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Probabilistic predictions aim to produce a prediction interval with probabilities
associated with each possible outcome instead of a single value for each
outcome. In multiple regression problems, this can be achieved by propagating
the known uncertainties in data of the response variables through a Monte Carlo
approach. This paper presents an analysis of the impact of the training response
variable uncertainty on the prediction uncertainties with the help of a comparison
with probabilistic prediction obtained with quantile regression random forest. The
result is an uncertainty quantification of the impact on the prediction. The approach
is illustrated with the example of the probabilistic regionalization of soil moisture
derived from cosmic-ray neutron sensing measurements, providing a regional-scale
soil moisture map with data uncertainty quantification covering the Selke river
catchment, eastern Germany.
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1 Introduction

Knowledge about state variables of the Earth is a primary source of information when
striving to model the state and dynamics of processes in the Earth and environment. Among
others, soil moisture (SM) has been identified as an essential climate variable when studying
land surface ecosystems (Gruber and Peng, 2022) and is, therefore, a variable of particular
interest. SMmeasurements for local- and regional-scale studies are still often measured sparsely
(Schröter et al., 2015), i.e., by sampling a low number of measurements at distinct points
distributed over the survey area or along a few trajectories in a larger area, leaving large gaps of
information in the resultant dataset. In the presence of such a sparsely sampled dataset, one can
resort to the theory of multiple regression problems (MRPs), which deals with finding a
relationship between a response variable and other explanatory variables called predictors
(Kuhn & Johnson, 2013). The found relationship can be used to estimate the value of the
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response variable where it has not been measured. Unlike simple
mathematical interpolation methods, e.g., nearest neighbor
interpolation, MRPs allow incorporating information from other
dense data comprising lower gaps between the sampling locations
and are, therefore, more suited when the response variable data are
sparse. As it is relatively common in geoscience to only have access to
sparse spatial data (Howarth, 2001), MRPs are widely used by Earth
scientists to derive spatially continuous maps, also in the context of SM
prediction (Adab et al., 2020; Carranza et al., 2021), but they do not
always include uncertainty quantification of their prediction results
(Perez Dias et al., 2020). Schmidt et al. (2020) consider uncertainty
associated with data as noise and characterize it as unwanted
information that impairs correct information retrieval from data.
Quantified uncertainty defines the knowledge about what is not
known about the prediction results, and it is consequently of value
for any application of the prediction made. Therefore, a soil map can
only be considered complete if its uncertainties have been explicitly
quantified (Heuvelink, 2014). It is important to distinguish between
point uncertainty and spatial uncertainty. In the first case,
uncertainties are computed only at some locations defined from a
set of independent soil observations and are, in fact, a validation
process of the model calibration. Lagacherie et al. (2019) showed that
these point uncertainty metrics suffer variability depending on the
training dataset size and are, therefore, themselves prone to
uncertainty. They give information on how well the model is
trained but cannot infer the uncertainty of any new prediction.
Spatial uncertainty quantification, however, which is the focus of
this work, aims at estimating uncertainty for every point of the
predicted soil property, as, for example, performed by Heuvelink
(2014) and Nauman and Duniway (2019).

McBratney et al. (2003) were one of the first to resort to MRPs in
geoscience and proposed a soil spatial prediction function which predicts
a soil attribute from other soil covariates with a spatially autocorrelated
error. Nowadays, these problems often resort to machine learning
algorithms since their level of required preconceptions about the shape
of the regression model is maximally low. Lorenzetti et al. (2015) showed
that machine learning, and more specifically, support vector machine,
gives more reliable results than traditional pedology approaches to assess
the class frequency in soil map legends. Regression trees (Breiman et al.,
1984) and random forests (Breiman, 2001) are also commonly used to
solve MRP in soil mapping as they are intuitive, computationally cheap,
and can consider many explanatory variables. Nussbaum et al. (2018)
showed that random forest (RF) performs slightly better than other
statistical methods for the spatial assessment of a soil function in the case
of a large set of predictors. RF was also successfully applied by Hengl et al.
(2018) to predict spatial variables, including information derived from
observation locations as the covariate; it was also applied by Poggio et al.
(2021) to produce global maps of soil properties for SoilGrids (https://
soilgrids.org/). Although previous references do not always include
uncertainty quantification, one can observe an increasing awareness
among Earth scientists of the necessity to quantify the uncertainties
(Perez Dias et al., 2020; Paasche et al., 2021). McBratney et al. (2003) were
one of the precursors in this aspect in the soil analysis community. They
proposed a soil attribute mapping approach with a measure of the
uncertainty as they claim that uncertainty is necessary information to
handle a possible lack of training data or data with poor quality. The
necessity to quantify uncertainty in soil property prediction was also
earlier addressed by Heuvelink and Webster (2001), who reviewed three
statistically based models allowing such a quantification. It is indeed a

strength of statistical methods to allow having a measure of uncertainty in
the prediction by comparison of inference models (Lagacherie, 2008).

Spatial uncertainty quantification can be addressed in different
ways. When the uncertainty of the input data (observations and
covariates) is unknown, one can resort to models which can
provide prediction error estimation. Hengl et al. (2004) used
regression kriging for spatial predictions of soil variables and were
able to compute the variance of the prediction error to show the
uncertainty together with the prediction map. When RF is used for
predictions, many examples exist in the literature to quantify the
uncertainty (Wager et al., 2014; Mentch &Hooker, 2016; Baake, 2018).
Uncertainty quantification can also be performed with quantile
regression random forests (Meinshausen, 2006). Quantile
regression random forests (QRRF) not only provide the mean of
the response variable such as conventional RF but also its full
distribution. QRRF was, for example, successfully applied by
Vaysse and Lagacherie (2017) to predict the uncertainties of digital
soil-mapping products, leading to better predicted patterns of
uncertainty than regression kriging. Poggio et al. (2021) used
QRRF to routinely quantify the spatial uncertainty of digital soil
mapping products of various state variables (e.g., accessible via
https://soilgrids.org). On the other hand, if uncertainties of the
input data are known and quantified, one can use this information
with different approaches. van der Westhuizen et al. (2022) used the
measurement uncertainty in digital soil mapping during the machine
learning model calibration, giving less weight to measurements with
high variance error. A similar approach was used by Wadoux et al.
(2019) for the calibration of a convolutional neural network. These
works show that under some conditions, this strategy can lead to
greater accuracy of predictions. Another classical approach
(Heuvelink, 1998) for the propagation of the uncertainty of the
input data onto the prediction is the Monte Carlo (MC)
approach—relying on the repetition of the whole prediction
process with a different training dataset drawn from the input
distribution at each run. In the case of non-Gaussian probability
density distributions associated with the data, MC-related approaches
are considered a suitable choice for realistic uncertainty propagation
from input data through mathematical processing into the resultant
output data (Durbin and Koopman, 1997; JCGM et al., 2008).

Among methods designed to quantify uncertainty in RF for the
case of unknown or ignored data uncertainties associated with the
response variable and predictors, QRRF seems to be the most used in
the literature. Since QRRF takes the raw training database as input
without any quantification of the training data uncertainties, the
uncertainties provided in the output cannot reflect the noise in the
input training data but rather an approximation of the regression
model uncertainty expressed by the RF itself. In such an approach, the
uncertainty quantification of the predicted data is reduced to a purely
mathematical task ignoring the impact of uncertainty propagation
which requires detailed knowledge of the nature of the input data and
the processing procedure (JCGM et al., 2008). As far as our knowledge
goes, uncertainty quantification for SM prediction has been performed
with QRRF (Carranza et al., 2021) but not through the propagation of
SM measurement uncertainty. Moreover, many references
encountered in the literature for soil property prediction compare
different methods for the prediction (machine learning, model-based)
but not for uncertainty quantification. Therefore, the strengths and
weaknesses of the models are well studied, whereas such comparisons
for uncertainty quantification remain less documented.
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In this study, the main goal is to demonstrate the applicability of a
random forest-based Monte Carlo approach to quantify the
uncertainty of SM prediction and determine how the uncertainty
of the SM used to derive the regression model impacts the uncertainty
of the SM prediction. As a benchmark, we use prediction uncertainty
achieved by QRRF, which ignores the quantified uncertainty of the
input data. Our response variable is gravimetric soil moisture sparsely
measured by mobile cosmic-ray neutron sensing (McJannet et al.,
2017; Schrön et al., 2018; Jakobi et al., 2020; Schrön et al., 2021). The
second goal of this study is to perform a comparative analysis of QRRF
and MC approaches to understand the kind of uncertainty quantified
by each method.

This paper starts by describing the mathematical background of
uncertainty in MRP and introduces various terms to refer to the
different kinds of uncertainty which can be found in MRP. Then, the
study area and the input data, the sparsely measured gravimetric SM,
and the predictors are described. The paper then gives details of the
methods used for the prediction, RF, uncertainty quantification,
QRRF, and MC. Similarities and discrepancies in the output
distributions between both methods are identified by recognizing
areas of low and high predicted uncertainties and comparing them
with uncertainties of the input data. Finally, a unified map of the SM
prediction is provided together with the quantified uncertainties.

2 Uncertainty in multiple regression
problems

Let xa with xa = (xa1, xa2, . . . , xak) be a one-dimensional variable
with k numeric values representing different states of a quantity over
time or space. For example, xa could be a map comprising k numeric
values of a quantity, such as topographic elevation. A function f(xa)
could describe the linkage between xa and a one-dimensional variable
y. In a problem of the type y = f (xa), y can be named the regressand,
the response variable, or the dependent variable, whereas xa is referred
to as the regressor, a feature, an independent variable, a covariate, an
explanatory variable, or a predictor. In the following, we will refer to y
and xa as the response variable and a predictor, respectively. If the
response variable depends on more than one predictor, we can express
the link between all predictors and y by

y � f X( ) , (1)
with X being a multi-dimensional variable X = (xa, xb, . . . ). The
function f can be a regression model and can be parametric or non-
parametric. If f is known, the response variable can be predicted at
every instance in space or time when the predictors are known.

In practical problems, X is regarded as known at all time or space
instances of interest, but f is usually not known a priori. Instead, y is
known at some instances of known X, which allows deriving f. If some
expectation about the form of f exists (e.g., linearity), parametric or
semi-parametric modeling could be used. If no reliable assumption
about the form of f can be formulated, e.g., as an analytical function
and its parameters, the regression model has to be learned and
described non-parametrically, e.g., by using regression trees.

Equation 1 assumes a perfect fit between the response variable and
the predictors, but in practice, a multi-dimensional disturbance or
noise variable U is present:

y � f X, U( ). (2)

U can include random or systematic errors, also known as
uncertainty about precision and accuracy, respectively, reducing the
accuracy and precision of the predictors and the known instances of y.
Solving the regression problem suffers from uncertainty propagation
from X and y into f. Additionally, uncertainties linked to the realistic
definition of the character of f, e.g., assumed linearity, will overlap with
the uncertainties from X and y. Hence, U is an aggregate of
uncertainties originating from X, y, and f.

If the information stored in X and y is altered by errors due to limited
precision and accuracy, we cannot retrieve it without uncertainty. Since
errors in X and y propagate into the finding of f, uncertainty never
diminishes and propagates through any processing step of uncertain data
making the finding of f an indeterminate task. In a deterministic regression
problem, the uncertainty of f rooted in the choices of the definition of f is
ignored. Using a determined f to predict y from X will give determined
predictions. In a stochastic regression problem, we face the presence of a
non-zero disturbance variable U resulting in an indeterminate finding of f
and indeterminate predictions of y when applying f to uncertain X.

Uncertainty measures the level of imperfect information coded in data.
Throughout this study, only the response variable uncertainty is considered,
and the predictor uncertainty and uncertainty added by the model itself or
the selection of the modeling method are not considered. In the case of the
response variable, we must distinguish between the uncertainty related to
data acquired for solving the regression problem and the uncertainty
associated with the predicted response variable. For finding f, we need
co-located instances of predictor and response variables. These measured
instances of y are referred to as the training response variable, whereas
predicted instances of the response variable are referred to as the predicted
response variable. Data uncertainty is not always equivalent to
measurement uncertainty. Data can be derived from measurements by
applying a processing function g to the latter. Uncertainties in the definition
of g or a generally methodologically inappropriate choice of g, for example,
in order to close spatial or temporal knowledge gaps in the measurements,
overlap with the measurement uncertainty.

As the response variable, we use gravimetric soil moisture, which is
known in some instances, so that we can build a regression model f
linking y with X. The measured quantity is the counting number of
neutrons per time unit (Zreda et al., 2012). This quantity has to be
transformed by a function g into gravimetric soil moisture and
associated uncertainties, while the measurement uncertainty of
neutron counts has been already propagated through g (Jakobi
et al., 2020; Schrön et al., 2021).

We solve our regression problem non-parametrically by using an
RF to build f from available and co-located instances of X and y.
Theoretically, this leaves our approach free of preconceptions (e.g.,
linearity) about the character of f. However, random forests require the
definition of some parameters, e.g., the number of trees or the depths
of trees. Often, no hard rules exist for the “right” selection of the
necessary parameter settings. So, here, uncertainty in setting the
“right” model parameters must be expected to overlap with
uncertainty from X and y when building an RF regression model.
In addition, RFs are inherently biased when it comes to the utilization
of the built regression model for prediction. Since random forests do
not incorporate the concept of extrapolation, all predictions of y will
always be included in the range of the instances of y used for learning
the regression model (Zhang et al., 2017). Such methodological
limitations may inherently bias prediction outcomes.

In this study, we focus on y uncertainty, and we will differentiate
between training response variable uncertainties and predicted response
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variable uncertainties. Data uncertainty may contain aspects resulting
from measurement uncertainty, methodological choices, and application
of uncertain functions to produce processed instances of data. The
uncertainty of the regression model f is referred to as model
uncertainty. Since the regression model is derived from X and y and
their uncertainty, the differentiation between data and model uncertainty
appears a little fuzzy. In the following analyses, we focus on the different
kinds of response variable uncertainty.

3 The database

3.1 The response variable gravimetric soil
moisture

The study area covers the Selke catchment located in the Harz
Mountains and the Harz foreland of the federal state of Saxony-Anhalt,
Germany. The area is part of the hydrological TERENO Harz/Central
German Lowland Observatory (Zacharias et al., 2011, see also Figure 1).
The catchment has high gradients of landscape regarding elevation and
other soil properties and has been extensively studied (Sinha et al., 2016;
Wollschläger et al., 2016; Yang et al., 2018; Yang et al., 2019; Winter et al.,
2021). The northern sub-catchment has an elevation of around 100m and
is mainly covered by agricultural areas, while most of the southern sub-
catchment, with a higher elevation (up to 590m), is covered by dense forest.

We used data from a mobile cosmic-ray rover survey conducted
on 3 September 2015, conducted by Kasner (2016), comprising
314 samples. These measurements have been made with a mobile
CRNS measurement system mounted on a car driving approximately
150 km through the Selke catchment along the existing public road
network. Driving speed was kept constant as much as possible without
endangering public traffic. The dataset might be considered small,

making uncertainty quantification more challenging (Lagacherie et al.,
2019). Another challenge associated with mobile CRNS is that data are
collected along the road, as mobile sensors are mounted on a car, so
the area of interest for the prediction is not homogenously covered by
measurements as it would be with a regular grid over the area.

For the presented study, we focus on the spatial prediction of
gravimetric soil moisture by means of static predictors (i.e., which stay
constant for the considered day) since we consider only measurements
from a campaign conducted within 7 h on a cloudy day without
precipitation during the campaign.

The measured soil moisture is derived from neutron countsN per
time unit at the position of the CRNS sensor. The measured data have
been processed in order to obtain a corrected neutron count N* to be
converted into gravimetric soil water content:

N* � Cneutron*Cpressure*Chumidity*Croad*Cveg*N. (3)
Cpressure andChumidity are standard corrections for air pressure and air
humidity (Hawdon et al., 2014) as air and water molecules attenuate
incoming neutron rates. These factors are computed from
temperature, pressure, and humidity data measured by sensors
mounted on the CRNS rover. Cneutron corrects for incoming
neutron radiation which varies due to solar activity (Schrön et al.,
2015) and is derived from the Jungfraujoch neutron monitor. Schrön
et al. (2018) showed how roads introduce a significant bias in
neutron counting, leading to an overestimation of the final soil
moisture values; hence, the need for a correction of Croad. The
correction factor was derived from information on road type
from the OpenStreetMap (www.openstreetmap.org) road network
data. In addition, all data in urban areas were removed based on
CORINE land use classification data. Finally, biomass water impacts
the measurement without being related to soil moisture (Baroni et al.,
2018). That is why a biomass correction Cveg also based on CORINE

FIGURE 1
Mapof themobile CRNSmeasurement campaign overlapping the Selke catchment in red and the rectangular studied area for the probabilistic prediction
in orange and the global location within Germany. Background map is from Google Earth, earth.google.com/web/.
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land use data was applied, which consists in decreasing, by 5%, the
neutrons count in forests to compensate for the high hydrogen
concentration rate in these areas.

The uncertainty of the measurement originates from various
sources. The main one is the stochastic uncertainty of neutron
detection. Zreda et al. (2012) showed that neutron counting
uncertainty has a Gaussian distribution whose standard deviation is
defined by σN � ��

N
√

for N counted neutrons.
Moreover, the soil moisture heterogeneity in the footprint, which is

particularly wide for high driving speeds or long aggregation periods,
brings more variability in the neutron count. In this study, data were
recorded every minute, and a rolling average over a window of three
minutes was applied to reduce the stochastic error. With driving speeds
ranging between 20 and 60 km/h, this corresponds to footprint lengths of
1–3 km. This uncertainty, however, could not be precisely quantified.

Gravimetric soil moisture is obtained from the corrected neutron
count with the approach used by Köhli et al. (2021), shown in Eq. 4, which
is equivalent to the relationship described by Desilets et al. (2010):

θ N*( ) ≈ p0
1 −N*/Nmax

p1 −N*/Nmax
. (4)

where Nmax is the maximum neutron flux under dry conditions, and
pi represents calibration parameters. Following Schrön et al. (2021),
the symmetrical uncertainty σN* from the corrected neutron count
rate has been converted to soil water content uncertainty σθ±, which is
asymmetric due to the non-linearity of the conversion function:

σθ± � θ N*( ) − θ N* ± σ*N( ). (5)
This error distribution has been approximated by a distribution

modeled by merging the lower and upper half of two Gaussian
distributions at the mean µ and (σ low, σupp) as left and right
standard deviations (Figure 2). Figure 3 shows all the
measurements selected for this study with the quantified
uncertainties expressed by the 5, 25, 75, and 95 quantiles.

3.2 The predictors

The predictors used for the soil moisture predictions are shown in
Figure 4. They were chosen to be datasets freely available at the
German national level and are known to have an impact on the soil

moisture. They were all re-gridded to a 250-m grid to match the spatial
resolution of the measured CRNS data used as the response variable.

The choice of the covariates is of great importance as they should be
able to explain the spatial variability of soil moisture as much as possible.
Topography’s impact on soil moisture has been widely studied and proved
to be a determinant factor of soil moisture variations, especially under wet
conditions (Western et al., 1999a; Schröter et al., 2015). Topographic
information can be made of various variables; for this study, we keep
the elevation, slope, and aspect information. However, these variables do
not explain all the soil moisture variations. Western et al. (2004) showed
that depending on the catchment, soil properties and rainfall can explain
better the spatial variability than topography. The same observation was
made by Korres et al. (2010), and soil properties such as clay content, sand
content, density, soil organic carbon percentage, and precipitation heights
were identified to have an impact on the soil moisture. Moreover, soil
temperature is also known to be related to soil moisture (Lakshmi et al.,
2003) and was also incorporated as a covariate in our study.

The elevation has been derived from the DGM50 dataset provided
by the German Federal Agency for Cartography and Geodesy. The
DGM50 is a German topography model with a 50-m spatial resolution
(http://www.bkg.bund.de). The elevation data were used to compute
the topographic slope and aspect maps. The bulk density, clay and
sand proportion, and soil organic carbon datasets were obtained from
the SoilGrids database (https://soilgrids.org/, accessed on 01/14/2022)
and came with a 250-m spatial resolution. These maps were derived
from global soil profile information and covariate data, as described by
Poggio et al. (2021).

Precipitation and soil temperature data for 2 days before the
measurement campaign have been acquired from the German
Weather Service (https://www.dwd.de, accessed on 01/24/2022),
with a 1,000-m spatial resolution. Precipitation data were
accumulated day-wise, whereas soil temperature data were
provided as daily averages. Instead of considering the precipitation
and soil temperature data on a daily basis, we computed the mean
precipitation and soil temperature over 2 days before the campaign
and used this aggregated information as predictor datasets in
our MRP.

4 Methodology for solving the MRP

4.1 Decision trees

In this section, we will give an overview of the algorithms used for
the predictions. This study uses RFs, introduced by Breiman (2001)
and based on decision trees. A decision tree is a structure made of
nodes which represent a “test” on a predictor, based on which the tree
splits into branches leading to other nodes. The construction of the
tree uses n independent observations (Yi, Xi), i � 1 . . . n. At each
node, the algorithm looks at all predictors and their values and solves
an optimization problem to decide which predictor leads to the more
efficient split, i.e., those samples with a similar target are grouped
together. This is performed by minimizing the mean squared error
(MSE) between the actual output value and the one predicted across all
candidate splits, determined by a predictor and a threshold value. The
end node of the branch that does not split anymore is a leaf and gives
an output of the regression task. Once the tree is constructed, the
prediction μ̂(x) for a new data pointX � x is a weighted average of the
original observations Yi, i � 1 . . . n:

FIGURE 2
Asymmetrical Gaussian distribution used for soil moisture
uncertainties.
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μ̂ x( ) � ∑
n

i�1
wi x, θ( )Yi,

where wi(x, θ) is the weight vector, and it is a positive value if the
observation (Yi, Xi) is part of the same leaf of the tree built from the
random vector of variables θ in which x was dropped; otherwise, it
equals 0. The weights add up to one.

4.2 Random forests

RFs are an ensemble learning method composed of multiple decision
trees. The algorithm is based on the concept of bagging: one trains
multiple trees with various subsamples of the training dataset and uses the
average of all predictions. Some randomness is also included at each tree
and each node when selecting a predictor to split on, and only a random
subset of predictor variables is considered. This way, random forests are
less dependent on the training dataset than individual trees to achieve a
reduced variance and have better control on overfitting (Kuhn& Johnson,
2013). The prediction in RF is approximated by the averaged prediction of

k single trees, and we can then construct wi(x) to be the average of
wi(x, θ) over this collection of trees:

wi x( ) � k−1∑
n

t�1
wi x, θt( ).

Finally, the prediction of RF for a new data point X � x is given by

μ̂ x( ) � ∑
n

i�1
wi x( )Yi.

For this work, we use the RandomForestRegressor tool from the
Python library Sklearn. The most important parameters of the RF are the
number of trees in the forest and the maximum depth of the tree. The
latter represents the length of the longest path from the tree root to a leaf.
Model tuning was performed prior to our study to find the optimal values
of both these parameters. Different numbers of trees in the RF, from 20 to
200, were combined with different numbers of tree depths (between 3 and
17). For each combination, the MSE of the prediction was computed and
is displayed in Figure 5. A total of 40 trees were kept as it results in a
trough in all MSE curves, and the maximum depth was set to 8 to avoid

FIGURE 3
Soil moisture measurements with quantified uncertainties (fifth, 25th, 75th, and 95th percentiles) along driven distance.

FIGURE 4
Features used in random forest for soil moisture determination.
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overfitting, although higher depths result in slightly lower MSE.With this
choice, we ensure that each tree can comprise up to 128 leaves, which
statistically ensures a moderate averaging effect when fitting the measures
of the response variable in order to lower the risk of data overfitting when
learning the regression model.

Feature importance analysis is performed using the tool provided
for regression random forest in the Python Scikit-learn library. The
importance of a feature is the computation of the normalized total
reduction of the loss function brought by that feature. Following what
is done in Scikit-learn, we first need to compute the importance of a
node j, nj, for a single decision tree:

nj � wjCj − wleft,jCleft,j − wright,jCright,j,

wherewj is theweighted number of samples reaching node j,Cj is the loss
function in node j, and left and right are for children nodes from node j.
The importance of each feature i, fi, for the tree is calculated as follows:

fi �
∑j: node j splits on feature inj

∑k∈allnodesnk
.

The feature is then normalized and averaged over all the T trees to
give the final feature importance, RF fi:

RF fi � 1
T

∑
t∈all trees

fi,t

∑j∈allfeaturesfj,t
.

4.3 Uncertainty quantification

To quantify the uncertainties in addition to the deterministic
predictions, two methods were applied and compared: quantile
regression random forest and Monte Carlo simulation applied to
standard regression random forest. However, our MC-based
approach propagates the uncertainty of the input data into the
prediction, whereas the QRRF produced probabilistic prediction
without considering data uncertainties as input. In both cases,

uncertainties are expressed through quantiles: for a continuous
distribution function, the α-quantile Qα(x) is defined such that the
probability of Y being smaller than Qα(x) is exactly equal to α
for X � x.

Qα x( ) � inf y : P Y≤y
∣∣∣∣X � x( )≥ α{ }. (6)

4.3.1 Quantile regression random forests
QRRFs were introduced by Meinshausen (2006) to provide not

only the mean, as in the RF, but also the full conditional distribution of
the response variable, allowing to construct prediction intervals.
Random forest predicts the response variable by a weighted mean
over the observations of all leaves, i.e., E(Y|X � x), while quantile
regression forest keeps the value of all observations to assess the
conditional distribution of Y given by P(Y≤y|X � x). This is
achieved by the weighted mean over the observations 1 Y≤y{ } using
the same weights wi(x) as those for random forests:

P Y≤y
∣∣∣∣X � x( ) � ∑

n

i�1
wi x( )1 Yi ≤y{ }. (7)

Following Meinshausen (2006), the algorithm for computing Eq. 7
is summarized as follows:

a) k trees were grown as in random forests, but for every leaf of every
tree, all observations were retained instead of just their average.

b) For a givenX � x, x was dropped down all trees. For each observation
i, wi(x, θt) was computed for all trees and so was the average wi(x).

c) The estimate of the distribution function as in Eq. 7 was computed
for all y using weights from step (b).

d) Estimates of the conditional quantiles Qα(x) were then obtained
by plugging the estimates from step (c) in Eq. 6.

Using the RandomForestQuantileRegressor tool from the Scikit-
garden Python library, we computed the fifth, 25th, 75th, and 95th
quantiles of the QRRF prediction in addition to the mean value.

FIGURE 5
Comparison of themean squared error (MSE) in RF training vs the number of trees in the forest for different forest depths. The number of 40 trees leads to
a lower MSE for all depth configurations.
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4.3.2 Monte Carlo simulation
Monte Carlo simulation relies on the repeated generation of input

random variables from their probability distributions to compute the
statistics and estimate the distribution of the output. In this study, we
have access to the distribution of the sparse soil moisture (measured
dataset of the response variable). Using m � 1 . . . 1000 Monte Carlo
steps, we generated, at each step, a random soil moisture training
dataset from the probability distributions. Then, we trained a new
random forest and performed a deterministic prediction of the dense
soil moisture. Thus, we achieved 1,000 RF prediction models μ̂m(x)
which were randomly different depending on the input or training
data realization drawn from the data probability distributions.
Aggregating the results of the 1,000 predictions gave us a
probability distribution for all locations of the prediction. From
this distribution, statistics such as quantiles could be computed,
allowing a direct comparison with the QRRF method.

4.4 Visualization of uncertainty

Quantified uncertainties need to be displayed adequately to be analyzed
and interpreted. Visualization of uncertainties for a 1D dataset is easy as
values such as variance or quantiles can be represented by curves around the
observed or modeled dataset. For a 2D dataset like the spatial data
considered here, and in order to avoid dealing with multiple maps, we
chose to keep only one parameter to describe the uncertainty, the quartile
coefficient of dispersion (CoD). This coefficient is computed using the first
and third quartiles (Q1 and Q3, respectively):

CoD � Q3 − Q1

Q3 + Q1
.

The CoD, dimensionless, tells us how spread out our data are but is
not much affected by outliers since it only depends on the first and
third quartiles. Once the CoD is computed, it is superimposed by

FIGURE 6
Relative feature importance within the training dataset for the deterministic random forest model.

FIGURE 7
Soil moisture values at measurement locations (A), and soil moisture map from random forest prediction of the area of interest (B).
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FIGURE 8
Relative feature importance within the training dataset for the first instances of the Monte Carlo approach (A) and main statistic values (mean, fifth and
95th percentiles) after 1,000 iterations (B). The large dispersion shows how the feature importance varies with the noise in the input data.

FIGURE 9
Soil moisture maps obtained from random forests through a Monte Carlo approach. The mean soil moisture map after 1,000 iterations (A) followed by
the first instances of the Monte Carlo simulation (B–H) are displayed.
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transparency to the prediction map with a bivariable colormap, where
transparent pixels are more uncertain and vivid pixels more certain.

5 Results

A deterministic random forest is first run on the data in order to
evaluate the quality of the training dataset. After the training phase,
the training performance is checked for convergence. When
considering input data uncertainty, we found a variance of 0.01 in
computing the MSE of the model depending on the noise
contamination of the response variable used.

To check the importance of each of the predictors used for the soil
moisture predictions, a feature importance analysis is performed
(Figure 6). Overall, three variables have more impact: the slope
aspect in the north direction, the precipitation, and the sand
proportion of the soil. Although some features seemed to have less
impact on the prediction (bulk density, for instance), we kept them all
in order to later verify that this feature’s importance ranking is stable
after the introduction of uncertainty in training data.

The prediction on the area of interest from the rover measurements is
shown in Figure 7. Gravimetric soil moisture has been predicted on the
grid used for the predictor data, which had a node spacing of 250 m. Some
pixels have values quite different from all neighbor pixels, especially high

FIGURE 10
Comparison at measurement locations of quantile RF uncertainties (A) and input data uncertainties propagated through a Monte Carlo approach (B).
Uncertainties are displayed by means of the fifth, 25th, 75th, and 95th percentiles.

FIGURE 11
Histograms displaying the distribution of the measured soil moisture values (A), soil moisture values at the same locations predicted from QRRF (B), and
mean predictions from the MC approach (C).
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isolated values in the south-west of the map, and should be identified as
noise, or outlier predictions, since predictors do not have such abrupt
changes. We can, however, identify some trends for the soil moisture
pattern, specifically the area of high values in the south.

In order to propagate the uncertainties from the sparse training soil
moisture values to the full prediction, a Monte Carlo approach is used with
1,000 iterations. For eachmodel, the feature importance analysis is performed
to check if it is impacted by the introduction of noise in the training data.

As shown in Figure 8A displaying the 10 first iterations, from
one iteration to the other, the feature importance can vary
significantly. The seventh iteration, for instance, seems to be
largely driven by the slope aspect in the north direction; on the
other side, the carbon content of the soil has little effect on this
prediction. In most other predictions, however, these two features
have a more average impact. This observation gives us the
confidence to keep all the predictors for the study, as we just
saw that the presence of data noise can change the feature
importance ranking. In Figure 8B, we show the statistics (mean,
fifth and 95th quantiles) of the feature importance after the
1,000 iterations. These statistics confirmed the high variability of
the feature importance and stayed coherent with the first
iterations from (A). Bulk density always has lower statistics than

the other features; however, since its importance can still be higher
than those of other features in some predictions within our Monte
Carlo approach, it cannot be completely regarded as a predictor.
The slope aspect to the north on the opposite always has a
significant impact and can even have a very high impact in some
cases. For the features with more impact, slope aspect in the north
direction, and sand and precipitations, we observe a great gap
between the fifth and the 95th quantiles.

The introduction of noise also generates substantial variability in
the prediction maps (Figure 9). In comparison to the mean prediction
generated by averaging the 1,000 predictions (panel A), some
individual predictions, such as the fifth prediction (panel E), have
much less high soil moisture values (i.e., above 0.6), especially in the
southern and the north-western parts. On the opposite side, other
predictions have much more higher values (seventh prediction, panel
H, for instance, in Figure 9), where we observe sparse high values
everywhere and, to a large extent, in the middle and eastern parts,
where the mean prediction has only very isolated high values in these
areas. This high variability is due to the high uncertainty of some of the
input data, which is up to 40%.

From all these predictions, the mean and the fifth, 25th, 75th, and
95th quantiles were computed.With this information, we can compare

FIGURE 12
Soil moisture map with uncertainty quantification from quantile random forest (A). Transparency is used with the colormap to represent the uncertainty
information. (B) shows the data from (A) after the application of mild spatial smoothing to remove noisy pixels and enhance uncertainty patterns visualization.
Soil moisture map with uncertainty quantification from Monte Carlo approach with 1,000 iterations (C) and after application of a mild spatial smoothing (D).
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the statistics from the Monte Carlo approach to the quantiles obtained
from a quantile RF. This is shown in Figure 10, where the mean and
the quantiles are shown for the predictions achieved by both methods
at the training locations to be comparable with the input data and
original uncertainties also (Figure 3).

For the QRRF prediction (A in Figure 10), we see that the predictions
never exceed 0.8, which is the highest soil moisture value found in the
original training dataset. The random forest is indeed unable to
extrapolate values outside the training range, and that is why
uncertainties leading to higher soil moisture values are not well
recovered. Due to this limitation, for the highest soil moisture values,
the 75th and 95th quantiles are almost equal to the mean value. As for the
MC approach (B in Figure 10), a wider range of values can be predicted
since more extreme values are seen during the multiple training phases.
Compared to Figure 3, we see that MC quantiles are relatively similar to
input data uncertainties, and the global trend is recovered with a good
matching between more certain and more uncertain areas. Although
QRRF predicts more homogeneous quantiles over the training dataset,
areas with higher uncertainties (for instance, between 20 and 45 km or

110–120 km) are nonetheless recovered to a certain extent. This is
different for the areas with lower uncertainties which are not much
recovered in the QRRF output.

Histograms in Figure 11 show the distribution of the soil moisture
values at the measurement locations for the measured values (A) and the
predicted values from QRRF (B) and the MC approach (C). For the MC
approach, to be comparable with the other histograms, the median value
from all simulations is computed and used for the histogram.

The quantile prediction is then used on the full study area once
again for both methods. The results are plotted on a map with a
bivariable colormap, with the color representing the gravimetric soil
moisture and transparency of the coefficient of dispersion (Figure 12).
This way, vivid colors represent a higher certainty for the computed
soil moisture, whereas dull, pale colors stand for uncertain predictions.
As the prediction result are not very trustworthy when uncertainty is
very high, the transparency is used indifferently for all uncertain
predictions.

The prediction from the MC approach (1,000 repetitions) is
shown in Figures 12C,D, while the one from QRRF is shown in

FIGURE 13
Histograms displaying the distribution of the predicted soil moisture values on the full area for the QRRF prediction (A) and the MC after
1,000 iterations (B).

FIGURE 14
Soil moisture mean prediction and fifth, 25th, 75th, and 95th percentiles along the centered south/north section [(A) QRRF and (B) MC] and the centered
west/east section [(C) QRRF and (D) MC].
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Figures 12A,B. Similar to the observations on the profiles (Figure 10),
QRRF has a wider range of uncertainties (the coefficient of dispersion
for QRRF is almost twice as big as that for MC) and fewer contrasts
compared to MC. The mean values are also lower for QRRF due to the
training with less extreme values, as explained previously. With this
full prediction, the areas with higher uncertainties are again predicted
in similar locations in both methods (west, north-west, maybe south
and south-east also). This highlights the ability of both methods to
identify very uncertain values. For the areas with lower uncertainties,
however, the QRRF is usually not able to identify them very well and
provides very homogeneous uncertainties. The direct propagation of
the input uncertainty throughMonte Carlo performs better in this task
for very small to very large prediction intervals.

Another comparison between both methods is performed
through histograms to analyze the distribution of predicted
values on the full area (Figure 13). We can see that QRRF
predictions have a prominent concentration of predicted values
around 0.2–0.25 g/g, whereas MC predictions have more
distributed values over a wider range of soil moisture values.
As already seen in Figure 11, MC predictions have fewer
extreme values as we only considered the median values for the
comparison.

Two profiles are extracted from the full prediction, one centered
section from east to west and another centered section from south to
north (Figure 14). These profiles allow us to better see the
heterogeneity of MC uncertainty, especially in the south/north
section (A and B), whereas QRRF uncertainty are wide roughly
everywhere, MC uncertainty are wide in the southern part and are
smaller otherwise. On the east/west section (C and D), we observe
some points with very high uncertainty for the 75th percentile and
overall much more extremely high prediction (highlighted with the
95th percentile) in the QRRF prediction. MC predictions on this
section, however, are more homogenous along the section.

6 Discussion and conclusion

In this paper, we show a successful application of the Monte Carlo
approach to propagate response variable uncertainties through the
solution of a multiple regression problem into predicted maps of
gravimetric soil moisture. The process allows us to predict soil
moisture on a dense spatial grid with quantification of prediction
uncertainty rooted in response variable uncertainty. Despite ignoring
other sources of uncertainty in the MRP, this helps us to spot places
where prediction is more trustworthy or, on the contrary, less reliable.
The found uncertainties represent a lower limit.

Consideration of further sources of uncertainty, e.g., predictor
data uncertainty or uncertainties related to methodological choices of
how to compute the regression models might overlap with the
uncertainties computed here. Our approach relies on the quantified
uncertainties of the training response variable. In contrast, QRRF
considers uncertainty representing some aspects of model uncertainty.
MC gives a more spatially contrasted prediction than the QRRF and
partly exceeds the uncertainty of QRRF. While the QRRF prediction
results reveal a first-order correlation of uncertainty with gravimetric
soil moisture, e.g., high soil moisture values that go along with high
uncertainties; the relation between uncertainty and soil moisture is
more complex in the MC approach. Particularly, for low soil moisture
readings, the MC approach propagating data uncertainty into the

prediction is more suitable than the QRRF approach to assess the
prediction uncertainty not overoptimistically, to support proper
information extraction from the predictions and avoid over-
interpretation.

The QRRF approach is not well suited to clearly identify areas of
lower or higher uncertainties since input data taken up in the training
ignore uncertainty. It illustrates a different aspect of uncertainty than
the Monte Carlo approach and is more related to the ability of the
model to learn a pattern for the target variable prediction with the
provided training data. Thus, we judge its provided uncertainty to be
merely related to internal functionality and chosen settings of the
random forest algorithm used to solve the MRP. Accordingly, the
quantified uncertainty will be more spatially homogeneous. Since
QRRF is a method routinely used to quantify the spatial
uncertainty of soil maps of various essential state variables, a
coupling of the MC approach with the QRRF might have the
potential to reach a more reliable uncertainty assessment. However,
the study of model uncertainty and the general suitability of QRRF for
model uncertainty quantification was not the goal of this study. When
analyzing the results presented in this paper, we have to keep in mind
that the model performance is not very good due to the small size of
the dataset, and it would be interesting to perform a similar
comparison between the MC approach and the QRRF with a
bigger training dataset. However, the small volume of training data
makes the MC approach computationally tractable, which may be a
limitation of the MC approach with much bigger datasets.

A further step in the future to improve this analysis for the
Monte Carlo approach is to also include predictor uncertainties for
a more comprehensive uncertainty quantification of the soil map
product. However, since the number of predictors is about 10, a
simple MC approach as we used here might suffer the curse of
dimensionality, and the sampling step will, therefore, require more
attention. Furthermore, the study shows the importance of
technological development for reducing the uncertainty in
training data.
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