i and region j, when μi>μj, dij is the weighted average

of all industrial energy carbon emission efficiency

gaps (yih−yir) under the condition of yih >
yir, continuous distribution density function fi(y) and fj(y),

dij is:

dij � ∫∞

0
∫y

0
(y − x)fj(x)dxfj(y)dy (15)

pij is when μi>μj, pij is the weighted average of all industrial

energy carbon emission efficiency gaps (yih-yir) under the

condition of yih > yir:

pij � ∫∞

0
∫y

0
(y − x)fj(x)dxfj(y)dy (16)

3.2 Data source

Samples from Tibet, Hong Kong, Taiwan and Macao, for

which datasets were incomplete, were excluded from this

study. Samples from the remaining 30 regions in China

were used to conduct research on DCEEIE in China from

2000 to 2019. Missing data for these 30 regions was managed

by using interpolation, exponential smoothing, and the mean

method. This paper focuses on the dynamic carbon emission

efficiency of the industrial sector, and data for the industrial

sector taken from statistical yearbooks was thus filtered and

used in the calculation of DCEEIE, with reference to the

National Economic Classification of Industries (GB/T 4754-

2011). To test the inter-regional disparity of the dynamic

efficiency, considering the Chinese government still adopt the

division standard of geographical regions in the Seventh Five-

Year Plan of China2, we also divide China into three major

economic regions: Eastern3, Central4, and Western5, and

analysis samples from different regions (shown in Figure 1).

For the selection of input and output variables, our paper

takes labor, capital stock and total energy consumption as input

variables, take regional industrial production and carbon dioxide

emissions as output variables.

For the selection of environmental variables in the three-stage

DEA model, the main criterion is that the variable has a significant

impact on the carbon emissions efficiency but cannot be controlled

by the decision-making unit itself. Based on the availability of data,

the representativeness of variable, and existing research, our paper

selects six variables from the aspects of economic energy, institutional

environment, etc. as the environmental variables. They are the level of

economic development (Meng et al., 2011; Shafik and

Bandyopadhyay, 1992; Grossman and Krueger, 1993), industrial

structure (Ma and Stern, 2008; Yu et al., 2015), energy structure

(Alves and Moutinho, 2013; Fredrik et al., 2013; Cao et al., 2014),

government environmental regulation (Kneller and Manderson,

2012; Nesta et al., 2014; Feng D. et al., 2017), the level of

technological innovation (Duro and Padilla, 2006; Duro et al.,

2010; Sun, 1998), degree of opening to the outside world

(Mutafoglu, 2012; Blanco et al., 2013). The measurement index

system of industrial energy carbon emissions dynamic efficiency

can be seen in Table 1.

4 Decomposition and evolution of
regional differences in DCEEIE

4.1 General overview of DCEEIE in China

Table 2 reports the evolution of the mean value of ML at the

national level and in the eastern, central, and western regions from

2001 to 2019. In order to accurately analyze DCEEIE in China, we

also show the evolution of EC and TC. In general, DCEEIE in China

increased significantly from2001 to 2019. Specifically, at the national

level, the averageML from 2001 to 2019 was 1.045, with an average

annual growth rate of 0.87%, which means that DCEEIE can

generally be classed as “efficient” during the survey period, and

the efficiency value is gradually increasing. From the perspective of

ML decomposition, the average EC from 2001 to 2019 was 1.022,

2 Due to differences in economic development, geography and
demographics, Chinese government divide China into three major
economic regions: Eastern, Central and Western.

3 The eastern region includes Beijing, Tianjin, Hebei, Liaoning, Shanghai,
Jiangsu, Zhejiang, Fujian, Shandong, Guangdong and Hainan.

4 The central region includes Shanxi, Inner Mongolia, Jilin, Heilongjiang,
Anhui, Jiangxi, Henan, Hubei and Hunan.

5 The western region includes Chongqing, Sichuan, Guizhou, Yunnan,
Shaanxi, Guangxi, Gansu, Qinghai, Ningxia, Xinjiang and Xizang.
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FIGURE 1
Distribution of eastern, central and western in China.

TABLE 1 The measurement index system of industrial energy carbon emissions dynamic efficiency.

Type Name Definition of variable Data
sources

Input Variable Labor The number of industrial employments in each region at the end of each year. Unit: 10,000. A; B

Capital Stock Take industrial capital stock is invested as capital, unit: 100 million yuan. A; C

Total Energy
Consumption

The total industrial energy consumption of each province over the years. Unit: 10,000 tons standard
coal

D

Output Variable Industrial Production Take the gross industrial product of each region as desirable output. Unit: 100 Million Yuan A

Carbon Dioxide Emission Take industrial carbon dioxide emission as undesirable output. Unit: 10,000 tons (IPCC, 2006) D; E

Environment
Variable

Economic Development GDP per capita. Unit: Yuan A

Industrial Structure The ratio of the tertiary industry’s gross product to the region’s GDP. Unit: % A

Energy Structure The ratio of coal consumption to total energy consumption. Unit: % D

Government Regulation The ratio of provincial government environmental governance investment to GDP. Unit: % A; F

Technological Innovation The ratio of R&D expenditure to GDP. Unit: % A

Degree of Opening The total imports and exports of each province to GDP. Unit: % A

Data Sources: The data comes from the China Statistical Yearbook (A), China Labor Statistical Yearbook (B), China Fixed Asset Investment Statistical Yearbook (C) China Energy Statistical

Yearbook (D), Regional Statistical Yearbook (E) Environmental Statistics Yearbook of China (F).
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TABLE 2 Estimation results of the DCEEIE in China.

ML EC TC

China Eastern
region

Central
region

Western
region

China Eastern
region

Central
region

Western
region

China Eastern
region

Central
region

Western
region

2001 0.905 1.054 0.824 0.814 1.092 1.097 1.061 1.109 0.849 0.968 0.791 0.766

2002 0.89 0.879 0.886 0.904 1.064 1.005 1.11 1.09 0.846 0.892 0.806 0.829

2003 1.135 1.215 1.054 1.115 1.076 1.121 0.967 1.109 1.068 1.094 1.092 1.022

2004 1.184 1.207 1.177 1.167 0.869 0.973 0.831 0.793 1.379 1.245 1.426 1.486

2005 1.165 1.107 1.098 1.273 1.056 0.999 1.104 1.077 1.115 1.112 1.006 1.209

2006 1.024 1.04 0.999 1.025 1.076 1.045 1.062 1.117 1.074 1.045 1.062 1.117

2007 1.121 1.106 1.151 1.113 1 1.004 1.017 0.983 1.122 1.103 1.132 1.136

2008 1.203 1.153 1.17 1.278 1.024 1.033 0.991 1.039 1.175 1.117 1.182 1.232

2009 0.945 0.955 0.915 0.958 1.019 0.975 0.992 1.081 0.937 0.982 0.926 0.897

2010 1.117 1.154 1.2 1.021 1.008 1.065 1.098 0.886 1.116 1.092 1.092 1.16

2011 1.32 1.292 1.343 1.33 1.017 1.011 0.979 1.051 1.303 1.277 1.371 1.277

2012 1.012 1.02 1.031 0.991 1.001 1.034 1.026 0.951 1.015 0.993 1.009 1.043

2013 0.968 0.987 0.95 0.963 0.987 0.978 0.946 1.027 0.985 1.009 1.006 0.941

2014 0.939 1.06 0.859 0.877 0.985 1.049 0.877 1.001 0.961 1.016 0.984 0.881

2015 0.92 0.93 0.963 0.877 1.057 0.986 1.123 1.081 0.882 0.945 0.869 0.822

2016 0.841 0.962 0.834 0.725 1.02 1.035 1.003 1.017 0.833 0.932 0.841 0.717

2017 1.014 1.08 1.082 0.9 1.01 0.995 1.076 0.977 1.019 1.085 1.015 0.948

2018 1.092 1.157 1.144 0.99 1.084 1.067 1.126 1.07 1.023 1.087 1.027 0.952

2019 1.058 1.11 1.136 0.949 0.974 0.961 1.051 0.931 1.1 1.154 1.091 1.05

Average 1.045 1.077 1.043 1.014 1.022 1.023 1.023 1.021 1.042 1.06 1.038 1.025

Average annual
growth rate

0.87% 0.29% 1.80% 0.86% −0.63% −0.73% −0.05% −0.97% 1.45% 0.98% 1.80% 1.77%
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with an average annual growth rate of -0.63%, indicating that

although the level of technical efficiency can be classed as

“effective,” there was a regression. The mean value of TC from

2001 to 2019 was 1.042, with an average annual growth rate of

1.45%, indicating that the technological change of DCEEIE is

progressive and represents a trend of technological diffusion.

This analysis indicates that the loss of efficiency caused by the

regression in technical efficiency will be compensated by the

spillover effect produced by technological change.

In terms of regional differences, the average values of ML in the

eastern, central, and western regions were 1.077, 1.043, and 1.014,

respectively, and the average annual growth rates were 0.29, 1.80, and

0.86%, respectively. These results indicate an overall growth inDCEEIE

in China’s three regions, all of which were in an “efficient” state. In

terms of spatial pattern, there is a gradual decrease from the east

through the center to the west; the mean values of EC and TC in the

three regions are all greater than 1, and both technical efficiency and

technological change are at the Frontier of efficiency.However, because

of differences in resource endowment and policy environment, the

spatial characteristics are heterogeneous. From the perspective of the

interannual variation trend of EC, all regions showed negative growth

overall; the negative growth rates in the eastern (−0.73%) and western

(−0.97%) regions were higher than the national average (−0.63%),

while in the central region the rate of declinewas lower,with an average

annual growth rate of −0.05%. In terms of the interannual variation of

TC, all regions showed growth overall. The annual growth rates of the

central (1.80%) and the western (1.77%) regions were higher than the

national average (1.45%), whereas the annual growth rate of the eastern

region was lower (0.98%).

The reasons for these findings are as follows. The industrial

structure of the eastern region is characterized by light industry,

and the technological innovation frequency of the eastern region

is better than that of the central and western regions. In contrast,

the industrial structure of the central and western regions is

dominated by heavy industry, with high energy consumption,

and their carbon emissions intensity is higher than that of eastern

China. In addition, compared with the western region, the central

region has a high level of industrial development, with a great

deal of light and mixed industry, which in terms of technological

innovation will be subject to the economic radiation effect of the

eastern region. The industrial structure of the western region is

dominated by heavy industry, with low frequency of

technological innovation and low energy utilization efficiency.

These factors exacerbate the differences in carbon emissions

among the eastern, central, and western regions.

4.2 Temporal evolution of the distribution
of DCEEIE

In order to better understand the distribution evolution of

ML, EC, and TC, we divided the observation period into three

stages and selected the years 2001–2007, 2008–2013, and

2014–2019 for kernel density analysis (see Figures 2–4).

Kernel density analysis reflects the convergence and

polarization of data and other related information, and can, to

a certain extent, provide empirical support for some of the above

conclusions.

Figure 2 depicts the dynamic evolution of ML from 2001 to

2019. At the national level (Figure 2A), the nuclear density

function curve of ML from 2001 to 2007 consists of one main

peak and one side peak, indicating a relatively clear polarization

phenomenon within the region during that period. The curve in

the figure gradually moves to the left and the width of the curve

gradually narrows, indicating that the overall ML is gradually

decreasing, and that the regional gap has narrowed. In the eastern

region (Figure 2B), the polarization phenomenon within the

region appeared in 2008–2013 and 2014–2019. The curve in the

figure gradually shifts to the left and the width of the curve

gradually expands, indicating that the overall ML is decreasing

gradually and that the regional gap has widened. In the central

region (Figure 2C), the polarization phenomenon within the

region appeared in 2001–2007 and 2008–2013. The curve in the

figure gradually shifts to the left and the width of the curve

gradually becomes larger, indicating that the overall ML is

decreasing and that the regional gap has expanded. In the

western region (Figure 2D), the polarization phenomenon

within the region appeared in 2008–2013 and 2014–2019. The

curve in the figure accelerates to the left, but the width of the

curve narrows gradually, indicating a rapid decline in ML and a

narrowing of the regional gap.

Figure 3 depicts the dynamic evolution of EC from 2001 to

2019. At the national level (Figure 3A), the polarization

phenomenon within the region appeared at each time stage,

and the wave width increased to a certain extent, indicating that

the regional gap of EC has widened. In the eastern region

(Figure 3B), the polarization phenomenon within the region

occurred in 2001–2007 and 2008–2013; however, it was more

obvious in 2008–2013, and the width of the main peak increased,

indicating a widening of the regional gap. In the central region

(Figure 3C), the polarization phenomenon within the region

appeared in 2001–2007 and the wave width increased rapidly,

indicating an acceleration and widening of the regional gap. In

the western region (Figure 3D), the polarization phenomenon

occurred in 2001–2007 and 2014–2019. The curve in the figure

shifts to the left and the wave gradually narrows, indicating a

gradual narrowing of the regional gap and a decrease in the

efficiency value.

Figure 4 depicts the dynamic evolution of TC from 2001 to

2019. At the national level (Figure 4A), the polarization

phenomenon occurred in 2001–2007. The curve moves to the

left, indicating that TC is gradually declining. In the eastern

region (Figure 4B), the polarization phenomenon occurred in

2014–2019. The curve in the figure moves to the left and the wave

gradually increases, indicating that the regional difference of TC

has expanded and the efficiency value is decreasing. In the central
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region (Figure 4C), TC presents a single-peak distribution at each

time stage. The curve shifts to the left, and the wave width

increases gradually, indicating that TC is gradually decreasing

and the regional gap is widening. In the western region

(Figure 4D), the polarization phenomenon within the region

appears in 2001–2007. The curve in the figure moves to the left

and the wave gradually narrows, indicating that TC has gradually

decreased and the regional gap is narrowing.

4.3 Decomposition of regional differences
in DCEEIE

The above analysis describes the temporal and spatial evolution of

DCEEIE in different regions of China, but does not determine its

regional differences and sources. Therefore, we further explore the

regional differences in DCEEIE. Figure 5 shows the trends in the total

Gini coefficients of ML, EC, and TC from 2001 to 2019. From the

changes in the Gini coefficient for dynamic efficiency (GML), a trend

of fluctuating decline can be seen from 2001 to 2019, with GML

decreasing from 0.125 in 2001 to 0.092 in 2019, with an annual

growth rate of -1.69%, indicating that the gap of ML values in

different parts of China is gradually narrowing. From the perspective

of interannual variation, the fluctuation of GML reached its lowest

point (0.039) in 2007 and its highest point (0.128) in 2016. GML was

at its most volatile from 2007 to 2016, with four alternating peaks

and troughs in 8 years. From the changes in the Gini coefficients for

technical efficiency (GEC) and technological change (GTC),

similar fluctuations for GEC, GTC, and GML can be seen from

2001 to 2019. GEC dropped from 0.117 in 2001 to 0.082 in 2019,

with an annual growth rate of −1.96%. GTC decreased from

0.119 in 2001 to 0.083 in 2019, with an annual growth rate

of −1.98%. Both GEC and GTC reached their lowest points in the

observation period in 2007 (GEC = 0.027, GTC = 0.037). GTC

reached its peak (0.106) in 2016, when GEC was at the bottom of

its downward trend (0.075).

FIGURE 2
Dynamic evolution of ML. (A) China, (B) Eastern region, (C) Central region, (D) Western region.
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The phenomena described above can be analyzed as follows.

The decrease of GEC is the main reason for the decline of GML,

although the decrease of GTC also plays a positive role in the

decline. However, the roles are different in different time periods.

For example, in 2004, GEC and GTC both showed a reverse

change, as the growth rate of GEC was −5.88%, and the

growth rate of GTC was 15.79%. Their combined effect led to

a negative growth rate of GML in 2004 (−27.37%), indicating that

the influence of GEC on GML was greater than that of GTC. Before

2007, the effect of GEC on GML was greater than that of GTC, and

after 2007, the effect of GTC on GML was greater than that of GEC.

These results indicate that after 2007, the marginal utility brought

by TC was far greater than that brought by EC.

Table 3 reports differences in ML, EC, and TC by region.

GML, GEC, and GTC in the eastern, central, and western regions

showed an overall downward trend from 2001 to 2019, indicating

that the within-region differences of ML, EC, and TC were

narrowing year by year. In terms of horizontal comparison,

GML and GEC in the western region were higher than those in

the other regions, with overall mean values of 0.085 and 0.09,

respectively. The eastern region came next (GML = 0.065, GEC =

0.060), and the central region had the lowest values (GML = 0.055,

GEC = 0.053). GTC was at its largest in the western region (0.070),

followed by the central region (0.054) and then the eastern region

(0.045). In terms of interannual variation, GML and GEC

decreased most in the eastern region, with average annual

growth rates of −1.95% and −3.83%, respectively, followed by

the central region (−1.27%, −3.01%), and with the least growth in

the western region (−0.88%, −1.21%). The largest drop in GTC

was seen in the eastern region (−2.31%), followed by the western

region (−1.64%) and then the central region (−0.20%).

Table 4 reports the differences between regions for ML, EC,

and TC, all of which showed a downward trend from 2001 to

2019. The difference in ML and EC between the eastern and

western regions was the largest, with averages of 0.084 and 0.081,

respectively, followed by those between the eastern and western

FIGURE 3
Dynamic evolution of EC. (A) China, (B) Eastern region, (C) Central region, (D) Western region.
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regions (0.079, 0.080) and those between the eastern and central

regions (0.066, 0.062). The difference in TC was largest between

the central and western regions (0.069), followed by the eastern

and western regions (0.068), and the eastern and central regions

(0.054). In terms of the range of variation, the Gini coefficient of

the differences inML and EC showed the largest decreasing range

between the eastern and central regions, with annual growth rates

of −2.88% and −2.90%, respectively, followed by the eastern and

western regions (ML = −1.76%, EC = −2.03%), with the smallest

range between the central and western regions (ML = −0.22%,

EC = −1.41%). The results for TC show that the Gini coefficient

decreased the most between the eastern and western regions

(−2.30%), followed by the eastern and central regions (−2.16%)

and the central and western regions (−1.17%). The ML gap

between the eastern and central regions was much smaller

because the gap in technical efficiency was much smaller. The

eastern and central regions are adjacent, and the central region

has a stronger economic and technological foundation than the

western region. This enables the central region to absorb

technologies from the eastern region to improve the technical

efficiency of its DCEEIE. On the other hand, the diffusion effect

of technological changes in the eastern region narrows the ML

gap between the eastern and central regions.

4.4 Source decomposition and
contribution of regional differences to
China’s DCEEIE

Table 5 reports the sources of decomposition and the

contribution of regional differences in ML, EC, and TC.

Figures 6A–C report the evolution of contribution rates from

different sources. Table 5 and Figure 6A show that Grb and Gt

were the two main factors leading to the ML gap between

different regions from 2001 to 2019, and they showed reverse

changes. In 2002–2007, 2009, and 2011–2013,Gtmade the largest

FIGURE 4
Dynamic evolution of TC. (A) China, (B) Eastern region, (C) Central region, (D) Western region.
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FIGURE 5
Total differences for ML, EC, and TC.

TABLE 3 DCEEIE’s difference within region of ML, EC, and TC.

ML EC TC

Eastern
region

Central
region

Western
region

Eastern
region

Central
region

Western
region

Eastern
region

Central
region

Western
region

2001 0.097 0.073 0.122 0.095 0.085 0.152 0.067 0.085 0.14

2002 0.113 0.054 0.089 0.142 0.049 0.059 0.064 0.084 0.075

2003 0.103 0.072 0.078 0.109 0.05 0.107 0.056 0.052 0.052

2004 0.075 0.038 0.079 0.079 0.055 0.095 0.041 0.041 0.059

2005 0.054 0.047 0.154 0.054 0.084 0.177 0.039 0.038 0.065

2006 0.063 0.035 0.083 0.045 0.031 0.095 0.045 0.031 0.095

2007 0.03 0.027 0.048 0.021 0.017 0.035 0.034 0.02 0.047

2008 0.048 0.043 0.064 0.031 0.024 0.055 0.046 0.044 0.044

2009 0.031 0.05 0.075 0.036 0.052 0.093 0.02 0.034 0.062

2010 0.035 0.059 0.108 0.05 0.041 0.106 0.042 0.038 0.061

2011 0.062 0.042 0.04 0.055 0.034 0.052 0.026 0.031 0.053

2012 0.048 0.076 0.059 0.056 0.058 0.053 0.044 0.063 0.036

2013 0.048 0.036 0.045 0.041 0.042 0.045 0.034 0.023 0.047

2014 0.073 0.069 0.101 0.055 0.085 0.092 0.067 0.03 0.059

2015 0.047 0.046 0.053 0.045 0.075 0.089 0.029 0.059 0.047

2016 0.105 0.092 0.102 0.083 0.069 0.068 0.066 0.092 0.091

2017 0.068 0.065 0.1 0.047 0.05 0.122 0.049 0.087 0.097

2018 0.061 0.062 0.103 0.053 0.051 0.119 0.05 0.084 0.098

2019 0.068 0.058 0.104 0.047 0.049 0.122 0.044 0.082 0.104

Average 0.065 0.055 0.085 0.06 0.053 0.091 0.045 0.054 0.07

Average annual
growth rate

−1.95% −1.27% −0.88% −3.83% −3.01% −1.21% -2.31% −0.20% −1.64%
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contribution and became the main cause of theML gap between

different regions (contribution rate ranging from 36.13% to

60.14%). Gt can be used to identify overlapping phenomena

between regions. For example, theML level in the eastern region

is significantly higher than that in the western region, but the

efficiency value of some provinces with lower ML levels in the

eastern region are lower than those of provinces with higher ML

levels in the western region. This means that, in the observation

period, a small number of regions with higher ML development

appeared in the eastern, central, and western regions, and that

ML presented a discrete spatial distribution without

agglomeration. In 2001, 2008, 2010, and 2014–2019, the

contribution of Grb was the highest, making it the main cause

of the ML gap across China (contribution rate ranging from

36.92% to 51.29%). The overall contribution rate of Gw remained

relatively stable (between 27% and 32.98%).

From Table 5 and Figure 6B, we see that in 2004, 2009–2010,

and 2013–2015, Grb’s contribution was the largest (contribution

rate ranging from 35.19% to 57.09%). In 2001–2003, 2005–2008,

2011–2012, and 2016–2019, Gt’s contribution was the largest

(contribution rate ranging from 37.98% to 58.54%). The overall

contribution rate of Gw remained relatively stable (between

27.35% and 33.69%). This means that Gt became the main

cause of the EC gap in 2019, with regions with higher EC

levels showing a discrete spatial distribution. From Table 5

and Figure 6C, it can be seen that Grb made the largest

contribution in 2001, 2004–2005, 2008–2009, and 2013–2018

(contribution rate ranging from 39.2% to 61.71%), making it the

main cause of the TC gap. Gt was the main cause of the TC gap in

2002–2003, 2006–2007, 2009–2012, and 2019 (contribution rate

ranging from 36% to 48.65%). The overall contribution rate ofGw

remained relatively stable (between 25.05% and 33.21%).

5 Expansion analysis of the sources
and formationmechanism of regional
differences in DCEEIE

5.1 Stationarity test

The above analysis partially explains the static relationships

among ML, EC, and TC, but does not explain the dynamic

relationships among the three or the relationship between EC

and TC. When empirically testing the mechanism of action, it is

TABLE 4 DCEEIC’s difference between regions of ML, EC, and TC.

ML EC TC

1 and
2

1 and
3

2 and
3

1 and
2

1 and
3

2 and
3

1 and
2

1 and
3

2 and
3

2001 0.11 0.136 0.105 0.093 0.126 0.128 0.092 0.125 0.121

2002 0.092 0.106 0.076 0.111 0.106 0.057 0.079 0.073 0.08

2003 0.102 0.098 0.078 0.096 0.111 0.09 0.056 0.058 0.055

2004 0.063 0.078 0.063 0.085 0.104 0.081 0.056 0.072 0.054

2005 0.052 0.122 0.128 0.072 0.126 0.143 0.046 0.058 0.074

2006 0.053 0.078 0.069 0.042 0.079 0.075 0.042 0.079 0.075

2007 0.031 0.041 0.042 0.02 0.029 0.029 0.03 0.041 0.037

2008 0.047 0.063 0.06 0.031 0.044 0.045 0.048 0.054 0.046

2009 0.042 0.056 0.066 0.045 0.073 0.08 0.03 0.048 0.052

2010 0.049 0.08 0.098 0.051 0.091 0.097 0.042 0.055 0.056

2011 0.057 0.052 0.043 0.049 0.055 0.048 0.035 0.041 0.047

2012 0.063 0.055 0.068 0.06 0.059 0.061 0.053 0.044 0.049

2013 0.048 0.05 0.042 0.043 0.046 0.05 0.03 0.046 0.043

2014 0.092 0.103 0.089 0.081 0.078 0.095 0.055 0.076 0.058

2015 0.048 0.055 0.057 0.065 0.073 0.085 0.047 0.055 0.056

2016 0.112 0.138 0.106 0.079 0.077 0.069 0.081 0.109 0.105

2017 0.068 0.1 0.102 0.054 0.087 0.097 0.068 0.085 0.098

2018 0.062 0.095 0.097 0.055 0.089 0.093 0.067 0.085 0.098

2019 0.065 0.098 0.101 0.055 0.087 0.099 0.062 0.082 0.098

Average 0.066 0.084 0.079 0.062 0.081 0.08 0.054 0.068 0.069

Average annual
growth rate

−2.88% −1.76% −0.22% −2.90% −2.03% −1.41% −2.16% −2.30% −1.17%

Notes:1 is eastern region; 2 is Central region; 3 is Western region.
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TABLE 5 The contributions to the total difference of DCEEIE.

ML EC TC

Difference
within
region

Difference
between
regions

Transvariation
intensity
between regions

Difference
within region

Difference
between
regions

Transvariation
intensity
between regions

Difference
within region

Difference
between
regions

Transvariation
intensity
between regions

Gw CR
(%)

Grb CR
(%)

Gt CR
(%)

Gw CR
(%)

Grb CR
(%)

Gt CR
(%)

Gw CR
(%)

Grb CR
(%)

Gt CR
(%)

2001 0.035 27.67 0.062 49.13 0.029 23.2 0.039 33.69 0.009 7.78 0.069 58.54 0.033 27.655 0.056 46.63 0.031 25.715

2002 0.031 32.98 0.006 6.88 0.056 60.14 0.03 31.64 0.022 23.72 0.042 44.63 0.025 31.558 0.023 28.917 0.031 39.525

2003 0.03 31.37 0.031 32.5 0.034 36.13 0.033 32.64 0.028 27.69 0.04 39.67 0.018 31.952 0.016 27.305 0.023 40.743

2004 0.023 33.72 0.008 11.36 0.038 54.91 0.027 28.46 0.048 50.12 0.021 21.42 0.017 25.116 0.04 61.247 0.009 13.637

2005 0.033 30.67 0.035 32.37 0.039 36.97 0.037 31.97 0.022 18.83 0.058 49.2 0.017 27.34 0.039 61.71 0.007 10.949

2006 0.022 32.49 0.009 12.45 0.038 55.06 0.021 31.13 0.015 22.5 0.032 46.38 0.021 31.125 0.015 22.499 0.032 46.376

2007 0.012 32.12 0.008 20.73 0.018 47.15 0.009 32.68 0.008 28.38 0.01 38.94 0.012 33.208 0.007 18.139 0.018 48.652

2008 0.018 30.86 0.024 40.9 0.017 28.24 0.013 32.75 0.009 22.76 0.018 44.49 0.015 29.587 0.023 44.101 0.014 26.312

2009 0.018 32.14 0.009 15.95 0.029 51.92 0.022 31.41 0.024 35.19 0.023 33.4 0.013 29.492 0.021 46.636 0.011 23.872

2010 0.023 28.89 0.036 45.54 0.02 25.58 0.023 27.35 0.048 57.09 0.013 15.56 0.017 31.452 0.014 26.485 0.022 42.063

2011 0.017 32.35 0.009 16.8 0.026 50.85 0.017 32.62 0.015 29.12 0.02 38.26 0.013 30.182 0.014 33.819 0.015 35.999

2012 0.02 31.81 0.009 14.04 0.034 54.15 0.019 30.47 0.019 31.55 0.023 37.98 0.015 30.229 0.012 23.154 0.023 46.617

2013 0.015 31.59 0.009 17.88 0.024 50.54 0.015 30.88 0.018 37.94 0.015 31.18 0.012 29.916 0.016 39.195 0.013 30.888

2014 0.028 28.21 0.049 48.81 0.023 22.98 0.026 29.58 0.036 41.04 0.026 29.38 0.019 28.658 0.033 48.856 0.015 22.487

2015 0.017 30.21 0.02 36.92 0.018 32.87 0.024 31.06 0.029 37.69 0.024 31.25 0.014 25.054 0.032 57.02 0.01 17.926

2016 0.034 27 0.065 51.29 0.028 21.71 0.025 33.48 0.007 9.04 0.043 57.48 0.027 25.844 0.06 56.85 0.018 17.306

2017 0.027 28.3 0.042 44.33 0.026 27.37 0.026 31.85 0.02 24.36 0.036 43.79 0.025 29.491 0.031 36.27 0.03 34.239

2018 0.026 29.28 0.035 40.06 0.027 30.67 0.027 33.12 0.011 13.21 0.043 53.67 0.025 29.76 0.031 35.878 0.029 34.362

2019 0.026 28.74 0.04 43.48 0.026 27.78 0.026 31.01 0.025 30.66 0.032 38.33 0.025 30.705 0.022 26.584 0.035 42.711

Average 0.024 30.55 0.027 30.6 0.029 38.85 0.024 31.46 0.022 28.88 0.031 39.66 0.019 29.39 0.027 39.02 0.02 31.6

Average annual growth rate −1.64% 0.21% −2.41% −0.68% −0.60% 1.01% −2.23% −0.46% 5.84% 7.92% -4.18% −2.33% −1.53% 0.58% −5.06% −3.07% 0.68% 2.86%
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critically important to select an appropriate model; EC and TC

are generated by ML index decomposition, and there are

internal connections among the three. The VAR model has

the advantage of allowing each component to be an

endogenous variable. The cross-period length of our data is

17 years, which also meets the requirements of time series

samples, and we therefore use the PVAR model to test the

dynamic relationships. Before analysis of the PVAR model,

FIGURE 6
Evolution of regional differences in contribution rates of ML, EC, and TC. (A) Contribution rate of ML, (B) Contribution rate of EC, (C)
Contribution rate of TC.

TABLE 6 Panel Unit root test.

Regions Variables Test model Test type Conclusion

(C,T,L) LLC IPS ADF PP

China ML (C,0,1) −6.699*** −7.573*** 165.923*** 264.209*** Stationary series

EC (C,0,1) −6.403*** −9.802*** 211.039*** 511.429*** Stationary series

TC (C,0,1) −10.249*** −9.657*** 207.539*** 253.709*** Stationary series

Eastern ML (C,0,1) −5.472*** −5.572*** 71.869*** 115.169*** Stationary series

EC (C,0,0) −17.448*** −16.750*** 231.715*** 226.407*** Stationary series

TC (C,0,1) -8.214*** -7.441*** 95.794*** 111.894*** Stationary series

Central ML (C,0,1) −4.851*** −4.375*** 47.763*** 63.855*** Stationary series

EC (C,0,1) −5.948*** −5.945*** 64.834*** 130.088*** Stationary series

TC (C,0,1) −7.733*** −6.374*** 69.378*** 82.652*** Stationary series

Western ML (C,0,1) −1.930** −3.205*** 46.291*** 85.185*** Stationary series

EC (C,0,1) −4.463*** −5.267*** 68.671*** 154.935*** Stationary series

TC (C,0,1) −2.472*** −3.071*** 42.368*** 59.163*** Stationary series

Note: C,T and L in the test mode denote the constant, time trend, and lag order of Panel Unit Root Test, respectively, and the value of the lag order is determined according to the Akaike

information criterion (AIC) minimum criteria. ***p < 0.01; **p < 0.05.
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the stationarity of each variable needs to be tested and the

optimal lag order of the model determined.

Table 6 shows the test results. LLC, IPS, ADF, PP, and other

test statistics are used in this study to judge whether each variable

belongs to a stationary series. We find that the variables of each

regional sample are stationary series, which means that the

original data can be modeled directly.

5.2 Granger causality test

The Granger causality test accurately measures the

correlations between variables. However, the optimal lag order

of the model must be determined before the test is applied.

According to previous studies (Granger, 1969, 1980; Hong,

2001), the order with the largest number of test values is

adopted as the final optimal lag order of the model. Table 7

shows that the optimal lag order for the samples at the national

level and in the eastern and central regions is 3, and the optimal

lag order for the sample in the western region is 1. The results at

the national level show that EC has a one-way Granger causality

relationship with ML or TC, which is reflected only in the

influence of EC on ML or TC. There is a two-way Granger

causality between TC andML, each of which can affect the other.

In addition,ML is affected by the combined action of EC and TC,

and TC is affected by the combination ofML and EC. The results

in the eastern region show that ML is only affected by the joint

action of EC and TC, whereas EC is affected by ML and also by

TC. However, the joint action of ML and TC has no significant

effect on EC, and TC is only affected by the joint action of EC and

ML. The reason for these phenomena is that the technological

efficiency and technological changes in the eastern region are

saturated and following the same trend; the influence of each on

dynamic efficiency is therefore affected by the other. The results

in the central region show that TC is affected byML, as well as by

the combined effect of ML and EC, indicating that the dynamic

efficiency in the central region has a direct impact on the

efficiency of technological change and is also influenced by

adjustments in technological efficiency. The results in the

western region show that TC directly affects ML or co-affects

ML with EC.

5.3 PVAR model analysis

On the basis of the above findings, a PVAR model test was

carried out on ML, EC, and TC using samples. The results are

shown in Table 8. At the national level, when ML is used as the

explained variable, the ML coefficient for lag period 1 is

significantly positive, the ML coefficient for lag stage 3 is

significantly positive, the EC coefficient for lag phase 2 is

significantly positive, the EC coefficient for lag period 3 is

significantly negative, and the TC coefficient for lag period T
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1 is significantly positive. When EC is used as the explained

variable, the EC coefficient for lag stage 3 is significantly negative.

When TC is used as the explained variable, theML coefficient for

lag period 1 is significantly positive, the ML coefficient for lag

period 2 is significantly negative, the EC coefficient for lag period

2 is significantly positive, and the TC coefficient for lag period 2 is

significantly positive. This indicates that TC has a positive and

significant impact on ML in the early stage of ML development,

and that the improvement of TC significantly promotes the

improvement of EC. With the gradual improvement of ML,

TABLE 8 Regression results of PVAR model.

Regions Variables ML EC TC Regions Variables ML EC TC

China ML (−1) 0.225** −0.105 0.269** Eastern ML (−1) 0.384 −0.139 0.448**

(0.115) (0.103) (0.116) (0.271) (0.205) (0.223)

ML (−2) −0.186 0.109 −0.324*** ML (−2) −0.102 −0.139 0.129

(0.115) (0.103) (0.116) (0.263) (0.199) (0.217)

ML (−3) 0.359*** 0.127 0.128 ML (−3) 0.566** 0.537*** −0.009

(0.111) (0.099) (0.112) (0.262) (0.198) (0.216)

EC (−1) −0.114 −0.003 −0.155 EC (−1) −0.38 −0.099 −0.225

(0.118) (0.106) (0.119) (0.277) (0.21) (0.229)

EC (−2) 0.243** −0.131 0.393*** EC (−2) −0.057 0.09 −0.192

(0.117) (0.105) (0.118) (0.262) (0.198) (0.216)

EC (−3) −0.355*** -0.207** −0.078 EC (−3) −0.524** −0.543*** 0.055

(0.107) (0.096) (0.108) (0.258) (0.195) (0.213)

TC (−1) 0.250** 0.148 0.135 TC (−1) 0.049 0.167 −0.059

(0.111) (0.099) (0.112) (0.272) (0.206) (0.224)

TC (−2) −0.009 −0.124 0.212* TC (-2) −0.096 0.133 −0.301

(0.111) (0.100) (0.112) (0.266) (0.201) (0.219)

TC (−3) −0.152 −0.09 −0.042 TC (-3) −0.285 −0.478** 0.2

(0.109) (0.097) (0.110) (0.266) (0.201) (0.219)

C 0.775*** 1.292*** 0.501** C 1.500*** 1.487*** 0.996**

(0.211) (0.189) (0.213) (0.466) (0.352) (0.384)

Central ML (−1) −0.016 −0.569** 0.54 Western ML (−1) 0.114 −0.101 0.182

(0.345) (0.278) (0.367) (0.155) (0.152) (0.153)

ML (−2) −0.434 0.024 −0.674* EC (−1) −0.08 0.034 −0.188

(0.334) (0.269) (0.355) (0.149) (0.146) (0.146)

ML (−3) 0.378 −0.009 0.301 TC (−1) 0.293** 0.097 0.240*

(0.333) (0.268) (0.354) (0.148) (0.145) (0.144)

EC (−1) 0.148 0.365 −0.281 C 0.691*** 0.984*** 0.801***

(0.354) (0.285) (0.377) (0.163) (0.160) (0.161)

EC (−2) 0.595* −0.046 0.796**

(0.337) (0.271) (0.358)

EC (−3) −0.26 −0.103 −0.137

(0.318) (0.256) (0.338)

TC (−1) 0.278 0.472* −0.221

(0.339) (0.273) (0.361)

TC (−2) 0.277 0.016 0.51

(0.329) (0.265) (0.350)

TC (−3) −0.325 −0.107 −0.2

(0.329) (0.265) (0.35)

C 0.408 0.979** 0.41

(0.593) (0.478) (0.631)

Note: *p < 0.10; **p < 0.05; ***p < 0.01; The standard error is in parentheses.

ML indicates Malmquist-Luenberger index; TC indicates Technological Change; EC indicates Efficiency Change.
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problems of scale begin to appear, restraining the development of

ML. However, the improvement of EC in the early stage produces

a strong accumulation effect, making EC a main factor in the

mid-term development of ML. Over time, EC inhibits the

development of ML.

The results in the eastern region show that whenML is used as

the explained variable, the ML coefficient for lag period 3 is

significantly positive and the EC coefficient is significantly

negative. When EC is used as the explained variable, the ML

coefficient for lag period 3 is significantly positive, while both the

EC and the TC coefficients are significantly negative. When TC is

used as the explained variable, theML coefficient for lag period 1 is

significantly positive. These results indicate that in the eastern region

ML has a strong hysteretic self-enhancement mechanism, and EC

has a significant inhibitory effect on ML in the later stage of ML

development. The promotion effect of TC on EC is not significant,

because the technological efficiency and technological change in the

eastern region are both saturated. The development ofML promotes

the development of TC and improves the level of EC, but there is no

obvious promotion effect of TC and EC on ML.

The results for the central region show that whenML is used

as the explained variable, the EC coefficient for lag period 2 is

significantly positive. When EC is used as the explained variable,

the ML coefficient for lag period 1 is significantly negative and

the TC coefficient is significantly positive. When TC is used as the

explained variable, the ML coefficient for lag period 2 is

significantly negative and the EC coefficient is significantly

positive. These results indicate that ML has an inhibitory

effect on the growth of EC and TC, but there is a significant

difference at the time of action. The growth of EC has a

promoting effect onML, but the incentive effect shows hysteresis.

The results in the western region show that whenML is used

as the explained variable, the TC coefficient for lag period 1 is

significantly positive. When EC is used as the explained variable,

the coefficients ofML, EC, and TC are not significant for any lag

period. When TC is used as the explained variable, the TC

coefficient for lag period 1 is significantly positive. These

results indicate that the growth of ML comes mainly from the

growth of TC in the early stages of ML development in the

western region. TC also has a self-reinforcing mechanism.

5.4 Impulse analysis and variance
decomposition

Figures 7–10 show the results for impulse response among

the ML, EC, and TC of four different samples. The abscissa

represents the number of response periods of impact action,

which is set to 10. The ordinate is the impulse response function,

and the curves on either side represent estimates for the 95% and

5% loci. Figure 7 depicts the dynamic relationships among ML,

EC, and TC at the national level. In general, ML has a significant

role in promoting the growth of TC and EC in the early stage of

ML development, but there are also large differences. In terms of

intensity and duration of action, ML has a better effect on TC

than on EC. In addition, the influence of EC and TC on ML is

significantly different, which shows that TC is the driving force of

ML growth in the early stage, while EC plays a promoting role in

the medium term. Meanwhile, TC is the driving force of EC

growth, and EC has a greater inhibitory effect on TC in the initial

stage.

Figure 8 reports the dynamic relationships among ML, EC,

and TC in the eastern region. The influence ofML on EC and TC

is in line with that of the national sample. The influence of EC

and TC on ML has always been negative, which means that EC

and TC have not promoted the development ofML in the eastern

region. TC is the driving force for the growth of EC, and EC has a

restraining effect on TC.

Figure 9 depicts the dynamic relationships among ML, EC,

and TC in the central region. The influence ofML on EC and TC

is the same as at the national level and in the eastern region. The

effect of EC and TC onML is similar to that at the national level,

but stronger and more obvious. TC is the driving force for the

growth of EC. The effect of EC on TC is inhibition in the early

stage, promotion in the medium term, and inhibition in the late

stage.

Figure 10 depicts the dynamic relationships among ML, EC,

and TC in the western region.ML has a short-term continuously

weakening promotion effect on EC but a long-term continuously

weakening promotion effect on TC. The effect of EC on ML is

sustained and weakening, while the influence of TC on ML is a

promotion effect, first increasing and then decreasing, but

relatively short in duration. The effect of TC on EC is positive

and weakens in the short-term, while the effect of EC on TC is

negative and weakens continuously.

Table 9 reports the variance decomposition results among

ML, EC, and TC for four different samples. In the variance

decomposition ofML, the first period is 100% affected by its own

fluctuation shock, while the impact of EC and TC on ML begins

to appear only in the second phase and the variance contribution

of EC to ML is greater than that of TC to ML. In the variance

decomposition of EC, ML’s impact on EC appears in the first

phase, whereas TC’s impact on EC has a lag, with the impact

beginning to appear only in the second phase. Of all the impacts,

EC is themost affected by itself, followed by the impact ofML; the

impact of TC on EC is the smallest. In the variance

decomposition of TC, the impact of EC and ML on TC is

timely, effective, and continuously enhanced, and the impact

effect is relatively strong in the first phase. The impact ofML and

EC on TC is greater than the impact of TC on itself, which means

that the growth of TC is driven mainly by external factors. In

addition, the impact ofML and EC on TC is significantly different

across regions. In the samples from the eastern region, the impact

of ML on TC is stronger than that of EC on TC. In the samples

from the other regions, the impact of EC on TC is stronger than

that of ML on TC.

Frontiers in Environmental Science frontiersin.org19

Li et al. 10.3389/fenvs.2022.946596

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.946596


FIGURE 7
Impulse responses ofML, EC, and TC, China. (A) Response of ML to EC, (B) Response of ML to TC, (C) Response of EC toML, (D) Response of EC
to TC, (E) Response of TC to ML, (F) Response of TC to EC.

FIGURE 8
Impulse responses of ML, EC, and TC, eastern region. (G) Response of ML to EC, (H) Response of ML to TC, (I) Response of EC to ML, (J)
Response of EC to TC, (K) Response of TC to ML, (L) Response of TC to EC.
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FIGURE 9
Impulse responses of ML, EC, and TC, central region. (M) Response of ML to EC, (N) Response of ML to TC, (O) Response of EC to ML, (P)
Response of EC to TC, (Q) Response of TC to ML, (R) Response of TC to EC.

FIGURE 10
Impulse responses of ML, EC, and TC, western region. (S) Response of ML to EC, (T) Response of ML to TC, (U) Response of EC to ML, (V)
Response of EC to TC, (W) Response of TC to ML, (X) Response of TC to EC.
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TABLE 9 Variance decomposition of ML, EC and TC of DEIECE in various regions.

Period China

Variance Decomposition of ML Variance Decomposition of EC Variance Decomposition of TC

S.E. ML EC TC S.E. ML EC TC S.E. ML EC TC

1 0.173 100 0 0 0.155 23.251 76.749 0 0.175 29.768 53.908 16.324

2 0.188 92.752 6.37 0.878 0.157 22.853 76.704 0.443 0.186 33.088 52.152 14.76

3 0.189 92.043 7.031 0.926 0.157 22.774 76.438 0.787 0.188 33.064 51.416 15.52

4 0.191 91.258 7.77 0.972 0.158 22.564 76.571 0.865 0.188 33.178 51.313 15.509

5 0.192 91.061 7.968 0.971 0.158 22.565 76.569 0.865 0.188 33.291 51.282 15.427

6 0.192 91.062 7.963 0.975 0.158 22.565 76.568 0.867 0.188 33.299 51.28 15.421

7 0.192 91.063 7.962 0.975 0.158 22.572 76.561 0.867 0.188 33.299 51.281 15.42

8 0.192 91.046 7.979 0.975 0.158 22.572 76.561 0.867 0.188 33.304 51.278 15.419

9 0.192 91.044 7.981 0.975 0.158 22.572 76.561 0.867 0.188 33.306 51.276 15.418

10 0.192 91.044 7.981 0.975 0.158 22.572 76.561 0.867 0.188 33.306 51.276 15.418

Period Eastern

Variance Decomposition of ML Variance Decomposition of EC Variance Decomposition of TC

S.E. ML EC TC S.E. ML EC TC S.E. ML EC TC

1 0.145 100 0 0 0.11 34.874 65.126 0 0.12 44.16 44.353 11.486

2 0.154 94.031 5.953 0.017 0.113 34.313 65.326 0.361 0.129 50.604 39.505 9.891

3 0.154 93.837 6.004 0.16 0.113 34.257 65.253 0.49 0.13 50.077 39.18 10.743

4 0.157 91.412 7.358 1.231 0.116 33.043 63.163 3.793 0.131 49.992 39.241 10.767

5 0.159 91.216 7.562 1.222 0.116 33.068 63.072 3.86 0.132 50.222 39.181 10.597

6 0.159 91.173 7.606 1.221 0.116 33.128 63.008 3.864 0.132 50.27 39.139 10.591

7 0.159 91.143 7.636 1.221 0.116 33.146 62.991 3.862 0.132 50.262 39.148 10.589

8 0.159 91.111 7.669 1.22 0.116 33.16 62.977 3.863 0.132 50.267 39.151 10.582

9 0.159 91.108 7.672 1.22 0.116 33.16 62.976 3.864 0.132 50.275 39.147 10.579

10 0.159 91.106 7.674 1.22 0.116 33.16 62.976 3.864 0.132 50.275 39.147 10.578

Period Central

Variance Decomposition of ML Variance Decomposition of EC Variance Decomposition of TC

S.E. ML EC TC S.E. ML EC TC S.E. ML EC TC

1 0.166 100 0 0 0.134 12.107 87.893 0 0.177 44.185 49.73 6.085

2 0.171 98.612 0.886 0.502 0.138 13.991 83.784 2.225 0.184 48.205 45.923 5.872

3 0.175 93.916 5.12 0.964 0.138 13.96 83.766 2.274 0.189 45.878 46.763 7.359

4 0.176 93.392 5.609 0.999 0.139 15.034 82.711 2.255 0.19 45.435 47.247 7.318

5 0.176 93.243 5.756 1 0.139 15.192 82.556 2.252 0.19 45.346 47.321 7.333

6 0.176 93.227 5.759 1.013 0.139 15.19 82.55 2.26 0.19 45.438 47.234 7.328

7 0.176 93.219 5.768 1.013 0.139 15.202 82.537 2.261 0.19 45.453 47.224 7.323

8 0.176 93.215 5.769 1.016 0.139 15.202 82.537 2.261 0.19 45.45 47.222 7.328

9 0.176 93.211 5.772 1.017 0.139 15.202 82.537 2.261 0.19 45.448 47.225 7.327

10 0.176 93.211 5.773 1.017 0.139 15.203 82.536 2.261 0.19 45.448 47.225 7.327

Period Western

Variance Decomposition of ML Variance Decomposition of EC Variance Decomposition of TC

S.E. ML EC TC S.E. ML EC TC S.E. ML EC TC

1 0.21 100 0 0 0.206 28.867 71.133 0 0.207 19.157 58.441 22.402

2 0.225 91.122 7.239 1.639 0.207 28.872 70.917 0.211 0.224 19.526 60.139 20.335

3 0.227 89.74 8.484 1.776 0.207 28.872 70.917 0.211 0.226 19.779 60.167 20.053

4 0.227 89.529 8.674 1.797 0.207 28.872 70.917 0.211 0.227 19.819 60.173 20.008

5 0.227 89.493 8.707 1.801 0.207 28.872 70.917 0.211 0.227 19.826 60.174 20

6 0.228 89.486 8.713 1.801 0.207 28.872 70.917 0.211 0.227 19.827 60.175 19.998

7 0.228 89.485 8.714 1.801 0.207 28.872 70.917 0.211 0.227 19.828 60.175 19.998

(Continued on following page)
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5.5 Analysis of the formation mechanism
of DCEEIE

From the above analysis, we can extract the theoretical

mechanism of DCEEIE, as shown in Figure 11. However, it

should be noted that in order to understand the formation

mechanism of DCEEIE, we must first clarify the logical

relationship between its dynamic efficiency and its total

factor productivity. This is because improving the total

factor productivity of carbon emissions is a matter of

great importance for the government and business

managers, and it is also the ultimate goal of carbon

emissions management. We believe that DCEEIE can be

used to compare and analyze the total factor productivity

of carbon emissions longitudinally, revealing its dynamic

characteristics. The economic meaning of the ML index

TABLE 9 (Continued) Variance decomposition of ML, EC and TC of DEIECE in various regions.

Period China

Variance Decomposition of ML Variance Decomposition of EC Variance Decomposition of TC

S.E. ML EC TC S.E. ML EC TC S.E. ML EC TC

8 0.228 89.485 8.714 1.801 0.207 28.872 70.917 0.211 0.227 19.828 60.175 19.998

9 0.228 89.485 8.714 1.801 0.207 28.872 70.917 0.211 0.227 19.828 60.175 19.998

10 0.228 89.485 8.714 1.801 0.207 28.872 70.917 0.211 0.227 19.828 60.175 19.998

FIGURE 11
Theoretical mechanism of DCEEIE in China.
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reflects the carbon emissions from period t to period t+1.

When ML > 1, the change in total factor productivity

represents an improvement in efficiency (and the converse

represents a decline in efficiency).

Figure 11 shows that TC and EC are the main factors

influencing the mechanism of the internal structure of

DCEEIE. TC is the development basis of all efficiency and

affects EC and ML directly. EC also acts on ML directly, but

the effect on TC has a certain lag.ML acts directly on TC and EC,

because EC and TC themselves are decomposed by ML. In

addition, the improvement in TC comes mainly from external

factors, such as improvements in production processes,

improvements in technological innovation levels, and the

promotion of energy conservation and emissions reduction

policies. The other source of the power of TC is TC’s

cumulative effect and EC’s feedback effect. The growth of EC

comes mainly from the EC’s cumulative effect, with the

remainder dominated by external factors, such as the

promotion from TC. This is because in the variance

decomposition of EC, EC is more affected by its own impact

than by the contribution of TC. The mechanism of the internal

structure of DCEEIE is cyclic, with TC as the logical starting

point and EC as the main driving force in jointly promoting the

growth of ML.

6 Conclusion and policy implications

In response to the call fromKumbhakar et al. (2014) for more

research to increase the accuracy of evaluations of carbon

emission efficiency, and to calls from Wen et al. (2020), Chen

et al. (2020), and Wang et al. (2020) for more research on

regional differences in carbon emission efficiency, this study

accurately measures the DCEEIE of 30 regions in China from

2001 to 2019 using the three-stage SE-SBM-DEA

Malmquist–Luenberger model. It further examines regional

differences in China’s DCEEIE using Dagum’s Gini coefficient

and the PVAR model for empirical analysis. The results indicate

that DCEEIE in China decreases gradually from east to west. The

gaps in DCEEIE between regions are gradually narrowing, and

the main reason for this is the narrowing of the technical

efficiency gap between regions. Most importantly,

technological change is the main driving force of efficiency

change and dynamic efficiency.

7 Conclusion

The main findings of this study are as follows. First, DCEEIE

in China shows an overall trend of growth, and all factors are all

in the “efficient” state. Although both efficiency change and

technological change are at the Frontier of efficiency, they are

moving in opposite directions, leading to an attenuation of

efficiency and a diffusion of technology. In terms of spatial

pattern, DCEEIE is characterized by a “stepped” feature that

decreases gradually from east to west. In addition, the efficiency

change and technological change of China’s DCEEIE showed

different degrees of polarization at different times from

2001 to 2019.

Second, the overall Gini coefficients of DCEEIE, efficiency

change, and technological change all show a downward trend,

indicating that regional differences are gradually narrowing. The

narrowing of the technical efficiency gap is the main reason for

the narrowing of the dynamic efficiency gap. The gaps between

regions and transvariation intensity are among the principal

reasons for these gaps, including the gaps for dynamic

efficiency and efficiency change. The gap between regions is

the main reason for the technological change gap.

Third, although there is an interaction between dynamic

efficiency, efficiency change, and technological change, there

are significant differences among samples from different

regions in the intensity, direction, and duration of the

effect. In the early stage of the development of dynamic

efficiency, the impact of technological change is

significantly positive, and the improvement of technological

change significantly promotes improvements in efficiency

change. Therefore, technological change is the main driving

force for efficiency change and dynamic efficiency in the early

stage. The accumulation of efficiency change in the early stage

is then the main factor promoting the development of

dynamic efficiency in the medium term. The development

of dynamic efficiency promotes both efficiency and

technological change, but the impact of dynamic efficiency

on technological change is greater than the impact on

efficiency change.

This paper has several limitations. First, we only focus on

the industrial sector, but there are also regional differences in

carbon efficiency in other industries such as construction and

transportation, and such inter-regional differences and

imbalances in these industries also need to be eliminated.

COVID-19 has brought significant challenges to our society,

increased the intensity of competition between enterprises,

which has put pressure on the development of various

industries such as tourism and manufacturing (Fu et al.,

2021; Liu et al., 2022; Mamirkulova et al., 2022; Yu et al.,

2022). This has undoubtedly also hindered the improvement

of CEEIE in China. Therefore, it is also very important that

future studies focus on regional differences in the carbon

emission efficiency of these industries. Second, although this

paper explores inter-regional differences in DCEEIE on the

basis of existing literature and in terms of the internal

structure of DCEEIE, the internal mechanism leading to

the regional differences is derived from the interaction

between TC and EC. However, there is still a need to

further explore the internal or external factors which will

affect TC and EC in the future in order to obtain a clearer
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understanding of the generation and elimination of

interregional differences in DCEEIE. Finally, although

increasing DCEEIE is an important way to reduce carbon

emissions, the most fundamental and effective way to achieve

green development is to increase the use of hybrid and

renewable energy sources and reduce the use of fossil fuels

(Abbasi et al., 2021a; Khan et al., 2021). Therefore, future

research should focus on how to trigger and accelerate the

transformation of energy infrastructure from fossil fuel use

to hybrid and clean energy use at the source. Especially for

SMEs, as they are more likely to encounter difficulties in the

transition process and more difficult to resolve them

(Mubeen et al., 2021).

7.1 Policy implications

The above analysis indicates that in order to reach its carbon

peak by 2030 and become carbon-neutral before 2060, China, as a

major carbon emitter and a rapidly developing country, should

consider the following recommendations in line with its latest

carbon emission policies.

First, the results of this study indicate that technological

change is the basis of all efficiency development, and that

efficiency change is the main driving factor in the early

improvement of DCEEIE. Therefore, to further improve

DCEEIE in China as a whole, it is necessary to carry out

governance measures for efficiency change and technological

change simultaneously. Given the large differences between

regions in terms of economic development, policy orientation,

and resource endowments, it is necessary to develop

differentiated governance methods for efficiency change and

technological change in different regions. Specifically,

compared with the central and western regions, the eastern

region should prioritize efficiency change in its governance

measures. This is because the industrial structure of the

eastern region is dominated by light industry with a relatively

high rate of technological innovation. The cumulative effect of

the contribution of technological change to carbon emission

efficiency will gradually stabilize in line with the law of

diminishing marginal utility, and the contribution of efficiency

change will gradually become the main driving force for the

growth of carbon emission efficiency. Accordingly, in response to

the uneven development of DCEEIE between regions, the

government also needs to put in place appropriate policies,

for example, carbon tax, carbon pricing (Usman et al., 2022;

Wei et al., 2022), and to ensure the implementation of tax policies

and other related policies (Zhang et al., 2022). The eastern region

should enhance subsidies for clean energy, seek to eliminate

polluting and energy-intensive enterprises and products, and

carry out further industrial upgrading and optimization. In

addition, the eastern coastal areas should accelerate the

diffusion of technology to the relatively backward areas in the

central and western regions, strengthen technical exchanges and

cooperation with those regions in terms of energy utilization,

reduce the gaps with those regions in efficiency change and

technological change, and aim for balanced development of

regional carbon emissions efficiency.

Second, governance work in the central and western regions

should take technological innovation as its initial goal, and

improvements in efficiency change as the ultimate goal. This

is because the industrial layout is an important factor in the

carbon emissions efficiency in the central and western regions.

The industrial structure in those regions is characterized by

heavy industry with high energy consumption, relatively low

rates of technological innovation, and industrial added value that

is lower than energy consumption. As a result, the contribution of

technological change to carbon emissions efficiency is

inadequate, and the technological lag seriously restricts

improvements in efficiency change. Therefore, it is necessary

to optimize the overall industrial structure, adjust the regional

industrial layout, change the energy consumption pattern, adjust

the energy consumption structure, reduce the total amount of

energy consumption, improve energy efficiency, and vigorously

promote strategic emerging industries, high-tech industries, and

equipment manufacturing in the central and western regions. In

addition, although the central and western regions are significant

locations for new energy industries such as photovoltaics and

wind power, the slow upgrading of traditional industrial

enterprises has resulted in low usage rates for renewable green

energy. Therefore, to strengthen the green transformation

services for traditional industrial enterprises in the central and

western regions, it is necessary to guide traditional industrial

enterprises in green technology innovation, encourage the

building of a green manufacturing industrial system, and

focus on promoting the green development of enterprises.

Companies in backward regions can also enhance their

dynamic capabilities through business relationships and

achieve technological innovation (Abbas et al., 2019b).

Innovative technology can directly reduce CO2 emissions and

improve environmental quality (Cheng et al., 2021), indirectly

help companies to better practice corporate social responsibility

(Golinska-Dawson and Spychała, 2019), and can also better help

people in backward regions to eliminate the negative impacts and

effects of COVID-19 (Zhou et al., 2021; Ge et al., 2022). These are

critical because COVID-19 will have a far-reaching impact

worldwide in the future (Abbas, 2020).

Third, in order to improve technological change, it is

necessary to strengthen international cooperation and

promote the domestic implementation of international

standards, including low-carbon technology assessments and

carbon trading systems. It is important to introduce and

integrate advanced technologies, improve independent

innovation capabilities, and develop additional high-tech

industries with high added value and low energy

consumption; the gap between the major energy-carrying
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products and terminal energy-using equipment, on the one hand,

and international energy consumption levels, on the other,

should be narrowed as soon as possible. For the improvement

of efficiency change, it is necessary to accelerate the low-carbon

transformation of industry, prioritize the transformation of the

industrial energy system, increase the proportion of renewable

energy in the industrial sector, improve utilization efficiency, and

facilitate the construction and improvement of new energy

storage and transportation networks. Equally important

measures are speeding up research and development in

relation to green and low-carbon technologies, upgrading the

original pollution reduction and carbon reduction technologies,

and establishing a complete scientific and technological

innovation service platform. In terms of the unbalanced

development of CEEIE between regions, reducing the gaps in

efficiency change and technological change will promote

technical exchanges and cooperation in energy utilization

between regions. In particular, a more balanced development

of CEEIE can be achieved by accelerating technological diffusion

from the eastern region to relatively backward areas in the central

and western regions. Efforts at the corporate level are also very

important, as companies that adopt environmental cooperation

practices, such as green manufacturing practices, from the goal of

practicing corporate social responsibility will not only achieve

lower carbon emissions, but also improve their social

sustainability performance (Awan, 2019).
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