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The increasing frequency and severity of water-related disasters such as floods,

tornadoes, hurricanes, and tsunamis in low- and middle-income countries

exemplify the uneven effects of global climate change. The vulnerability of

high-risk societies to natural disasters has continued to increase. To develop an

effective and efficient adaptation strategy, local damage assessments must be

timely, exhaustive, and accurate. We propose a novel deep-learning-based

solution that uses pairs of pre- and post-disaster satellite images to identify

water-related disaster-affected regions. The model extracts features of pre-

and post-disaster images and uses the feature difference with them to predict

damage in the pair. We demonstrate that the model can successfully identify

local destruction using less granular and less complex ground-truth data than

those used by previous segmentation models. When tested with various water-

related disasters, our detectionmodel reported an accuracy of 85.9% in spotting

areas with damaged buildings. It also achieved a reliable performance of 80.3%

in out-of-domain settings. Our deep learning-based damage assessment

model can help direct resources to areas most vulnerable to climate

disasters, reducing their impacts while promoting adaptive capacities for

climate-resilient development in the most vulnerable regions.
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1 Introduction

The widespread impacts of human-induced climate

change have been observed as the frequency and intensity

of extreme events, including floods, tornadoes, hurricanes,

and tsunamis, increase (IPCC, 2022). Amid growing climate

risk, the global adaptive capacity to deal with disasters has

not progressed accordingly, although the Sustainable

Development Goals call for a worldwide response (Field

et al., 2012). The lack of timely, comprehensive, and

accurate data tracking damage at a fine-grained

geographical level is one of the main reasons for such an

adaptation deficit (Amundsen et al., 2010; Moser and

Ekstrom, 2010). For example, damage estimates are

available only at the province level in the Emergency

Events Database (EM-DAT), the largest international

disaster database, making it difficult to pinpoint the

worst-hit areas. Moreover, conventional damage

assessments using field surveys are resource-intensive and

time-consuming (Cao and Choe, 2020), which hinders

comprehensive regional coverage (Bakkensen et al., 2018)

and the rapid deployment of humanitarian assistance (Cao

and Choe, 2020). Field surveys may also suffer from

cognitive biases, such as reference dependence and recall

errors (Guiteras et al., 2015).

Recent research in computer vision has combined high

spatial resolution satellite images with machine learning to

estimate disaster damage at a pixel or incident level (Potnis

et al., 2019; Bai et al., 2020; Weber and Kané, 2020; Gupta and

Shah, 2021; Wu et al., 2021). These approaches use the XBD

dataset created by Gupta et al. (2019), the largest disaster damage

dataset worldwide, providing pre-and post-disaster images with

pixel-level damage labels. While the models developed using the

dataset have made significant technical advances, they are

fundamentally dependent on the existence of such fine-

grained, complex damage labels in disaster-affected regions.

Given that most high-quality ground-truth data comes from

developed countries, a deep learning model that combines

various forms of damage data and produces accurate local

damage estimates would be helpful in on the ground disaster

response efforts.

This paper presents a lightweight damage detection

model based on deep learning and high spatial resolution

satellite images. Our ground-truth data is less granular than

the data employed by existing segmentation models. This

feature is advantageous for developing countries lacking the

statistical capacity and resources to produce quality local

damage data. Evaluating our model against various water-

related disasters from 2011 to 2019, our model achieved a

performance of 90% in detecting disasters. In addition, the

model showed a reasonable performance of 80% in regions

not observed during training. Our case study on Providencia

Island further demonstrates the generalizability of our

model, as it successfully distinguished local destruction

caused by Hurricane Iota in 2021.

We focused on water-related disasters, such as floods,

tornadoes, tsunamis, and hurricanes, among many others,

given their increasing frequency and severity in the most

vulnerable low-and middle-income countries (Hallegatte et al.,

2013; Edmonds et al., 2020; Rentschler et al., 2022). Despite

substantial losses caused by disasters, a significant population is

unable to leave disaster-prone regions (Tellman et al., 2021) for

socioeconomic and political reasons (Hunter, 2005; Raker, 2020;

Lin et al., 2021; Henkel et al., 2022). This necessitates an effective

post-disaster response; therefore, local damage estimates can be

especially helpful in prioritizing relief efforts and climate-

resilient redevelopment.

The high-resolution satellite images have several advantages

over other spatial data sets (i.e., Google Street views and aerial

images) used in the related literature (Fujita et al., 2017; Vetrivel

et al., 2018). First, satellite imagery guarantees extensive spatial

and temporal coverage. Second, satellite images do not always

require resource-intensive damage labels for training, unlike

other spatial input data used in earlier literature (Fujita et al.,

2017; Vetrivel et al., 2018). Instead, they can combine various

forms of damage labels (e.g., pixel-level labels, point coordinates

of damaged properties, and district-level statistics)

corresponding to their size.

The proposed model makes several methodological

contributions to environmental damage detection. First, the

model effectively identifies local destruction by employing

binary damage labels corresponding to satellite images’ size.

This approach reduces the reliance of deep-learning models

on fine-grained, complex ground-truth data, making the

model more applicable to developing countries without access

to such data. Second, to the best of our knowledge, our model is

the first successful water-related disaster damage detection

model. Third, our model is practical because it does not

require extensive ground truth data specific to the damaged

regions and its performance remains robust in unseen regions.

Our algorithm can help policymakers by identifying the ideal

location for humanitarian assistance deployment and

minimizing the time lag between the onset of a disaster and

assistance responses. The model provides predicted labels to help

determine a measure of centrality for the location where

resources should be concentrated. As this machine learning-

based assessment can be implemented faster and cheaper than

conventional on-site inspections, development agencies would be

able to deploy well-targeted humanitarian aids in less time with

lower costs.

2 Related work

Recent works have explored the potential for remote

sensing data to assess societies’ average exposure to
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disasters (Smith et al., 2019; Tellman et al., 2021). Addressing

the limitations of conventional sources, some studies have

combined remote sensing data with neural networks to

measure disaster-incurred destruction directly. Fujita et al.

(2017); Amit and Aoki (2017); Duarte et al. (2018) applied

deep-learning-based models to pre- and post-disaster imagery

data to classify regions into damaged or undamaged areas. The

proposed classification models were trained with a large

number of damage labels specific to their input image data.

With methodological advances in machine learning

techniques, semantic segmentation models built on detailed

pixel-level ground-truth data have also emerged (Potnis et al.,

2019; Bai et al., 2020; Weber and Kané, 2020; Gupta and Shah,

2021; Wu et al., 2021).

Segmentation-based damage assessment using satellite

imagery is an environmental application of change detection

(Janalipour and Taleai, 2017). Change detection is the process of

identifying differences in the state of an object or phenomenon

by observing it at different times (Singh, 1989). Change detection

models are either unsupervised or supervised. Unsupervised

methods use clustering (Celik, 2009; Mehrotra et al., 2015),

thresholding (Ghanbari and Akbari, 2015; Khanbani et al.,

2021), or optimization (Kusetogullari et al., 2015) to find

intrinsic differences between images without any prior

information. On the other hand, supervised methods are more

common and can achieve higher accuracy than unsupervised

methods. However, they also require a large amount of pixel-level

labels for training (Zhu, 2017; Zou et al., 2022), which tend to be

the most expensive labels in the computer vision field, as they are

costly and time-consuming to gather.

The xBD dataset constructed by Gupta et al. (2019)),

significantly extended the coverage of pixel-level labels in

the damage assessment field. The objective of the xBD

challenge is a particular semantic segmentation task: first to

locate a building’s footprint and then estimate the damage to

each building. The dataset contains pre- and post-disaster

images along with pixel-level categorization for building

damage. This dataset sparked the development of numerous

segmentation-based damage detection models; for example,

Weber and Kané (2020); Wu et al. (2021) proposed U-Net-

based models, and Bai et al. (2020); Gupta and Shah (2021)

used pyramid pooling modules. Both architectures are

commonly used for image segmentation tasks.

While these segmentation models crucially rely on the

pixel-level ground-truth data, as in the original dataset, our

grid-level prediction model does not require such granular

labeling data. Thus, we used a simplified version of the xBD

dataset. We aimed to predict damage at rectangular-shaped

grids of size 0.01km2, which can still capture the localized

nature of disaster damages, but at much less computational

cost and with fewer data constraints. This lightweight feature

can be especially helpful for rapid disaster responses in many

countries.

One of the valuable global data sources in the damage

assessment field is provided by UNOSAT, the operational

satellite applications program of UNITAR1. This dataset

assesses building damage using a five-point scale, ranging

from No-Damage to Destroyed, with point locations. Despite

the extensive coverage of the dataset, especially in developing

countries, the models developed for semantic segmentation tasks

cannot use this data as it does not include damage information at

the pixel-level. One model that has been able to use the UNOSAT

data set is Xu et al.’s (2019) state-of-the-art model. They utilized

this data to build a binary classifier for detecting building damage

at the grid level. We applied our disaster events to their model

architecture and compared our model’s performance relative to

theirs.

3 Methods

We present a binary classification model that detects damage

in a region from satellite image data. Our model identifies the

rapid change mainly in building structures to distinguish the

damage in target regions. Model input is a pair of images taken

over the same geographic region before and after a disaster. Our

model aims to determine whether a given region was

substantially damaged due to a disaster. Due to the fixed

temporal resolution of satellites, one great limit of the

satellite-based approach is the difficulty of obtaining images

right before and after a disaster. Such a time gap inevitably

brings simple visual changes over the season and even general

urban developments (e.g., the construction of buildings and

roads). Our model needs to learn damage-specific features

rather than those simple visual changes, to report disaster

damage accurately.

We used transfer learning to train our model effectively,

following the methods of Jean et al. (2016); Xie et al. (2016).

Transfer learning consists of two steps: pre-training and fine-

tuning. Pre-training helps the model learn general low-level

features of the image with more straightforward tasks on a

large dataset. After the pre-training, the model is fine-tuned

to fit the objective of the target task. We followed this step and

first pre-trained the network with a simple classification task

for one satellite image. Only satellite imagery of non-disaster

situations was used during pre-training, which is much easier

to gather. After the pre-training, we fine-tuned our model to

detect the damage from a pair of satellite images. The model

can learn to determine whether the given region is destroyed

effectively, taking advantage of the learned general

geographical features from the pre-training that are

1 https://www.unitar.org/sustainable-development-goals/united-
nations-satellite-centre-UNOSAT
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closely related to losses of properties and construction in the

images.

3.1 Pre-training for general feature
learning

Convolutional neural networks (CNN) for various tasks are

often pre-trained with the ImageNet dataset (Deng et al., 2009).

ImageNet-1000 is a large image classification dataset with over

1.2 million images with 1,000 classes. With such a large dataset, the

model can learn mid-level visual features such as edges and corners

and be used as a generic feature extractor (Oquab et al., 2014). We

also started from the ImageNet-1000 pre-trained ResNet-18 model.

The ResNet-18 network is a convolutional neural network with

18 layers (He et al., 2016).We wanted ourmodel to get familiar with

the bird’s-eye viewpoint of satellite images before getting into the

main task since it has never seen any satellite images. This approach

is similar to that of Xie et al. (2016), which used a chain of transfer

learning to train a model for poverty mapping.

We used a set of satellite image I from arbitrary regions and

classified them into three classes according to their building density:

more than 50%, under 50%, and 0%. We followed the method

proposed by Han et al. (2020a), considering the limited size of the

labeled dataset. Human annotators labeled a total of 1,000 randomly

chosen images such that every image in I is labeled by five distinct

annotators. For each image IAi , a label vector yA
i �

[yhigh
i , ylow

i , yzero
i ] (0≤yhigh

i , ylow
i , yzero

i ≤ 1) is defined as the

mean value of five one-hot building density response vectors from

annotators.With this labeled pair set L � {(IAi , yA
i )}1000i�1 and a larger

set of unlabeled image setU � {IUj }Mj�1 withM= 145921, we pre-train

ResNet-18 to conduct a three-class classification in a semi-supervised

manner. The pre-trained network is used as an encoder in our

damage classification model, which extracts the embeddings that

contain semantic information about the images as high-dimensional

vectors.

3.2 Damage classification

After pre-training the model to understand the general

features of satellite imagery with large non-disaster images, we

fine-tuned the model to detect damage after a disaster. Figure 1

describes the overall workflow of our model. The disaster image

pair set D � {(Iprei , Iposti , yi)}Ni�1 includes pairs with satellite

images taken from the same pre-known damaged region

before and after the disaster, and yi, the binary label which

indicates damage to the region. The structure of our model

resembles the Siamese network, which has two branches with

identical structures and parameters (Chicco, 2021). In our

pseudo-siamese structure, however, the two identical branches

do not share the same parameters, thereby giving the model

greater flexibility (Zagoruyko and Komodakis, 2015). In addition,

damage assessment differs from conventional change detection

tasks because the target of interest in pre- and post-disaster

images differs. The post-disaster encoder should focus on distinct

features related to disasters, such as building wreckages, whereas

the pre-disaster encoder should focus on ordinary buildings. Our

model could effectively learn such distinctive characteristics

using a pseudo-siamese structure with two separate encoders.

FIGURE 1
The overall workflow of the proposed model. Our damage detecting model takes pairs of pre- and post-disaster satellite images as inputs and
classifies them into damaged pairs and undamaged pairs. We pre-trained the encoder with non-disaster satellite imagery before applying disaster
satellite imagery. The pre-trained encoders extract embeddings from pre and post-disaster images of size 224×224, positioning them in a 256-
dimensional space. For the final classification, we used three embeddings: embpre, embpost, embd, where embd is a subtraction of the first two.
The fully connected layer takes them as input and predicts the binary label of each pair. The resulting binary label is assigned for each grid with a size
of 0.093km2.
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The pre-trained ResNet-18 in the previous step was fine-

tuned as image encoders eθpre and eθpost for pre-event and post-

event image sets, respectively, to learn specialized features

separately. Each encoder reduces the dimensions of given

satellite imagery, transforming it into high-dimensional

embeddings representing the area’s vieual features. Then, we

generate an embedding difference vector embdi ∈ Rd and the

final concatenated vector vi for the i-th pair as follows:

embdi � eθpre Iprei( ) − eθpost I
post
i( ) (1)

vi � Concat eθpre Iprei( ), embdi, eθpost I
post
i( )( ). (2)

We used the difference of embedding in the final concatenated

vector to consider the change caused by the disaster in imagery.

By feeding the embedding difference to the classifier, the model

can learn the relationship between the features more effectively.

Finally, a damage classifier is trained to minimize the loss L
defined between yi and predicted value as follows:

L � 1
|D| ∑

Iprei ,Iposti ,yi∈D

H yi, ŷi( ), (3)

where H is a binary cross entropy loss function. The damage

classifier derives the predicted value ŷi � W · vi, where

W ∈ Rd×dim(yi) is a trainable weight matrix of the classifier.

3.3 Evaluation setting

We evaluated the model’s performance by its classification

accuracy to see whether the proposed model predicted the damage

well. Furthermore, we checked the precision, recall, and F1-score

considering the non-uniform distribution of class labels in our dataset.

Precision and recall are calculated based on the number of true

positives, false positives, and false negatives the model produces,

Precision � TP

TP + FP
, Recall � TP

TP + FN
, (4)

where true and false indicate whether the prediction made by the

model matches the ground truth label, and positive and negative

refers to the predictions made by the model. F1 score is the

harmonic mean of precision and recall,

F1 Score � 2p
PrecisionpRecall

Precision + Recall
, (5)

which varies from 0 to 1. A higher F1 score can be acquired only

when precision and recall are both high. Thesemetrics are frequently

used when the class labels of the dataset are imbalanced.

3.4 Training details

We used the Ranger optimizer (Wright and Demeure,

2021) with a learning rate of 1e-4 and the CNN-based

network ResNet-18 (He et al., 2016) that was pre-trained

with the ImageNet dataset. All satellite imagery in a pair

unit (pre- and post-disaster images) was rotated at random

for augmentation. The embedding size of the ResNet-18

encoder is 256, and we trained the model for 100 epochs.

Figure 2 shows the convergence of our model around

100 epochs.

4 Data

4.1 Satellite imagery dataset

We use the Zoom Level coordinate system to define satellite

images’ size, resolutions, and alignment. The purpose of using the

system is to maintain consistency with other studies that combine

satellite images and machine learning techniques (Jean et al., 2016;

Han et al., 2020b). The system is a tile-based coordinate system that

divides the entire world into non-overlapping square-shaped images.

At z of 0, the entire world map is fitted to a single image tile and an

increase of the zoom level by one results in half-sized image tiles. Thus,

at z of 1, the world map is divided into 2×2 image tiles and hence has

four times the resolution compared to z = 0. A higher zoom level

divides theworldmap intomore tiles, and each tile will cover a smaller

geospatial area at a higher resolution. Economic development in

regions is typically examined at a zoom level of 15 or more because

one can start identifying building structures that are important for

measuring population density at this zoom level. To clearly examine

building outlines and smaller objects like vehicles, z of 17 or higher is

typically used. However, processing images with higher zoom levels

requires greater computational power and has limited regional

coverage. Although they have a high spatial resolution, their

temporal resolution is inevitably small as satellites with high zoom

level cameras cover relatively narrow areas. Such low temporal

resolution makes it harder to frequently track the changes in rural

areas and countries that are still developing.

The zoom levels for input images ofmachine learningmodels are

selected considering the task and data availability. In the case of

damage detectionmodels, the target area is small and requires detailed

information. Thus, the existing damage detectionmodels use relatively

high spatial resolution images (z of 16–19) compared to the other

models, such as poverty mapping or land classification models. This

paper also employs satellite images at a zoom level of 17 (tile size of

0.093km2, 1.193m/pixel), allowing themodel to consider the wreckage

of buildings and roads. The RGB spectral bands are present in all of

the images utilized in this research. For model pre-training, images of

arbitrary regionswere employed.We collected 146,921 satellite images

spanning 2017 and 2018 from the ArcGIS World Imagery Wayback

resource2 for pre-training.

2 https://livingatlas.arcgis.com/wayback/
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4.2 Disaster dataset

The model was trained with the xBD dataset (Gupta et al.,

2019), which is the largest building damage assessment

dataset. The dataset includes pre- and post-images of

various natural disasters, along with building annotations

and damage scale labels. Damage labels span five types;

four are related to damage scales of buildings (i.e., no-

FIGURE 2
Learning curve of our model. (A) shows learning curve with F1 score. (B) shows learning curve with accuracy. The performance converges
around 100 epoch.

FIGURE 3
Method for simplifying the initial xBD dataset. The sliding window method crops each data sample (A) into nine different samples in (B). The
window size is 512×512, and the sliding unit is 256. Since the windows are half-overlapped, there are three windows on each side, resulting in
3×3windows. The orange and red boxes show examples of our windows. (A) shows the satellite imagery in the original xBD dataset before and after a
disaster at zoom level 16, with 1024×1024 pixels. The label has five classes: no building (black), no damage (white), minor damage (green), major
damage (blue), and destroyed (red). (B) shows the result after cropping. Each image tile is now in zoom level of 17 with 512×512 pixels. Finally, to
match the input size of the ResNet-18 encoder, we resized each image to 224×224 pixels. The cropped image is labeled 1 if it includes pixels ofmajor
damage or destruction; otherwise, it is labeled 0.
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damage, minor-damage, major-damage, and destroyed), and

one is non-buildings. The dataset covers 22 natural disaster

events of seven different categories. In this study, we targeted

water-related disasters, including hurricanes, tornadoes,

tsunamis, and floods. By focusing on them, our model can

better learn the characteristics of water-related disasters,

which are quite different from other disasters, like

geological events. We chose water-related disasters, as their

occurrences and impacts have been observed to grow among

the most vulnerable countries to climate change.

The satellite imagery in the xBD collection has a zoom level of

16, each image tile covering 0.373km2. We cropped each image

tile into four half-sized image tiles. The resulting image tiles cover

0.093km2 each, which fits the zoom level of our interest, z = 17.

We also employed the sliding window method to overcome the

limited training data size. With a window size of 512 and a sliding

unit of 256, we could extract nine data samples per one xBD data

sample. The method is depicted in Figure 3. After the cropping

process, the images were re-scaled to 224×224 pixels to match the

input size of the pre-trained ResNet-18 encoder.

Since our target is classification at an image level, the xBD

dataset with labels at the pixel level cannot be directly applied

to our model. Reducing the complexity of the data also brings

positive effects such as minimizing noises in the original data,

including the mismatch of building boundaries between the

pre- and post-disaster images and the uneven distribution of

damage class labels. We used a simple method to aggregate the

information from each building polygon to derive the binary

disaster label for each image. The image is classified as

damaged if the maximum damage level of buildings in the

image is greater than or equal to major-damaged. For

example, Figure 4 is labeled as damaged since the

maximum damage level in the image is major-damaged.

However, if the maximum damage level in the image is less

than or equal to minor-damaged, it is considered undamaged.

In the case of minor-damaged buildings in the xBD dataset,

there is no discernible visual difference in the pre- and post-

disaster images (Figure 4). In contrast, major-damaged

buildings have a significant difference. Considering the

characteristics of xBD labeling, we treated the images with

only minor-damaged buildings as undamaged to reduce label

noise and prevent the model from confusing small changes

and the features of the damaged building.

After applying this rule, we acquired 12,241 damaged pairs

and 25,109 undamaged pairs of satellite images. The data is

summarized in Table 1. Among the total of 37,350 images,

11,018 did not include any buildings. The number of images,

including major-damage, minor-damage, and destroyed, is

10,209, 10,046, and 6,413, respectively. The number of images

with maximum damage levels of minor-damage, major-damage,

and destroyed was 3,923, 5,828, and 6,413, respectively.

5 Results

5.1 Comparison with baseline models

The xView2 challenge3 held in 2019 used the xBD dataset as a

benchmark, and many models were proposed for damage

assessment. However, our model cannot be compared to these

models because the tasks and evaluation metrics are different.

The xView2 challenge is defined at the building level, whereas our

model detects damage at the grid level.

Before the xBD dataset was created, Xu et al. (2019)

created a binary classification model which uses satellite

imagery of pre- and post-disaster to detect the damage

level. They built their own dataset covering only three

disasters to train the model. Their model comes in four

FIGURE 4
Examples of damage labels extracted from the xDB database. The pre- and post-disaster images of minor damaged structures are nearly
identical, yet they show substantial visual differences for major damaged buildings.

3 https://xview2.org/
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different versions: Channel Concatenate (CC), Post-disaster

Only (PO), Twin-tower Concatenate (TTC), and Twin-tower

Subtract (TTS). To the best of our knowledge, this work is the

only research that has tried to detect the damage at a grid

level. Therefore, we compared their models as a baseline.

The pre- and post-images are concatenated in the CC model

before being fed to the AlexNet (Krizhevsky et al., 2012). Only post-

disaster satellite images were used as input in the PO model. TTC

and TTS models input both images to AlexNet’s first

convolution layer to extract the activation map at the lower

level. TTC employs the concatenated activation map of two

images as an input for the remaining convolution layers, while

TTS uses the subtraction of the two activation maps. We

implemented the model and trained it with our simplified xBD

dataset.

Table 2 shows the baselines’ worst and best performance

compared to our model. The experiments were conducted using

five different train and test splits. The bold text indicates the best

performance. Both twin-tower baseline models, TTC and TTS,

showed better performance than the single-tower ones, CC and

PO. This result indicates that the model can capture damage better

when pre- and post-event images are embedded separately. TTC and

TTS showed similar performances, but TTC detected the damage

slightly better since concatenation tends to lose less information in

training than subtraction. Compared to all of the four baseline

models, the result from our model showed higher performance

in all four evaluation metrics. In particular, the large gap in

recall showed our model’s ability to produce fewer false

negatives on the damaged region. The proposed model

utilizes embeddings of both images with a full encoder,

which better preserves the information of the original image.

We also took advantage of the benefits of TTC and TTS by

putting together embeddings of pre- and post-images and

subtracting them.

5.2 Ablation study

To check the role of each component, we conducted an

ablation study where we removed each component from the

model and evaluated the model performance. In this manner, we

can check which components contribute the most and which

may be removed.

• Without embd. To understand the impact of the

embedding difference vector, embd, on model

performance, we removed the embd and used only the

two embedding vectors.

• Without sep. The encoder for pre and post-images is

trained separately in the full model and does not share

the parameters. We used the identical network for both

images to test whether separating the two networks helps

the model performance.

• Without embd, sep. We removed embd and shared one

network for pre and post-images. This model can measure

how the two components affect each other.

• Without pre-training. We trained the model from the

random initialized state to understand how the model

gets general information from the building density

classification task.

TABLE 1 Statistics of dataset with 11 events.

Disaster type Event Name Event Dates Positive pairs Negative pairs All

Hurricane Matthew Oct 2018 1,996 1,649 3,645
Harvey Sep 2018 1,951 2,747 4,689
Florence Sep 2018 1,151 3,763 4,914
Michael Oct 2018 2,638 2,312 4,950

Tornado Joplin May 2011 595 746 1,341
Moore May 2013 324 1,719 2,043
Tuscaloosa–Birmingham Apr 2011 487 2,600 3,087

Flooding Midwestern U.S. Jan-May 2019 378 3,627 4,005
South Asian Jul-September 2017 1,861 3,710 5,571

Tsunami Sunda Strait Dec 2018 91 1,241 1,331
Sulawesi Sep 2018 769 995 1,764

Water-related All 2011–2019 12,241 25,109 37,350

The bold text shows the statistics of all events.

TABLE 2 Performance comparison with baselines.

Precision Recall F1 Score Accuracy

CC 0.762 0.641 0.696 0.817

PO 0.716 0.621 0.663 0.794

TTC 0.741 0.669 0.703 0.815

TTS 0.759 0.648 0.697 0.816

Ours 0.796 0.767 0.781 0.859

The bold text indicates the best performance in each metric.
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Table 3 compares the performance of each model. The

experiments were conducted using five different train and test

splits. The full model outperformed the others, demonstrating

the value of each component. Interestingly, without pre-training

model had the best overall performance among the ablationmodels,

followed by without embd model. While the without embd model

shows relatively high performance, the without embd, sep showed the

poorest performance, demonstrating the need for independent

encoders. This contradicts the findings of Weber and Kané

(2020), which claimed that the model performs better when one

network is shared for pre and post-disaster images.

The cause is likely due to the difference in task

objective—classification vs object identification. The network sees

the doubled training data when two images are shared, which can

help with detailed object detection learning. Ourmodel, on the other

hand, is a classification model that considers the entire context

rather than just a few data points. Separately focusing on the before

and after contexts can help the model perform better. Also, the

without sep model has the second best precision with the poorest

recall among all ablation models. When the pre- and post-

embeddings are extracted using the same encoder, the model is

more likely to report observations as undamaged more frequently,

resulting in higher precision with poor recall.

5.3 Qualitative analysis

We conducted a qualitative analysis to better understand the

model’s ability to identify the features of natural disaster damage.

Figure 5 shows the success and failure cases and the ground truth

labels from the xBD dataset. Our model successfully detected

distinctive aspects of damage such as building ruins and missing

trees in post-disaster images in the damaged pair of success cases

in Figure 5A. Even though the buildings in the pre and post-

images are not visually the same due to the shades, the model

effectively distinguished the undamaged zone in the

undamaged pair.

The failed cases in Figure 5B demonstrate the limitations

related to the satellite image data. Our model classified the

damaged pair of failure cases as undamaged based on the

status of nearly 50 buildings. However, this image also

contained one building in the right-most top corner that

was majorly damaged (pointed by the red arrow). In the

bottom pair of failure cases, most of the farmland has

submerged while the buildings appear to be unaffected. The

ground truth label for the pair is undamaged because the xBD

dataset only considers buildings. However, our model learned

the features of the submerged area along with the

damaged building during training and reported damage on

that pair.

5.4 Out of domain setting

If a model is overfitted to the training dataset, it will not

perform well on unknown samples and cannot be used in

new disasters. We ran a cross-event test to check if the model

could perform well on those unseen events (i.e., out of

domain setting). Also, to see the effect of the mixture of

multiple disaster types on the classification performance, we

compared the model trained in a cross-event setting with all

other events to the model trained with the same disaster

type only.

Table 4 shows the model’s prediction performance for four

target events with two different cross-event settings. We choose

the target event as the disaster with the smallest number of data

samples in each disaster type. Due to the reduced size of the

training data, the model was trained only for 50 epochs. We used

the F1 score as the primary evaluation metric, considering the

different label ratios of each event.

When the model was tested on the out-of-domain setting

for each target, the performance was lower than the in-

domain setting (random train:test = 8:2 split for the entire

dataset) except for the Joplin tornado. Notably, the

Midwestern U.S. Flooding and the Sunda Strait Tsunami

showed an F1 score below 0.5. The reason for such low

performance was the submerged buildings. The buildings

were not visible in the post-disaster images, confusing our

model. Also, the quality of post-disaster satellite imagery was

low, with a high ratio of cloud coverage. The event had

91 positive image pairs, and the model predicted disaster for

only 26 of them.

The model performed better when trained on all other

events for three disasters, Hurricane Matthew, the Joplin

tornado, and Midwestern U.S. flooding. The F1 score of the

Joplin tornado was even higher than the in-domain setting

when trained with all other events. The performance gap

between the two different cross-event settings, all other

events and only the events of the same disaster type, was

the largest in hurricane Matthew, even though the amount of

hurricane data was the largest. We speculate that the dataset’s

diversity led to better performance in all other event settings,

TABLE 3 Precision, recall, F1 score, and accuracy of the ablation
models.

Ablation Model Precision Recall F1 Score Accuracy

Without embd 0.788 0.765 0.776 0.855

Without sep 0.797 0.752 0.774 0.856

Without embd, sep 0.784 0.761 0.771 0.852

Without pre-training 0.807 0.755 0.780 0.860

Full model 0.796 0.767 0.781 0.859

The bold text indicates the best performance in each metric.
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preventing the model from becoming too specific and allowing

it to learn general features.

5.5 Case study on Hurricane Iota

Having seen the potential for using computer vision techniques

to assess disaster damage, we now introduce one case study of

Hurricane Iota, which hit Colombia’s Providencia Island in

November 2020. The xBD dataset does not include Hurricane

Iota. Therefore, it is valuable to test our detection model for the

northern part of the island to demonstrate the applicability of the

model. According to IFRC (2021), a substantial proportion of the

island’s infrastructure, an estimated 98%, was destroyed, and 95% of

its population was affected. We compared our model’s prediction

result to the ground truth label generated by UNITAR (2020).

Figure 6 shows the input images and the prediction results.We

utilizedMaxarSecureWatch toaccesspre-andpost-disaster satellite

imagery of the target area. The pre-disaster image was taken on

15 December 2018, and the post-disaster image was taken on

26 November 2020. The disaster occurred in November 2020, yet

wecouldonlyfindacloud-freepre-disaster imageof the region from

December 2018, as shown in Figure 5A. Both images contain

RGB spectral bands, and we processed the images to match the

specifications for the model training dataset described in

Section 4.1. We cropped the images into tiles that do not

FIGURE 5
The Success (A) and failure (B) cases of the suggested model on the xBD dataset. Left-label shows the ground-truth label of each image pair.
Our model successfully detects the damage when the image contains representative damage features. The model fails to report damage when the
image includesmore no-damage buildings. The failure scenario on the undamaged label also shows the xBD dataset’s limitation, which only looks at
building damages.

TABLE 4 Performance of our model in the out-of-domain setting.

Target event Training data Precision Recall F1 Score Accuracy

Hurricane Matthew All events 0.820 0.513 0.631 0.672
Hurricanes only 0.690 0.241 0.358 0.525

Joplin Tornado All events 0.918 0.886 0.902 0.915
Tornadoes only 0.847 0.854 0.850 0.867

Midwestern U.S. Flooding All events 0.587 0.429 0.495 0.918
Flooding only 0.234 0.492 0.317 0.800

Sunda Strait Tsunami All events 0.115 0.286 0.164 0.801
Tsunami only 0.459 0.308 0.368 0.928
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overlap, each covering 0.093km2 (zoom level of 17). The model

successfully detected damage in the disaster-affected area as

shown in Figure 6B, which shows ground truth labels (red dots)

and damage prediction (shaded tiles). Even though the two

images have different color compositions, the overlap between

ground truth labels and predictions indicates that the model

successfully distinguished the characteristics of damaged

buildings from other changes (with the 2020 image missing

green space).Ourmodelhada97.5%accuracy andanF1 scoreof

0.851, with 43 true positives, six false positives, and nine false

negatives out of 595 grids.

An example pre- and post-image pair of a damaged region

is shown in Figure 6C. We also find that some regions were

falsely incorrectly labeled as damaged when they were not

affected or vice versa (i.e., a false positive) and that some

damage was overlooked (i.e., a false negative). The left image

pair in Figure 6D shows a false positive case due to a modeling

error. The majority of the training data comes from inland

images. Hence, a passing ship captured in the pre-disaster

image served as a noise source. Filtering out the sea using

shoreline data could be one way to avoid faulty detection

caused by moving objects. The right image pair in Figure 6D

shows another false positive case due to erroneous human

labels. The two buildings in the image appear to be damaged,

but the ground truth labels were missing in the region due to a

lack of human resources. Our model correctly identified

damage in the area, demonstrating its ability to recognize

damaged structures.

The image pair in Figure 6E shows a false negative case due to

limited temporal resolution. The only satellite imagery available in

FIGURE 6
The prediction result of our model on Providencia Island, Colombia. (A) shows the input satellite imagery captured on 15 December 2018, and
26 November 2020. (B) shows the result of our model. The red dot is the point of damaged buildings in the UNOSAT ground truth data, and the
yellow box indicates the grid where our model reports damage. The zoomed grids of true positive, false positive, and false negative cases are shown
in (C–E), respectively.
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the area prior to the disaster was from 15 December 2018, nearly

2 years before the disaster. During the period the two satellite images

were taken, a new building was being built that was destroyed by the

hurricane. Given that there is no visible building structure in the pre-

disaster image, the model failed to detect damage in the area,

resulting in a false negative case. This limitation in temporal

resolution, however, is likely to be resolved thanks to the

increasing availability of small satellites.

6 Conclusion

This study demonstrated how computer vision techniques can

be used to develop data-driven disaster response strategies. Our

lightweight model could successfully identify the damaged areas

from water-related disasters with only pre- and post-satellite

images and simple damage labels. Since our model is less

constrained by the need for highly detailed input and label

data, it can help disaster response efforts in many settings

where the previous deep-learning-based detection models were

not successful. For example, a development agency could prioritize

their resources based on the sum of our binary labels and locate

where to deploy the tents and shelters within their administrative

with precision. This timely and accurate way of estimating

damages shows how our model could help promote the

adaptive capacities of many vulnerable countries.

Experimental results demonstrated that our model outperformed

existing baselines in detecting water-related damage, achieving high

accuracy of 91.4%. Our model successfully identified the damaged

areas even with sparse damage labels. Evaluation of our model

through an out-of-domain setting and case study demonstrated

the model’s robustness. This was especially apparent from the case

study result which suggested that ourmodel is applicable to real-world

responses with a degree of high accuracy. The ablation study

confirmed that the unique embedding method applied to pre- and

post-disaster images via two separate encoders was critical to the

performance. Moreover, pre-training our model with non-disaster

satellite imagery before learning disaster-specific features was another

critical, but far more challenging, factor to the model’s success.

Future work may improve our study in several aspects. First,

integrating other socioeconomic indicators into the model can

help find more socioeconomically vulnerable regions. For

example, if two areas with the same magnitude of destruction

have starkly different socioeconomic vulnerabilities, the model

should indicate more severe damage in the more vulnerable area.

Secondly, our approach can be further expanded to identify

damage from man-made disasters. Since these disasters

typically affect more densely populated civilian buildings

compared to natural disasters, future work could focus on

producing more detailed damage estimates. Lastly, future

innovations could work on integrating increasingly diverse

satellite sources to produce more robust damage estimates.

This approach would best support responses to disasters

where it is often impractical to rely on one particular type of

satellite imagery to make an effective damage assessment.
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