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Climate change and the high proportion of private motorised transport leads to

a high exposure of the urban population to environmental stressors such as

particulate matter, nitrogen oxides, noise, and heat. The few fixed measuring

stations for these stressors do not provide information on how they are

distributed throughout the urban area and what influence the local urban

structure has on hot and cold spots of pollution. In the measurement

campaign “UmweltTracker” with 95 participants (cyclists, pedestrians), data

on the stressors were collected via mobile sensors. The aim was to design

and implement an application to analyse the heterogeneous data sets. In this

paper we present a prototype of a visualisation and analysis application based

on the Unity Game Engine, which allowed us to explore and analyse the

collected data sets and to present them on a PC as well as in a VR

environment. With the application we were able to show the influence of

local urban structures as well as the impact of the time of day on the

measured values. With the help of the application, outliers could be

identified and the underlying causes could be investigated. The application

was used in analysis sessions as well as a workshop with stakeholders.
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1 Introduction

Urban spaces are hotspots of environmental pollution such as noise, air pollution and

heat (Nieuwenhuijsen and Khreis, 2018). These stressors affect health and are highly

contextually distributed in space and time. Portable and personal sensors have advanced

the measurement of these stressors and allow exposure measurements for individuals.

Thereby, wearable sensing has two aspects: firstly, the exposure of an individual is
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recorded, and secondly, individuals act as explorers of the urban

area. In the framework of the DFG project ExpoAware (VGI

Science, 2022), communicated under the term “UmweltTracker,”

mobile measurements by cyclists and pedestrians took place

within Leipzig. Analysing this measurement data and putting

it into a spatial and temporal context is very demanding.

Therefore methods for data integration, data analysis and data

visualisation have to be applied, developed and combined. In the

following, we provide an overview of these various approaches

and their state of the art. The game engine Unity offers the

possibility to combine these methods and is therefore our

approach to tackle the challenges of data analysis in the

ExpoAware project.

The analysis and visualization of heterogeneous, complex

environmental data is associated with a number of challenges

(Laksono and Aditya, 2019; Helbig et al., 2017): 1) synthesize

heterogeneous data from various sources, 2) reduce the amount

of information, and 3) facilitate multidisciplinary, collaborative

research. The use of commercial software (e.g., ArcGIS, MatLab,

GeoTime) has the disadvantage that algorithms, forms of

representation and the user interface often cannot or only to a

limited extend be adapted. In addition, the transparency of the

exact structure of algorithms for analysis is often limited. When

using open source applications (e.g., ParaView), these restrictions

are usually not given, but these applications are often either

tailored for a specific type of data or use cases (e.g., VAPOR) or

are so complex that they cannot be used by scientists who need an

easy-to-use tool for their visualisation and analysis. Helbig et al.

(2017) argue that several bottlenecks and challenges have to be

addressed to fully exploit the potential of visual data exploration,

including suitable visual exploration concepts and methods as

well as effective and tailored tools.

The amount and variety of data is increasing in all research

fields and thereby the analysis of these multifaceted, large,

complex datasets (Hauser and Kehrer, 2013) has become a

challenging task (Avazpour et al., 2019). Integrating data

from multiple heterogeneous sources involves normalizing

data and providing users with a uniform view of that data

(Tian, 2019). Different data sets are supported by certain,

specific applications, and the exact structure of the data is

often unknown to users. Collecting, integrating, matching and

efficiently extracting information from heterogeneous data

sources is considered a major challenge (Fusco and Aversano,

2020). For example, the heterogeneity in spatiotemporal

resolutions of traffic data as well as the lack of standardized

spatial representations of data from different sources are cited as

the main reasons for the traffic data integration problem (Cui

et al., 2020). Another challenge is to integrate data frommobile or

smart sources in addition to static data sets to make them

available and analysable in real time (Tu et al., 2020; Regueiro

et al., 2015).

Visual Analytics (VA) expands statistical analysis of data

and includes the visual aspect by using the human ability to

process visually processed data more quickly (Friedhoff et al.,

1990). In a similar context, scientific visualization assists

scientists in analysing data by transforming data into

geometric representations, thus aiding in the analysis of

complex data (Gershon et al., 1995; McCormick et al., 1991).

VA is also occasionally used in urban planning, for example in

the analysis of patterns in daily movement data of people (Zeng

et al., 2017) or in decision support for the planning of the

placement of wind farms (Adagha et al., 2017).

In science, virtual reality (VR) is recognized as a powerful

human-computer interface (Burdea and Coiffet, 2003). Users

can immerse themselves in a virtual world and manipulate it

through changing perspectives and interacting with objects

(Brooks, 1999). VR environments are a promising tool for

scientists to visualize their large and complex data sets and to

control the behaviour of the virtual objects (Simpson et al.,

2000; Bilke et al., 2014). The combination of the power of a VR

system and the human ability to recognize interesting patterns

and inconsistencies in the data makes VR a suitable tool to

solve future scientific visualization tasks (van Dam et al.,

2002). Also in the context of urban planning, VR is used in

some prototypical projects, e.g., imparting knowledge about

the value of urban greenery (Mokas et al., 2021), investigating

the perceived safety level of cyclists (Nazemi et al., 2021), in

different planning phases in high-rise construction (Lu et al.,

2021), in green landscape planning and design (Pei, 2021) and

in the evaluation of urban spaces (Luigi et al., 2015; Zhang and

Zhang, 2021).

In recent years, the use of game engines in science has been

increasing. Keil et al., 2021 present various workflows for the

integration of data (e.g., 3D buildingmodel) into the game engine

Unity as well as the implementation of VR interfaces. Schmohl

et al., 2020 used Unity to implement a walkable virtual city

model, whereas Weißmann et al., 2022 used it to visualise 3D

point clouds captured by drones. Chizhova et al., 2020 used a

game engine to simulate a terrestrial laser scanner for teaching

purpose, and Yang et al., 2020 used it to simulate secure

hazardous transportation. One aspect that can be integrated

into visualisation and analysis using game engines and thereby

greatly increase the level of immersion, is audio data (Rafiee et al.,

2017; Berger and Bill, 2019; Hruby, 2019). The integration of

such data is not available in conventional visualisation tools for

geodata.

In the framework of our project, the use of the Game Engine

Unity enables us to combine the named methods (VA, 3D, VR)

as well as to implement analysis methods and make them

available via a graphical user interface (GUI) (Helbig et al.,

2015). There is a need to develop effective and tailored tools

for the visualisation and analysis of environmental data. In this

paper we present the concept and implementation of a

visualisation and analysis application for mobile sensor data

in an urban context. We defined the following requirements

for the application:
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a. User Interface and Interaction: GUI to manipulate 3D

representations (e.g., by filtering, applying analysis

methods) and show additional information (e.g., personal

exposure).

b. Performance: Display different parameters and move around

in the scene without long loading times.

c. Data Integration: Integrate various data sources/data types

(csv, raster, 3D model) and link the data (e.g., points of

mobile measurements with associated weather data for the

time and the questionnaire data of the corresponding

participant).

d. 3D Visualisation: Apply 3D representations of the data, e.g.,

in the form of a space time cube, visualisation of the driven/

walked routes, automatic colour coding (see Section 2.6).

e. Analysis: exclude GPS outliers, filter data, apply spatial

analysis algorithm (Getis Ord Gi*1).

f. Environment: Run on common PC and in VR environment.

In the underlying project ExpoAware, environmental data

is collected by citizens. In this context, we would like to briefly

mention the concept of Citizen Science which is increasingly

contributing to the production of scientific knowledge (Eitzel

et al., 2017). The Oxford English Dictionary defines it as

“scientific work undertaken by members of the general

public, often in collaboration with or under the direction of

professional scientists and scientific institutions” (OED,

2020). Citizen science is not a novel concept. The term

“citizen science” emerged in the field of ornithology, where

amateurs collected information about local bird populations

(Bonney et al., 2016), while at the same time, Irwin (1995)

framed it as a science that is carried out by citizens in the

service of public interests (other than, e.g., military science).

There are different levels at which citizens can be involved in

the scientific process (Arnstein, 1969; Haklay, 2018). For

example, Arnstein’s “ladder of citizen engagement”

distinguishes different levels of decision-making power

ascribed to the citizens. Another hierarchical model of

engagement ranges from “crowdsourcing”, where citizens

merely contribute data or processing power of their

personal computers, to “extreme citizen science” where the

public is involved in formulating research questions (Haklay,

2013). Alternatively, distinctions can be based on citizens’

activities, rather than attributing their contribution to a

certain level of involvement (Strasser et al., 2019). Different

epistemic practices in citizen science are sensing, computing,

analyzing, self-reporting, and making (Strasser et al., 2019).

Sensing is a traditional form of citizen science, such as bird

watching or monitoring other wildlife (Strasser et al., 2019). In

the ExpoAware project, the participants primarily have the

function of crowdsourcing, although it should be mentioned

that some participants give detailed feedback and ask

questions and thus support and influence the formulation

of new research questions.

2 Materials and methods

In the following chapter we give an overview of the

framework for which the application was developed and

describe the used methods.

2.1 Environmental stressors in the study
area

Hotspots of environmental stressors such as noise, air

pollution and heat occur particularly in urban areas. These

stressors have increased steadily over the past few decades. In

our project, the environmental stressors were gathered viamobile

sensors by voluntary cyclists and pedestrians in the city of

Leipzig. Leipzig is the eighth largest city in Germany with a

population of almost 600,000 and is located in the northwest of

the federal state of Saxony. The urban area covers 297.8 km2 and

is crossed by an extensive alluvial forest area from north to south.

The general increase in hot days (days with a maximum air

temperature above 30°C) is driven by climate change and poses a

major health threat to city dwellers (Schuster et al., 2017; De

Troeyer et al., 2020). The intensity of the urban heat island effect

is strongly dependent on the urban structure, such as the number

and distribution of green infrastructure (Kumar et al., 2019;

Sinha et al., 2021) and the degree of sealing. These influence the

ventilation of the city and thus also the exposure to air pollution.

The measurement campaign took place from July 2020 to

October 2020. The average temperature in Leipzig in these

months in 2014 was between 12.6°C (October) and 23.2°C

(July) (Leipziger Institut für Meteorologie, 2022). According to

the DWD’s 2016 report “Urban Climatic Investigations in

Leipzig”, the consequences of climate change can already be

seen in Leipzig (Behrens and Hoffmann, 2016). From 1986 to

2015, the annual mean air temperature rose by around 1.5 K.

Higher air temperature values were recorded at the suburban

DWD station on the southwest edge of Leipzig (Leipzig-

Holzhausen) than at the one on the airport site (DWD station

Leipzig/Halle) in a more rural environment. The reasons for that

are the different locations of the stations and the land use type in

the vicinity of the stations. Mobile sensors are ideal for measuring

environmental stressors in Leipzig as they differ substantially

across the city as well as over time. In this way, hot and cold spots

can be identified and their causes analysed.

Traffic, industry and agriculture are the main sources of air

pollution and noise in cities. The most commonly studied air

pollutants related to personal exposure are particulate matter

(PM), nitrogen oxides (NOX), carbon dioxide (CO2), ozone (O3),

black carbon (BC) and ultrafine particles (UFP). Just like the heat,

air pollution (Anwar et al., 2019; Boogaard et al., 2019; Bakolis

et al., 2021) and noise (Nadrian et al., 2020; Cai et al., 2021) are a

major risk factor for the health of city dwellers and the cause of a

large number of deaths. Traffic is a main source of
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PM10 emissions in Leipzig and origin of the nitrogen oxide

pollution (NOX). While the rest account to small combustion

plants (Stadt Leipzig, 2018). The legal limit value for PM (EUR-

Lex, 2008) for the annual average concentration is complied with

at all measuring stations in Leipzig. However, the limit value for

the daily mean concentration of 50 micrograms per cubic meter

is exceeded on several days, depending on which measuring

station is considered, on between 2 and 26 days in the years

2015–2019, with a downward trend in the time series recognized.

The law allows it to be exceeded on a maximum of 35 days a year,

while the World Health Organization (WHO) recommends a

limit of 3 days a year (Stadt Leipzig, 2022b).

According to Section 47c of the Federal Immission Control

Act (BImSchG, Bundesamt für Justiz, 2022), Leipzig is obliged to

create noise maps and update them every 5 years. This update

took place in 2012 and covers the entire city area (Stadt Leipzig,

2022c). In addition, in 2011 there has been an online survey

about noise pollution for the city of Leipzig where 78% stated that

they felt the noise pollution in Leipzig to be strong to very strong

(Stadt Leipzig, 2022a).

Environmental exposure of individuals is multi-factorial

(Mitsakou et al., 2019; Munzel et al., 2020). The term human

exposome has been used for several years and describes the

measure of all the exposures of an individual in a lifetime and

how those exposures relate to health (Haddad et al., 2019;

Trumble and Finch, 2019; Oresic et al., 2020). A number of

studies call for policy to create the framework conditions for

urban planners and architects to be able to (re)design cities in

such a way that they positively influence the health of their

residents (Mueller et al., 2020; Nieuwenhuijsen, 2021).

2.2 Study design

One hundred and eighty-six people took part in our

2020 measurement campaign, the first campaign in the

framework of the ExpoAware project. The participants were

randomly assigned to a measurement (95) and a control group

(91). The control group is relevant for the evaluation of the

questionnaires, but will not play a role in this paper. The

people of the measurement group have each been assigned to a

measurement week. On Mondays, the participants received

the sensor set and a personal introduction to the technology.

In addition, we supported them with a video tutorial and

written using instructions in order to avoid measurement

errors as far as possible. The participants had time to use

the sensor set to measure their daily routes, which they

covered on foot or by bike, until they returned the sensors

on Fridays. In addition to the measurements with the sensor

set, the participants filled out a questionnaire on their

perception and behaviour at four points in time. After the

measurement phase, the participants received a feedback

report about their exposure during the measurement period

presented in form of a histogram for temperature, noise, and

particulate matter.

2.3 Mobile sensor set

Environmental stressors such as heat, noise, and air

pollution are highly contextually distributed in space and

time. Studies show that stationary measurements determine

representative concentrations for the location of the

measurement and its immediate vicinity (Yeom, 2021;

Adams and Kanaroglou, 2016). In contrast, the distribution

and concentration of stressors can be recorded in a large

geographical area with the help ofmobile sensors (Guillaume

et al., 2019). It is recommended to combine measurements

from mobile and stationary sensors to develop a reliable

monitoring system for cities (Budde et al., 2017) to

characterize and quantify various influencing factors (e.g.,

urban structure) on the environmental parameters and

their mutual influences. It is expected that the rapid

development of sensors will make it possible to use them

widely in the near future and establish them as part of a smart

and sustainable city. Mobile, wearable sensors (wearables)

have been increasingly used in recent years. This development

is triggered by research in four fields of the highest relevance:

urbanization, climate change, digitization and innovations in

hardware development. There is also a trend towards

monitoring multiple parameters (Helbig et al., 2021;

Chatzidiakou et al., 2019, Cao and Thompson, 2016;

Gaskins and Hart, 2019). These sensors provide data that

enable the analysis of the interactions between environmental

parameters of individuals and thus provide a building block

for research into the human exposome. The measured values

can also be played back directly to the individuals as feedback

and influence them (Becker et al., 2021).

The sensor set of our measurement campaign consists of

tree devices, which are shown in Table 1 measuring multiple

environmental parameters (Ueberham and Schlink, 2018;

Ueberham et al., 2019). The measurement settings vary

within the devices what made a data ordination process

necessary. This procedure had two main parts: 1) the data

is spatially filtered based on the administrative boundaries of

the city of Leipzig and only non-stationary data is taken into

account, which represents the mobility of cyclists and

pedestrians (measurements in which the participants have

already switched on the sensors but have not yet started their

route are filtered out in this way); 2) since the sampling

interval of the three units used is different (see Table 1), a

synchronization algorithm was developed to match and

aggregate records between the units (fill measurement gaps,

interpolate between time steps).

Particulate matter is measured in different sizes

(PM2.5 and PM10). The smaller the particle size, the
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deeper the particles can get into our respiratory system and

can cause adverse health effects. Large particles (PM10) can be

deposited in the upper airways and medium-sized particles

(PM2.5) can be deposited in the lower airways (Falcon-

Rodriguez et al., 2016). Noise was measured in dB(A). In

order to make it easier for the participants to classify the

values, a scale with comparative examples was made available

to them (0–20 dB: quiet room, 20–40 dB: entertainment,

40–60 dB: car, 60–80 dB: main street, 80–100 dB:

jackhammer, 100–120 dB: pain threshold). The integrated

temperature sensor measured the ambient air temperature

on routes. The values depend strongly on the weather

conditions and differ within the city and over time. In

order to make it easier for the participants to classify the

values, a scale with comparative examples was made available

to them (10–20°C: no temperature stress, 20–26°C: slight

temperature stress, 26–32°C: moderate temperature stress,

32–38°C: severe temperature stress, >38°C: extreme

temperature stress).

2.4 Unity game engine

We decided to implement an application based on the

Unity game engine which meets all the requirements listed in

the introduction. Unity provides a development environment

for computer games and other interactive 3D graphic

applications. The use of the game engine Unity enables us

to combine methods from VA and 3D visualization as well as

to implement analysis methods and make them available via

GUI. As potential users work with different systems, it was

important that Unity supports the development of

applications for a variety of platforms, including VR

environments.

In general, Unity applications consist of one or more scenes,

where 3D representatives (so called GameObjects) are presented.

With the help of input devices (keyboard, mouse, VR controller),

users can move around in the scene and manipulate it via a GUI,

for example changing the appearance of GameObjects, removing

or adding them.

TABLE 1 Sensor set for the measurement campaign 2020.

Device/sensor Dylos DC1700 Leo/ateknea sensor Smartphone motorola

Measured parameter PM2.5, PM10 NO2, NO, O3,
temperature, humidity

GPS position, date and
time, noise, light intensity

Measurement interval 1 min 5 s 5 s

TABLE 2 Integrated data sets.

Name Type Extend/Amount Description

GPS data of mobile
sensors

Points (csv) 130,473 points/rows Synchronized measurement data from the mobile sensors. For each GPS point there are measured
values of the parameters that are assigned to a specific week and device number.

Weather station data Table (csv) 128,160 rows Weather station data from the LIM station in leipzig in minute resolution (wind speed, wind
direction, global radiation, sky radiation, air pressure, relative humidity, temperature at 2 m,
precipitation, wind peaks, LW radiation, counter radiation, and temperature floor at 5, 10, 20, 50,
and 100 cm).

Questionnaire data Table (csv) 81 rows Questionnaire data of habit, self-efficacy and threat concerning particle, noise, and temperature
(each the mean when using a scale from 1 to 7).

Traffic (all/cars/trucks) Lines (shape) 34,20 route segments Streets of the main network of leipzig with occupancy values for motor vehicles, trucks and bicycle
traffic. Traffic volumes for an average working day are given in each case.

Satellite image Raster (tiff) 4528.836 ×
3720.589 dimension

Satellite image of leipzig obtained via open street map (OSM).

3D city model 3D
model (fbx)

6863 objects 3D models of the buildings of leipzig (floor area and height) obtained via OSM.

Vegetation Points (csv) 4,296 points/rows Data of city trees.

Noise map Raster (tiff) 10 m × 10 m raster Noise mapping of the city of leipzig 2017 in dB (A). Europe-wide standardized noise values, a 24-h
day-evening-night noise index (day evening night) (LfULG, 2018).
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2.5 Data and data integration

In order to put the data from the mobile sensors into

context and to be able to analyse them, a number of additional

data sets are integrated into the application. Table 2 gives an

overview of these multifaceted datasets and a brief

description.

The data described in the table is read into the Unity

application. An interface was implemented for the csv files,

through which the measurement data, the vegetation data, the

weather data, and the questionnaire data can be read in

accordingly and saved as a list of objects of a specific type

such as GPS point, tree, weather, and questionnaire data. The

other data sets can be read into Unity by default.

The mobile sensor sets (Section 2.3) simultaneously

recorded multiple environmental parameters (air

temperature, air humidity, particulate matter, ozone,

nitrogen oxides, noise, and light). Each measurement refers

to a specific time and location registered by the GPS. For this

reason, variations in individual measurements may be caused

by temporal or spatial changes. For most measurements, it is

not possible to decompose the temporal and spatial variations.

However, air temperature and humidity clearly follow a

diurnal cycle, and this temporal pattern is represented by

measurements taken at a fixed station (weather station).

Taking advantage of this property, we have removed the

daily course from the temperature and humidity

measurements, resulting in data (ΔT,ΔRH) that represent

only the spatial distribution of temperature and humidity:

ΔT � Tmobile sensor − Tweather station

ΔRH � RHmobile sensor − RHweather station

The weather station is representative for the urban area and is

only influenced by the diurnal cycle (and other variations of the

region’s temperature), but not by local building structures. Since

the relative humidity is closely related to temperature, we

additionally considered the absolute humidity (AH) as a more

independent measure of air humidity.

AH � RH · 6.0328hPa · e 17.1485·T
234.69+T

R · (T + 273.15)
T air temperature in °C

RH relative air humidity/100%

R gas constant of water (461.52 J/kg/K).

Air pollution and noise data do not follow as clear a

diurnal cycle as air temperature, so we did not remove a

diurnal course from these measurements. When comparing

the measurement data from the campaign with data and maps

from other sources, it has to be noted that measurement

intervals vary and other methods may have been used for

measurement (e.g., number of particles vs. weight of particles

in the case of fine dust).

2.6 Data visualization and analysis

We implemented an application that allows to take two

perspectives in data analysis: 1) participant and 2) urban

area. For the participant analysis, GUI elements were

implemented that visualize data at participant level. This

includes the questionnaire data on the one hand and personal

exposure to various parameters (e.g., temperature) on the other.

The exposure is shown for all of a participant’s routes, as well as

the minimum, maximum, and average of their total exposure (see

Figures 4, 12). For the urban area analysis, all measuring points of

the mobile sensors (referred to below as GPS points) are

displayed, with either the colour coding, the scaling or both

representing the value of the currently selected parameter. By

applying analysis methods such as filtering, space time cube, and

hot/cold spot calculation, the distribution of stressors within the

city can be examined. The methods are described in more detail

below.

Users can choose between different perspectives: perspective

view, orthographic top view, and orthographic side view. In

addition, the individual data layers (each representing a data

set, see Section 2.5) can be shown and hidden. The time of the

GPS points can be used to display the data in the form of a space

time cube. It is possible to use the time of day or the total time

since the start of the campaign as the z-value. Due to the shadows

cast by the routes, the position of these on the plane can be seen.

In order to be able to display the personal exposure data for

each person, it is necessary to assign the individual measuring

points to a route, which in turn is assigned to a specific

participant (via calendar week and equipment ID). A method

has been implemented that allows to connect the individual GPS

points according to the routes driven/walked, with the direction

indicated by the colour coding (from white to black). All GPS

points currently displayed in the scene are included here (hidden,

filtered out GPS points are not taken into account). In this

context, the application also allows to extract GPS outliers

when drawing the routes (also useful for calculating hot/cold

spots). Neighbouring GPS points on a route that are at a distance

greater than a defined threshold are excluded (see Figure 1).

The absolute values of the measurements from mobile

sensors are not calibrated to the same extent as is the case

with official measuring stations. That is why we decided to

focus on the relative values in our analysis. A method has

been implemented that calculates the color-coding of the

values according to quantiles of the overall distribution of all

values in the data set. For this purpose, a list of all values is

created for each parameter during initialization and the quantiles

are calculated on this basis and assigned to a colour (see Figure 2).

A chained filtering method was implemented for filtering

out GPS points of the complete data set by defined value ranges.

Several filters can be connected one after the other. Each contains

information about the parameter, a minimum, and a maximum

value. In addition to filtering by measured values of the GPS
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points, it is possible to filter by weather parameters (e.g., wind

speed).

Time geography was introduced in the seventies and eighties

by Hägerstrand (Hägerstrand, 1982) and extended the spatial

view of data to include the temporal aspect (Kraak, 2003). Since

then, space-time cubes have become a popular method especially

for visualising environmental and traffic data (Ahmedi et al.,

2022; Yoon and Lee 2021). There is a number of commercial

software (e.g., ArcGIS, GeoTime) that supports this method and

increased its popularity. For our application we used the

approach and implemented a method where the z-axis is used

to represent time in 3D space. This means that in addition to the

spatial distribution of the measuring points and associated

measured values, the temporal aspect can be included in the

analysis. Two modes are available for this: on the z-axis 1) the

time since the start of the campaign is displayed or 2) the time of

day (see Section 3.2 for some examples) in displayed.

In 1992, Getis and Ord developed an algorithm for

calculating hot and cold spots of a set of features (in our case

points) (Getis and Ord 1992). We implemented a method that

FIGURE 1
GPS points measured with mobile sensors connected according to the driven/walked route (direction from white to black) with GPS outlier (A)
and after removing GPS outlier (B).

FIGURE 2
Colour coding of measured (top) and calculated (bottom) parameter.

FIGURE 3
Calculated neighbours (blue outline) for an example GPS point (magenta outline) for different radius in space time cube visualization mode.
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calculates Gi* for a selected parameter for all GPS points. For this,

the neighbours within a defined radius are calculated for each

point (see Figure 3). The z-value for the corresponding GPS point

is calculated based on the values of all neighbouring GPS

points. In addition, the method can also be applied to a

subset (e.g., after filtering) and only takes into account the

currently displayed GPS points. In this application, the

temporal component is also taken into account when the

space-time cube has been applied. In addition to the 2-

dimensional spatial neighbourhood, a 3-dimensional one is

calculated in which time (on the z-axis) is considered.
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2.7 Virtual reality environment

The presentation of data in an immersive VR

environment increases the perception of domain scientist

on the studied scene as well as it enhances the visual

understanding of the data analysis process. Therefore, the

application was built for and presented in the TESSIN

(Terrestrial Environmental System Simulation and

Integration Network) VisLab of the UFZ, which is a large-

scale interactive multi-audience stereoscopic 3D projection

environment that enables users to dive into the data and to

explore as well as analyse complex, heterogeneous

environmental data (Bilke et al., 2014). The VisLab

consists of 13 Digital Light Processing (DLP) projectors

and is driven by a multi-GPU (Graphics Processing Unit)

visualization server to produce a high-resolution active

stereoscopic 3D image on a power wall composed of

4 large-scale projection screens. In addition, a tracking

device calculates the relative translation of the viewer

against the application origin and adjusts the resulting

image position accordingly to immerse the VR perception.

A VR controller is used to capture the user input and

transmits it to the application for further processing of the

intended behaviour.

Unity allows developers to produce a stereoscopic 3D

build of their applications. We used the VisLab configuration

component of UFZ-Unity-Framework for easy adaptations

(Rink et al., 2022a; Rink et al., 2022b). This framework can be

used to create Unity scenes by importing heterogeneous

environmental data, assign visualization properties to

them, and interact with this data by extending the

predefined UI components. The UFZ-Unity-Framework

includes a VisLab component, which is an extended

version of UniCave (Tredinnick et al., 2017). It enables

the Unity scenes to be displayed in the VisLab by defining

the real-world display configurations. According to the

predefined display configurations, it creates virtual

cameras to ensure that each projection screen produce the

right image seamlessly onto the corresponding screen.

Stereoscopic 3D option allows to produce a high

resolution active stereoscopic output with doubling the

virtual cameras in the scene that are translated by a

predefined IPD (inter-pupillary distance) from each other

to create two images to be rendered for each eye of the

audience. Then, these images alternate in a 120 Hz frequency

when they are rendered on the screen with the synchronized

shutters of glasses that users wear to obtain the 3D

perception. The tracking device captures the location and

orientation of the master viewer in the VisLab and broadcast

this information over the network, which is received by the

server running the Unity application. This process is handled

by VRPN which is a device-independent, network-

transparent system for accessing virtual reality peripherals

from VR applications (Taylor et al., 2001). The location and

orientation information is then used by the VisLab

component to calculate the relative position and rotation

of the master viewer in the Unity scene to align the output

image on all output screens. Similarly, the VR controller’s

input stream is transmitted to Unity over VRPN and the

VisLab component processes the raw input data to locate the

pointer and to determine what input signal is received. Then,

it triggers the corresponding behaviour.

Our application is configured to run in a single Unity

instance to be presented in the main virtual screen (2 of

4 physical screens) in the VisLab which consists of

8 projectors. The GPU driver is employed to create one

seamless image of 8 projector outputs. The universal user

interface of the application is very complex and therefore not

appropriate to use in a VR system. It can be controlled by

conventional input devices. On the other hand, navigations in

the scene and dataset interactions are handled by the VR

controller.

3 Results with discussion

In this chapter we discuss how our approach will help to

meet the challenges of data analytics in the future. We present

the visualisation and analysis application and address the

requirements mentioned in the introduction and how they

were met. Afterwards, we give examples to show how the
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application can be used to test hypotheses and establish

new ones.

3.1 Our approach for the future analysis of
heterogeneous environmental data

Level of stressors differ very much within a city and we want

to investigate the influencing factors. For this purpose, it is

necessary to include a large number of additional data

(buildings, vegetation, traffic frequency, etc., see Section 2.5).

The analysis of this extensive, heterogeneous data is challenging

and we follow a combination two approaches: 1) methods of 3D

visualisation (using the human ability to grasp visual information

very quickly), and 2) statistical methods (aggregation of data to

reduce its volume and focus on the essentials). Thereby patterns

can be recognised within the city and multiple influencing factors

can be identified and quantified. In contrast to conventional

approaches (see chapter 1), where island solutions are often used,

developed by relatively small development teams, we use an

established game engine as the basis for our application. Unity

has a large, active community that provides extensive support for

development and a large number of free and commercial assets.

Thereby it is possible to integrate different data formats with a

straightforward development effort and thus enables developers

to combine data from different projects generated with different

software. In our application, for example, an interface for the

integration of csv/txt files was implemented so that these can be

accessed directly from the application and no pre-processing by

other software is necessary beforehand.

Our approach enables the combination of modern 3D

visualisation with various analysis methods. On the one hand,

it allows us to provide quicker insight to complex data by

showing them in naturally familiar surroundings (e.g., GPS

points in 3D model of the city). Thereby people can orientate

themselves very quickly, e.g., on the basis of landmarks (e.g.,

skyscrapers, parks, railway stations). On the other hand, methods

for filtering and statistical analysis of the data are provided, which

are otherwise only available in software, which in turn provides

very limited visualisation methods.

One challenge of visualising heterogeneous, complex

environmental data is to facilitate multidisciplinary,

collaborative research. By providing methods for presenting

the data in a VR environment, we provide an environment

that is very well suited for collaborative work. However, it

should be noted that navigation in the VR environment is

very unfamiliar to many and it requires some training to

become more familiar with it and thereby work effectively

with it. For example, the devices available for navigation in

3D space (e.g., Flystick) are new to most people, as is the

ability to move in three dimensions (as a human being, one

usually moves horizontally, vertical movements are only possible

with aids). A more natural form of movement would be to walk

through the scene as an avatar, but this makes it difficult to get an

overall view. Another option is to offer fixed viewpoints that

users can access. In our application, three fixed viewpoints have

been integrated; besides the bird’s eye view as a good starting

point, there is also a direct top view, which provides good

orientation, and a side view.

We claim that our approach is suitable for implementing

analysis and visualisation tools in future projects, especially

collaborative projects and projects with high

interdisciplinarity. The trend towards open access and open

source of source code in science ensures that developments

are made available to each other. In the future, this could lead

to some kind of modular system for Unity that can be used as a

basis for new projects. Thereby, the development effort can be

reduced enormously and multiple use as well as further

development of modules can be promoted.

3.2 The application

The application consists of the scene and the GUI elements

(requirement a., see Figure 4 for an overview). In the centrally

displayed scene, the data is represented by 3D objects (e.g.,

buildings, vegetation, measuring points). The main menu is

located at the top. It can be used to

• select the measurement parameters to be displayed

• change the perspective

• hide and show layers

• switch to the space time cube visualisation mode

• filter the data

• adjust the size of the measurement points

• perform the cold/hot spot calculation (with outlier

exclusion, radius definition, and neighbour calculation)

The GUI also displays additional information on the selected

measuring point and respectively on the assigned participant:

• Mobile Measurement: parameters measured with the

mobile sensors

• Questionnaire data of the participant associated with the

measuring point

• Weather Station Data from the Leipzig weather station

recorded at the time of the mobile measurement as well as

values calculated from both (delta of temperature and

humidity)

• Personal exposure of the associated participant to the

selected parameter per route with time specification as

well as maximum, minimum, and mean value of the total

exposure over the complete period.

One requirement was to analyse the data with a smooth

performance (requirement b.). However, it should be noted that
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the frames per second (fps) are lower when all measurement

points and additional data sets are displayed. By being able to

filter the measurement points directly as well as to easily show

and hide additional data sets without extra loading times,

methods were provided that allow a temporary and reversible

reduction of the data and thus enable a smooth performance.

Furthermore, by saving the analysis results (values for cold/hot

spot calculations), it is possible to call them up repeatedly without

having to spend additional computing time. For example,

analyses of different parameters or with different settings can

be compared conveniently.

The different data sets are conventionally analysedwith different

applications and an intersection of the data was thus not possible.

The application supports the integration of different data sets

(requirement c.) and allows the analysis and the search for causes of

patterns that occur, which is shown by the examples given in this

chapter. The different representation of the data as 3D objects

(requirement d.) ensures that they can be displayed simultaneously

without causing occlusion and clutter. A combination of

representing the values of one parameter by colour and another

by the size of the measurement points (spheres) makes it possible to

quickly capture and display relationships between several

parameters. The representation of time as a function of altitude

makes it possible to compare the values within the campaign time as

well as over the course of the day (see examples in Section 3.2).

The use of colour coding according to calculated quantiles for

each parameter makes it possible to identify particularly high and

low measured values at first glance in relation to the complete

measurement campaign. This is especially helpful for viewing the

individual load of a participant (see Figures 5, 13). In order tomake

areas with conspicuous values even more visible, the calculation of

cold and hot spots was implemented (requirement e.). Examples in

Sections 3.2, 3.3 show application examples of this method.

For the visualisation and analysis of the data, the application

was exported and run as aWindows program and adapted for VR

Lab (requirement f., see Section 3.4). In the following, use cases

for the application are described and the results of the analysis are

presented and discussed.

3.3 Patterns of the distribution of
parameter values in the city

In a first step, the presented application serves to get an overview

of the collected mobile data and to analyse its distribution over the

city area. Particularly characteristic points in the city are of interest,

such as parks, the inner-city ring road, themostly car-free inner city,

inwhich there is also a ban on cycling during the day. Figure 5 shows

the patterns of the speedwithwhich participantsmoved around the

city. A satellite image has been integrated into this display to support

FIGURE 4
Screenshot of the application showing GUI and scene with data (mobile sensing data, buildings, vegetation, and satellite image).
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FIGURE 5
Patterns of the speed with which participants moved around the city.

FIGURE 6
Patterns of the NO distribution measured by the mobile sensors.
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orientation and localize green areas and prominent buildings (e.g.,

main station) easily. Areas or roads with particularly high measured

speeds on the routes of the participants can be seen on themain road

that runs east past the train station 1), as well as on the parallel main

road to the south 2) and to the west in the park 3), as well as along

the river 4) and on the main road bridge 5). Lower values can be

frequently seen in the inner-city area 6) and on smaller side streets.

The measured speed on this overview map is between 0.2 and

12.1 m/s. The analysis of the speed confirms the hypothesis that a

higher speed of the participants can be observed in areas with well-

developed cycle paths and in parks.

Certain patterns could be recognized in the distribution of

nitrogen oxide (NO), which is an indicator for motorized traffic.

Figure 6 shows higher values especially around the main station

1) and north-east of it on the main streets 2). Areas of low NO

values can be identified mainly in the park 3) and smaller side

streets 4). In this representation, the buildings have been

integrated to analyse correlations between narrow and wide

housing and the distribution of NO. The measured

concentration of NO on this overview map is between 0.7 and

676.7 in parts per billion (ppb).

It could be shown where cyclists are travelling at particularly

high speeds. These areas are largely congruent with areas of

higher NO pollution. Thus, if cyclists want to drive fast, they

have to accept exposure to environmental stressors. The result

indicates that promoting cycling infrastructure in side streets

(current condition: often no cycle lane, often poor road surface)

can have a positive health effect for cyclists. Routes through

parks already combine speed and low impact. The use of derelict

land (especially along old railway tracks) could be a good

addition to create missing “green” connections in the city.

This example showed that the application is a very helpful

tool for urban planners, as connections can be easily

visualised and analysed.

3.4 Impact of time

In order to analyse the extent to which the concentration of

environmental stressors depends on the time of day or week in

which they were measured, we use the option of displaying time

on the z-axis. Figure 7 shows a plot where the campaign time is

represented on the z-axis. In the case of routes driven several

times, the values can be analysed depending on the calendar

week (CW) in which they were travelled. The example shows the

absolute measured temperature. It is easy to see which weeks

were hotter and which were colder. These observations can then

be compared with archive data from the weather stations.

Figure 8 shows the calculated cold and hot spots (see

Section 2.6) of PM2.5 without (a.) and with representing the

time of day in the z-axis (b.). In Figure 8A it can be seen that

there are both cold and hot spots in some areas. In order to

analyse this more precisely, we use the space-time cube

(Figure 8B). Here, an accumulation of cold spots depending

on the time of day can be detected. This is particularly visible

in the south of the inner city ring road. In the second half of

the day, cold spots of particle pollution can be detected. This

observation can be made for both PM2.5 and PM10.

FIGURE 7
Display of the campaign time in the z-axis to identify conspicuous environmental pollution depending on the week they were measured.
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In Section 2.5 it is described how the temperature

measured by mobile devices is corrected by the temperature

measured at the weather station in order to eliminate the

natural temperature course of a day. Figure 9 shows the

calculated cold and hot spots (see Section 2.6) of ΔT. An
accumulation of hotspots depending on the time of day can be

seen when applying the space time cube visualisation. This is

particularly visible in the area of the inner city ring road,

especially in front of the main train station (A) and in the

eastern area (B). In the second half of the day, hotspots of ΔT
can be detected.

The possibility to display the temperature as a value of

the z-axis allows the comparability of different points in

time, both when looking at the entire measurement

FIGURE 8
Display of the daytime in the z-axis to identify temporal and spatial patterns of environmental pollution (here PM2.5). (A) in 2D and (B)with space
time cube visualisation.

FIGURE 9
Display of the daytime in the z-axis to identify temporal and spatial patterns of urban heat in front of the main train station (A) and in the eastern
area (B).

FIGURE 10
Comparison of simulated and measured noise pollution (A) and display of the daytime in the z-axis to identify temporal and spatial patterns of
noise (B).
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campaign and when analysing the values according to the

time of day. It was possible to identify areas with cold spots of

PM levels in the second half of the day, which can be

explained by an increase in wind at this time of day and

thus the transport of PM out of the city. In addition, we

identified areas in which heat is particularly stored and

whose temperature deviates significantly from that in the

surrounding area, especially in the evening and overnight.

This shows the potential of the application in the field of

urban planning. Areas of the city can be identified where

green infrastructure should be created. The effect of this

could then again be verified by mobile measurements and

integrated into the application for analysis.

When comparing the simulated noise exposure and the

measured one by mobile sensors, a high level of correlation

could be shown (see Figure 10A), but also differences could be

detected, especially in the park. We expected to see noise

exposure patterns throughout the day, e.g., higher loads in

rush hour times. However, Figure 10B shows that no patterns

can be seen in the temporal distribution of the hotspots (z-axis).

This example shows the current limitations of the

application. By implementing additional analysis methods

(e.g., statistical methods), these can be eliminated. The fact

that no patterns could be detected for the parameter noise

related with time of day could be due to the fact that multiple

influencing factors play a role here (e.g., speed, wind speed,

wind direction in combination with the direction of the road,

time of day, road type). Causality algorithms can be

implemented to identify these more complex correlations, in

the future.

3.5 Outlier analysis

One task that the application aims to process is the

analysis of outliers. It should be investigated for which

parameters these are present and the reasons for their

occurrence should be analysed. Figure 11B. shows the

analysis of the hot and cold spots for NO. Here we can get

a first impression of where cold and hotspots are located. In

order to make the outliers clearly visible, it is required to scale

the spheres according to their values. In Figure 11A it can be

seen that the cold spot outliers are in three areas. To find the

cause of the outlier values, we compared the additional data on

these points. For all three areas, the values of specific

participants are responsible, which can be clearly identified

by the calendar week (CW) and the equipment ID. The

equipment ID is different for everyone, which means that

an inaccurate calibration of the gas sensor can be ruled out as

the cause. We could not find any abnormalities in the other

parameters measured. Likewise, when looking at the values of

the weather station for these three examples, no abnormalities

could be identified. When examining the participants’

personal exposure to NO, it was found that these contained

both minimum and maximum values, but that two had a

disproportionate accumulation of minimum values (see

FIGURE 11
Identification of outliers, e.g., cold spots of NO concentration for three participants using representation of value by colour and size (in addition
simulated traffic is shown as lines). (A) with size by value and (B) without size by value.
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Figure 12). In addition, the questionnaire data of the

respective participants were considered in order to analyse

whether a particularly high protective behaviour of the

participants was indicated, which could explain the values.

This could not be proven. Including measures of perceived

threat and coping abilities can contextualize individuals

routing choices. Including questionnaire data on

participants’ intentions to choose routes with low pollution

can also help to analyse whether their intentions align with

their actual route choices and the respective pollution levels.

Furthermore, the questionnaire included questions on routing

habits. These can also help to contextualize people’s route

choices. Urban planners can take this information into

account when planning bike lanes that are not only low in

pollution levels, but also align with user preferences and

habits.

This example shows the current limitations of the

application, which can be addressed, for example, by

integrating additional data (e.g., socio-economic data) and

thus identify reasons for the appearance of outliers.

3.6 Presentation in virtual reality lab

The implemented application was adapted for

presentation in the VR lab of the UFZ (see Section 2.7) and

tested there in several sessions. In addition, an analysis session

was held with project members in May 2022 to review the

results, where it turned out that the application was a very good

way for experts in the domain to examine the data in detail.

Especially the representation in the space time cube becomes

even more vivid and intuitive in the VR environment, especially

paired with the representation of the routes. Furthermore, a

workshop with stakeholders from different areas took place

focusing on the topic heat stress (Figure 13). The application

provided these stakeholders with a quick and comprehensible

insight into the project data. Further requirements could also be

FIGURE 12
Personal exposure in total (top) and per route (below) to NO of participants with outlier values.

FIGURE 13
Presentation of the visualization and analysis application
during a workshop with stakeholders in the VR environment
TESSIN VisLab (Photos: Özgür Ozan Sen).
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identified in the discussion, for example, information on

specific buildings (schools, hospitals, care facilities) would be

helpful, because vulnerable groups of people are exposed to

stressors there.

This form of presentation is particularly suitable for

interdisciplinary research and interdisciplinary discussions

in general, and thus functions as a boundary object

between the disciplines. It should be noted that an

appropriately large time frame should be planned for these

sessions in order to allow the participants a certain

familiarisation phase with the VR environment.

4 Conclusion and outlook

In this paper we presented a visualisation and analysis

application for environmental mobile sensor data in an urban

context. The analysis of a measurement campaign was used to

show how the application can be used in practice and what added

value it brings compared to conventional applications. The

application enables merging different data/sources (Urban 3D

structure, sensor data, weather data, questionnaire data) and

apply spatial analysis algorithm (Getis Ord Gi*) including

neighbour calculation in space and time. The analysis of the

distribution of the data over the city is possible as well as the

analysis of the exposure to environmental stressors of a single

individual. The possibility to use the application on a PC as well

as in the VR environment makes it versatile (e.g., analysis

sessions by experts/non-experts, workshops with stakeholders/

citizens). The application has achieved the goal of meeting all

requirements. However, it should also be noted that the design

and implementation of such a customised tool also implies a

certain development effort.

We claim that our approach should be used for

implementing analysis and visualisation tools in future

projects, because of these aspects:

(1) It has the potential to become a modular system for

applications by reusing and further developing methods

(utilize open access and open source resources).

(2) It enables the combination of modern 3D visualisation with

various analysis methods.

(3) It supports presentation in VR environments and thereby

facilitates multidisciplinary, collaborative research in

collaborative projects and projects with high

interdisciplinarity.

Our work has shown the importance of adequate tools for

analysing environmental data. The results showed how areas

can be identified where improvements in terms of conditions

for cycling and walking are required. In the future, the

integration of real time data into the application would be

interesting in order to quickly detect changes (e.g., through

the creation of green infrastructure in certain areas) and to

take short-term measures in acute cases (e.g., severe

heatwave). In addition, it should be investigated whether

there are patterns in individual exposure in connection

with socio-economic data of the individual, or route

lengths and city districts. We also want to test other

visualisation methods, such as continuous surface to show

and compare pollutant levels. The calculation and

presentation of uncertainties in the measurements is also a

priority for future work.

Another future application for the tool is in psychological

studies where test persons could drive routes in the VR

environment and the corresponding level of

environmental stressors is visualised. Specifically, future

studies may investigate if providing information about

environmental stressors in VR environments will affect

perceptions of personal environmental health risks

and—subsequently—influence participants’ mobility

behavior intentions (e.g., routing behavior). Intriguingly,

applying a VR environment may even offer an

opportunity to test participants’ routing behavior choices

more directly. For example, future studies may provide

participants with information about their personal

exposure to environmental stressors on their daily trips.

Following this, respondents could be asked to choose

between different routes to drive/ride in the VR

environment, involving different levels of exposure to

environmental stressors and different opportunity costs

(e.g., travel time). This could complement or even replace

field studies in the future.
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