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The collection of publicly available databases about climate change and its
impacts on natural and human systems is unprecedented and ever-growing.
However, the requirements of information can vary widely among users
depending on their region, socioenvironmental context, and interests.
Moreover, in the current era of active mitigation and adaptation policies,
information needs are frequently not satisfied even by these massive and
variated collections of databases. The development and use of emulators can
help closing this information gap by allowing users to approximate the output
from complex models and create user-defined experiments, without being
technically or computational demanding on the user. Here, a simple emulator
of the EPIC biophysical crop model is presented which is able to adequately
reproduce the changes in rainfedmaize and to create projections for user-defined
scenarios. Moreover, it allows to produce risk measures that are not available with
the original model. The proposed methodology is illustrated with a case study of
rainfed maize production in Mexico for a reference emissions scenario (SSP370)
and two user-defined international mitigation policy scenarios. These scenarios
represent 1) current international mitigation commitments and 2) a scenario in
which China withdraws from international mitigation efforts. Results showed that,
under the reference scenario, climate change could have widespread
consequences on rainfed production all over the country with decreases in
yields reaching up to 80% in the southeast and northeast of the country. These
impacts can be partially modulated by the moderately ambitious mitigation
commitments assumed in recent international agreements if all countries
comply. However, a potential withdraw of China from these efforts would
significantly reduce any benefits from international mitigation. Under all
scenarios, changes in productivity impose increasing risks for already
vulnerable populations and considerable economic costs at the state and
national levels. These results suggest the urgent need for critical planning for
adaptation in the agricultural sector of the country.
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1 Introduction

Climate change poses a serious risk to agriculture worldwide
potentially compromising food security both globally and locally
(Altieri and Nicholls, 2017). All domesticated crops, and particularly
cereals, have been adapted to constrained climatic requirements that
rely on predictable and recurrent climatic patterns. Deviations from
these conditions have differential impacts on agricultural
production around the world. It is expected that negative
changes will be more evident in tropical regions where
temperature is already close to the high temperature thresholds
for suitable cereals production (Rosenzweig et al., 2014; Betts et al.,
2018). Hazards of an altered climate on agriculture include the rise
in global temperatures (Betts et al., 2018), the increment in
frequency of extreme climatic events (Lesk et al., 2016; Cook
et al., 2018) and a shift in precipitation seasonality (Zaveri et al.,
2020). To understand and prevent the worst potential impacts of
climate change on agriculture, a plethora of investigations have been
conducted at different geographical scales from global to
subnational (Ziska et al., 2012; Deryng et al., 2014; Rosenzweig
et al., 2014; Lesk et al., 2016; Kukal and Irmak, 2018; Agovino et al.,
2019; Jägermeyr et al., 2021; Kogo et al., 2021). Nevertheless, the
availability of these main sources of information (satellites, censuses,
surveys and models) and the spatial and temporal resolutions of
these data products are not matching. In addition, these resources
are frequently beyond of the computational abilities of different
types of users which include policymakers (Kim et al., 2021). As a
result, there is an urgent need to close the gap between the
generation of sound scientific information, and its application in
decision making to manage climate risks for global food systems
facing climate change.

At least three approaches have been adopted to address the
evaluation of climate change impacts on agriculture: empirical
studies on observed climate variability and change and crop
production; field experiments, and; process-based computational
models. The first consists on case-studies of observed anomalous
climatic events to exemplify the potential impact if similar
conditions were to happen in the future. This type of approach is
also used to extrapolate the impacts on crops under future climate
conditions (Estrada et al., 2012; Iizumi and Ramankutty, 2015). This
methodology has the advantage of being applicable at any spatial
scale, thus potentially generating direct information for the decision
makers. However, it usually involves using statistical models to
extrapolate the effects of climate conditions beyond the range of
observations in which themodel was calibrated. In addition, climatic
events as analogs of future climate conditions can offer little insight
about how crops can respond to persistent climate conditions (Dell
et al., 2014). A second approach is the employment of field trials,
such as rain-exclusion and warming experiments (Robertson and
Hamilton, 2015), which evaluate how crop yields could change in
locally constructed future climatic conditions. Although they offer
greater insights on potential response in face of future scenarios,
their spatial extrapolation is limited to similar local conditions. Also,
these studies are usually costly, limited to case studies and not
feasible at the national or regional scales. The final approach has

been the construction of computational models based on the
processes that govern the agricultural systems and their
relationships with climate. Despite limitations of their own
(Rosenzweig et al., 2014), including that potential yields in
general do not reflect the observed yields, this approach has
enough flexibility to provide information at multiple
spatiotemporal scales, including past events and future climatic
scenarios.

Several global agricultural models have been developed in the
last decades for generating climate change impact projections. The
Environmental Policy Integrated Climate (EPIC-TAMU) is an
open model which originally estimated the effects of soil
erosion on crop productivity (Williams et al., 1984, 1989). The
major components of this model are weather simulation,
hydrology, erosion-sedimentation, nutrient cycling, pesticide
fate, crop growth, soil temperature, tillage, economics, and
plant environment control. Although EPIC operates on a daily
step, it is capable of simulating hundreds of years (Williams et al.,
2015). The EPIC-IIASA global gridded crop model (Balkovič et al.,
2014) is not an open model, based on the EPIC-TAMU version
081. It assesses the impacts on yields, water availability, and soil
degradation in the main global agricultural systems with different
management such as cropping, fertilization, irrigation practices,
and organic options under future climate change conditions. The
EPIC-IIASA model estimates plant growth and yield based on
temperature and soil moisture (Balkovič et al., 2014). Another
popular and open model is the pDSSAT which comprises an
assortment of survey-based and geospatial data sources (Elliott
et al., 2014), and field-scale crop models, including those based in
the Decision Support System for Agrotechnology Transfer
(DSSAT) framework (CROPGRO103 and CERES (Crop
Environment Resource Synthesis (Jones et al., 2003) (referred to
as pDSSAT). The pDSSAT model simulates food, fiber and
biomass production systems at high spatial resolution and
continental or global extents (Müller et al., 2019). The Lund-
Postdam-Jena managed Land model (LPJLmL) originated from
the LPJ-Dynamic Global Vegetation Model (Sitch et al., 2003) and
it is associated with biogeochemical processes (mainly carbon
cycling) (Bondeau et al., 2007). The LPJLmL model simulates
the growth and geographical distribution of natural plant and
crop functional types. There are other alternative crop models
such as WOFOST that is a simulation model for analyzing the
growth and production of field crops under a wide range of
weather and soil limiting conditions (Diepen et al., 1989), the
CLM-Crop (Levis et al., 2012), ORCHIDEE-CROP, and PEGASUS
(Deryng et al., 2011).

Considering the wide variety of crop models, some international
efforts have been developed to compare their projections such as the
Inter-Sectoral Impact Model Intercomparison Project (ISIMIP)
(https://www.isimip.org/) and the Agricultural Model
Intercomparison and Improvement Project (AgMIP) (https://
agmip.org/). Their main goal is to facilitate the evaluation and
improvement of the models. They also aim to improving the
estimates of the biophysical and socio-economic impacts of
climate, to provide knowledge for enhancing technological
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capabilities, and to tackle food security, and poverty at local to global
scales.

How countries adapt to climate change impacts and prevent
further risks possess critical questions about the countries’ capacity
to produce climate knowledge on a relevant scale for local decision-
makers. This is a key aspect of the climate services discussions
(Vaughan and Dessai, 2014; Soares and Buontempo, 2019) and the
analysis of how to bridge climate policy and the science interface
(Lemos et al., 2012; Tang and Dessai, 2012; Knutti, 2019). Unequal
climate knowledge infrastructures have been identified as one of the
key dimensions to better understanding how climate information is
locally produced, circulated, selected, and used by policymakers in
different development sectors (Edwards, 2010; Mahony and Hulme,
2016). This geographical imbalance can be modulated by how
countries customize the information from all parts of the world
and integrate it to their processes. Here, novel modelling approaches
are proposed to help different regions customize and use model
output and data. At the same time, this approach can help build
stronger technical capacities and provide adequate information for
decision making.

The increasing availability of crop projection databases from
leading modelling groups allows proposing simple model
emulators based on statistical techniques (Blanc, 2017; Estrada
et al., 2020). These emulators have low technical and computing
requirements and aim helping a variety of users who have no
access to biophysical crop models, but that have information
needs that may go beyond publicly available datasets. The
requirements of information can vary widely among users and
include tailor-made, user-defined policy or reference climate
change scenarios to address specific information needs. The
low-computational and technical costs of emulators also
facilitate the use of simulation and resampling methods that
allow generating probabilistic scenarios and estimating various
risk measures to facilitate communication of results and help
decision-making processes. Examples of such risk measures
include the social and economic time of emergence, and
multivariate risk indices (Hawkins and Sutton, 2012; Estrada
and Botzen, 2021; Estrada et al., 2021; Ignjacevic et al., 2021).

Limited access to complex models and technical and
computational challenges are much more common for policy
makers and stakeholders in developing countries (Blicharska
et al., 2017). In these regions, the development of alternative
modelling approaches and tools, such as emulators, can be of
high scientific and policy relevance. For instance, biophysical
crop models require high levels of expertise and programming to
use and adapt in a way that they can address relevant national,
subnational and local needs. Due to the lack of modelling
alternatives, policymakers in these countries are frequently left
with model runs created for other users’ needs that do not
respond to their specific demands. However, the usefulness and
benefits of emulators of complex models are not limited to cases in
which technical or computational resources are scarce or not
available. A variety of emulators, such as MAGICC
(Meinshausen et al., 2011), are used in high-impact publications
on climate change (Fawcett et al., 2015; IPCC, 2021) and play a
central role in integrated assessment modelling (Tol and
Fankhauser, 1998; van Vuuren et al., 2011; Nordhaus, 2013;
Meinshausen et al., 2020; Estrada and Botzen, 2021).

The main objective of this work is to offer a simplified
mathematical framework to produce emulators that can
approximate complex climate change impact assessment models
for agriculture. These emulators can extend the original models’
results to a wide range of user-defined intervention/inaction
greenhouse gas emissions scenarios. They can also be extended to
a probabilistic setting in which a variety of risk measures can be
developed to address the user’s information needs. In specific,
emulators of the EPIC model based on the simulations that are
freely available in the AgMIP7 database are developed. Some
performance metrics and a test to evaluate their performance are
proposed. This builds upon concepts such as “weather typing” (Hay
et al., 1991), “time-shift approach” (Herger et al., 2015) and “time
sampling” (James et al., 2017), developed for climate simulations
and for downscaling. These concepts have been applied to
interpolate impact projections for the Network for Greening the
Financial System (NGFS)1. Here we extend previous work to a
formal mathematical model and provide metrics and tests for
evaluating its performance.

The proposed methodology is illustrated with a case study of
rainfed maize production in Mexico, which has a particular cultural
and socioeconomic importance for the country. Although the
contribution of agricultural activities accounts for 3.4% of the
Mexican GDP (INEGI, 2020), there are ~6 million people who
depend directly on this sector (SIAP, 2019) and up to 26.9 million
people considering their relatives (INEGI, 2021). Farmers in Mexico
have been cataloged as of the most vulnerable to climate change
because of a mosaic of conditions (Monterroso et al., 2014; Murray-
Tortarolo et al., 2018; Donatti et al., 2019), and their incomes are
highly dependent on crop yields. The vast majority of agricultural
land is rainfed (69.7%) (SIAP, 2021), and conducted in small patches
of land (usually <2ha) (Ibarrola-Rivas et al., 2020), with traditional
management practices (e.g., milpa). The proposed emulators are
used to estimate the changes in yields at the grid (0.5° × 0.5°) and
state levels for three emissions scenarios that are not available in the
AgMIP7 database. These scenarios explore the benefits of strict
compliance of the Nationally Determined Contributions (NDC) and
what consequences would arise if a large emitter would drop out of
the NDC and the Paris Agreement. In the current context of the
cancellations of the US-China talks by China, a modified NDC
scenario in which China decides not to participate in the NDC
efforts is selected for the analysis. The economic costs and benefits of
such scenarios are evaluated, and two risk measures are used to
identify the regions that are more exposed to climate change impacts
on rainfed maize production.

The remainder of this article is structured as it follows. Section 2
presents the data and methods used. It develops the modelling
framework for constructing the emulators and presents an approach
to evaluate the emulators’ adequacy and accuracy. Section 3 presents
and discusses model evaluation and the projected changes in yields
and their implications for rainfed maize production in Mexico.
Section 4 summarizes the results and concludes.

1 https://climate-impact-explorer.climateanalytics.org/methodology/
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2 Data and methods

2.1 Model description

A simple methodology for constructing crop model emulators is
presented. The proposed emulators can closely reproduce the
outcome of complex models and address information needs that
cannot be covered with the simulations that are publicly available.
This methodology is illustrated using the EPIC crop model
projections that are available in the AgMIP7 database. The
emulator is based on a simple non-parametric modeling strategy
described in the following paragraphs.

The evolution of crop yields yt can be represented by means of a
signal plus noise model, such as:

yi,j,t � Si,j,t + εi,j,t (1)
Ŝi,j,t � f H( ) + ηi,j,t (2)

where Si,j,t is the true, unobserved systematic component of yi,j,t

which can be approximated by a general function f(H) of a set of
information H, and i, j are geographical coordinates (latitude and
longitude). Ŝi,j,t is the resulting approximation of Si,j,t. The noise
term εi,j,t � ηi,j,t + ui,j,t has two components, one related to bias and
the other to non-systematic variation. ηi,j,t � Si,j,t − Ŝi,j,t is an error
term which absorbs the influence on the systematic part of yi,j,t of all
other factors not included inH. In addition, εi,j,t includes ui,j,t which
is a zero mean, stationary noise that accommodates the non-
systematic effects of other factors, such as some short-term
variability in climate variables. Note that the error term ηi,j,t can
become a non-stationary process if Ŝi,j,t has systematic biases due to
the omission of important determinants in H. If no biases are
present in Ŝi,j,t, ηi,j,t is a zero mean, stationary
variable (i.e., ηi,j,t ~ I(0)).

The first step in the methodology is to construct an information
set H that contains a library of simulations from the biophysical
model and the corresponding global temperature change, both for a
range of emissions scenarios, such as those in the Representative
Concentration Pathways (RCP):

H � L, Tg{ } (3)
where L � l1, l2, . . . , lk and each lk is a three-dimensional matrix
(latitude, longitude, time) of yield projections for a particular crop,
production system and emissions scenario. Tg is a vector Tg �
Tg
1 , T

g
2 , . . . , T

g
k{ } of annual global temperature change for a total of k

different emissions scenarios, each one covering a horizon of n years
and that are expressed with respect to a reference period (e.g., pre-
industrial times).

The second step consists of indexing the information contained
in L with respect to the associated changes in annual global
temperature Tg and proposing the following specification for the
systematic component of ŷi,j,t:

Ŝi,j,t � E yi,jt θt|[ ] � 1
Mt

∑Mt

m ∈ θt
yi,j,m (4)

ε̂i,j,t � yi,j,t − ŷi,j,t � η̂i,j,t + ûi,j,t (5)

where θt is a subset of L such that θt � Tg
t − ω≤Tg

t ≤Tg
t + ω{ } andω

is a parameter that defines a rolling window around Tg
t . Eq. 4

consists in calculating the average of yield maps across the elements

of θt which satisfy the condition of being associated with a global
temperature change in the range of Tg

t ± ω, regardless of the date of
occurrence and/or the emissions scenario they belong to. Averaging
over this range of values has the effect of minimizing the effects of
factors that are not common across the elements of θt and
reinforcing those that are common. In particular, Ŝi,j,t would
preserve the effects over yields of changes in external forcing, as
well as other determinants (e.g., soil properties, fertilizers, among
others), and dilute the effects of those that are different (e.g., natural
variability, differences in regional forcing). As such, by analyzing the
error term ε̂i,j,t it can be inferred if the proposed model has
important biases η̂i,j,t and thus if information set H provides a
representative sample to adequately emulate the outcome yi,j,t. The
existence of important biases in ŷi,jt can be evaluated by testing if
ε̂i,j,t ~ I(0). Since ŷi,j,t is an average, a centered running mean of
yi,j,t is used to calculate ε̂t and to compute in-sample and out-of-
sample forecast evaluation measures (RMSE, nRMSE). This running
mean is closer to what ŷi,j,t represents and minimizes the effects of
natural variability.

Some relevant properties and limitations of the proposed
methodology include:

• There are no assumptions about the functional form relating
the effects of changes in climate over yields.

• Spatial patterns produced by the original biophysical crop
model are preserved. Noise is introduced to these patterns by
the mismatch between Ŝi,j,t and Si,j,t, as well as by ui,j,t.
However, if ε̂i,j,t ~ I(0) any mismatch is transitory, and no
systematic biases are present.

• As with many other models, projections beyond the range of
values used for calibration are likely not valid.

• The proposed methodology is not appropriate for scenarios
which involve large changes in spatial climate patterns
(i.e., spatial stationarity of changes does not hold, see
below) such as those that correspond to climatic
catastrophes (e.g., thermohaline circulation collapse).

• At each time t the emulator in Eqs 4, 5 constructs a library of
realizations that represents the response of the biophysical
climate models to similar levels of warming. These collections
of realizations can be used to approximate the empirical
distributions of crop yields conditional on the level of
warming Tg at time t, through resampling and simulation
methods as illustrated in the following section. This allows to
explore, for example, the probabilities of exceeding thresholds
and other risk measures.

Finally, note that Tg provides a succinct representation of
changes in climate as it implicitly offers an approximation of
how temperature and precipitation vary at a spatially explicit
scale. A variety of studies has provided strong evidence in favor
of stationarity in the spatial patterns of change in variables such as
monthly and annual temperatures (mean, maximum and
minimum), as well as in precipitation (Tebaldi and Arblaster,
2014). This implies that changes in temperature and precipitation
at the grid cell are proportional to changes in annual global
temperature:

vi,j,t � Tg
t P

v
i,j + ξ i,j,t (6)
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where vi,j,t is the change in variable v, Pv
i,j is a matrix of scaling values

that are fixed in time but that vary across space. The scaling pattern
Pv
i,j represents the response of the climate system in variable v to

changes in external forcing, while ξi,j,t is a noise term that includes
the effects of natural variability. This means that while changes in
the climate variable v (or in multiple climate variables
V � v1, v2, . . . , vp{ }) are heterogeneous in space, they all scale
linearly with Tg at a fixed proportion. Thus,
Si,j,t � f(V, ·)∝f(Tg, ·). In consequence, the proposed
methodology requires the assumption of spatial stationarity to hold.

2.2 Computation of risk measures estimates

A relevant application of the proposed methodology is to
provide risk measures that are currently not available from the
original biophysical crop models. The library of realizations in the
information setH, in combination with resampling methods, can be
used to approximate the empirical distribution of crop yields
conditional on the level of warming Tg at time t. Specifically, for
each time step t, the set of realizations in H are resampled with
replacement n times and the resulting four-dimensional matrix
(latitude, longitude, time, resampled realizations) can be used to
approximate the probability of exceedance of a risk threshold
defined by the user (Estrada et al., 2020; Estrada and Botzen,
2021). A risk threshold based on the percent change in yields is
defined by the user and the probabilities of exceedance are computed
from the four-dimensional matrix of yields. A Boolean function is
used to assign the value 1 to the entries in the four-dimensional
matrix that exceed the chosen threshold and 0 otherwise. The
average value of the resulting matrix is calculated to approximate
the probability of exceedance per grid cell and time step. Once the
probabilities of exceedance have been computed, the date of
exceedance can be estimated by selecting a probability threshold
at which the occurrence of exceedance is declared.

2.3 Calculation of economic losses

For calculating the economic losses, the following steps were
carried out. First, because modelled and observed yields are not
directly comparable (Rosenzweig et al., 2014) the change in
modelled yields is applied to observed yields as follows (see
Estrada et al., 2022):

Yfut � Yobs
ref 1 + Ymod

fut − Ymod
ref

Ymod
ref

⎛⎝ ⎞⎠
where Yfut is the future yield, Yobs

ref is the observed yield in the
reference period, Ymod

ref is the yield from the biophysical model
emulator in the reference period and Ymod

fut is the yield calculated
from the model emulator for the future period. Second, the change
in yields (Yobs

ref-Yfut) is obtained and multiplied by the number of
hectares in each state devoted to the production of the crop to
provide an estimate of the tons of crop lost due to climate change.
Third, the estimated annual loss in production is multiplied by the
price per ton of the crop in each state. Finally, the present value of
losses is calculated with a user-defined discount rate.

2.4 Evaluating the adequacy and accuracy of
models based on different information
sets H

As mentioned in the previous subsection, the adequacy of the
information set H used to calculate Eq. 5 can be evaluated by
analyzing the properties of the error term ε̂i,j,t. If differences
between Si,j,t and Ŝi,j,t are transitory then ε̂i,j,t ~ I(0), while if
they are persistent, they will make the error term non-stationary.
The Augmented Dickey-Fuller (ADF) test is commonly used to
distinguish between stationary and non-stationary variables (Dickey
and Fuller, 1979; Said and Dickey, 1984), which involves estimating
the following regression for any time series xt:

Δxt � δxt−1 +∑J

j�1βjΔxt−j + et

where ∑J
j�1βjΔxt−j are additional terms to correct for

autocorrelation. Under the null hypothesis δ � 0 and xt contains
a unit root, and the alternative is that it is stationary around zero. It is
important to note that 1) the power of the ADF test goes to zero
when a deterministic trend is omitted, 2) when an intercept is not
included, the power is adversely affected and decreases with the
magnitude of the omitted constant and, 3) in the case of structural
changes in the trend function, the δ will be biased towards zero (the
non-rejection of the null). A such, when applied to ε̂i,j,t, the null
hypothesis of the ADF would likely not be rejected if a persistent bias
is present in Ŝi,j,t, regardless of the non-stationarity being caused by
the presence of a unit root, an omitted trend/intercept or the
existence of structural breaks (Perron, 1989).

To evaluate the accuracy of the projections obtained using
different H sets, the root mean square error (RMSE) and the
normalized RMSE (nRMSE) are calculated using the mean of the
yield of the original model for the projected period. These metrics
also help to assess how much additional realizations of the
biophysical crop contribute to improve the emulator’s projections.

2.5 Data description and sources

The proposed methodology is illustrated using the output from
the EPIC crop model for rainfed maize (Williams et al., 1984, 1989)
forced with the climate projections of the HadGEM2-ES climate
model under the RCP8.5, RCP6.0, RCP4.5 and RCP2.6 emissions
scenarios.2 This information constitutes the L component of the
information set H. All data was obtained from the AgMIP7 dataset
using the Geoshare AgMIP Tool (Villoria et al., 2016). The
geographical domain chosen for this study is Mexico, and the
period is 2005–2100. For the Tg component, the ensemble
average of annual mean global temperature projections from the

2 These emissions scenarios are named after the radiative forcing they
would produce by the end of the present century, ranging from 8.5 W/
m2 to 2.6 W/m2. They can also be interpreted as a very high emissions
trajectory (RCP8.5), two scenarios that are similar to what current policies
would achieve (RCP6.0) and to what strict fulfilment of Nationally
Determined Contributions (NDC) would produce (RCP4.5), and a
stringent international mitigation scenario that is consistent with the
Paris Agreement goals of keeping global temperature increase well
below 2°C by 2100.
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HadGEM2-ES climate model were computed for each of the four
RCP scenarios. Four simulations were available for the RCP2.6,
RCP4.5 and RCP8.5, while only three for the RCP6.0. All
HadGEM2-ES output was downloaded from the KNMI’s Climate
Explorer tool (https://climexp.knmi.nl/). To illustrate the usefulness
of the proposed emulators, the ensemble average (one member per
model) of the Coupled Model Intercomparison Project phase 6
(CMIP6) dataset for the SSP370 were obtained, which was also
obtained from the KNMI’s Climate Explorer tool, and two
simulations from the CLIMRISK (Estrada and Botzen, 2021) and
MAGICC6 (Meinshausen et al., 2011) models. These two
simulations represent 1) the strict compliance of the Nationally
Determined Contributions (NDC) of all countries and 2) the NDC
scenario but with China dropping out from this international effort
(NDCnoCHINA). Observed yields, cultivated area and prices for
rainfed maize were obtained for the period 2000–2010 from
SIACON3.

3 Results and discussion

3.1 Evaluation of adequacy and accuracy of
the proposed emulators

The adequacy and accuracy of different emulators based on all
possible combinations of RCP simulations to integrate the
information set H was evaluated. Supplementary Tables S1–S4 in
the Supplementary Material show the RMSE, nRMSE and the
significance of the ADF test statistic. Bold figures denote which
emulators provide no evidence of non-stationarities in ε̂i,j,t and
produce the lowest errors. When H is composed of only one RCP
scenario, the RCP8.5 is the only one that produces stationary
residuals. This emulator has an out-of-sample RMSE (averaged
over all simulations except those included in H; in this case, the
RCP8.5 is excluded) of 0.89 t/ha and a nRMSE of 13.6%.4 The
nRMSE is reduced by about 30% when the RCP4.5 is added to H,
and the errors are also stationary. Including the RCP8.5, RCP4.5 and
RCP6.0 in H decreases the average out-of-sample nRMSE by about
4% and produces stationary errors. The average out-of-sample
RMSE is 0.64 t/ha and a nRMSE of 9%. When H includes all
four RCPs, errors are stationary, the average in sample RMSE is
0.44 t/ha and the average nRMSE is 7%. Supplementary Figures
S1–S9 in the Supplementary Material compare the original yield
projections obtained from the EPIC model and those produced with
the proposed methodology. These figures show the spatial patterns
of the nRMSE and the temporal evolution of the yield projections
from the EPIC model and the proposed emulators for a randomly
chosen grid cell.

The results in Supplementary Tables S1–S4 in the
Supplementary Material show that: 1) the errors produced by the

proposed emulators are relatively small, as the RMSE is in general
below 1 t/ha in comparison with the average yield for the area of
study (about 6 t/ha); 2). Due to the fact that the RCP8.5 expands
over a wider range of global temperature change, it is the scenario
that adds more information to the set H. In contrast, the
RCP2.6 adds the least because all other RCP scenarios provide
information for changes in yields in a range of global temperature
change that encompasses that of the RCP2.6; 3) the out-of-sample
RMSE values averaged over the different RCPs decreases as more
RCP scenarios are added to the set H, suggesting that the emulator
becomes better at producing projections that are not in the
training set.

Furthermore, most of the combinations of RCP inH that include
the RCP8.5 produce stationary errors at each grid cell, for all RCP
that are evaluated. This suggests that differences between Si,j,t and
Ŝi,j,t are indeed transitory and that RCP-specific differences such as
in regional forcing and other factors do not produce a systematic
bias in the emulator’s projections.

3.2 An illustration of the proposed emulators
for generating user-defined scenarios

The usefulness of the proposed methodology is illustrated by
projecting rainfed maize yields under three emissions scenarios that
are not considered in AgMIP7. Furthermore, risk estimates that are
not directly available using current biophysical crop models are
provided. The emissions scenarios that were selected are: the
SSP370 used in the CMIP6, and that is similar to a “business-as-
usual” scenario; 2) a strict compliance NDC scenario and; 3) the
NDCnoCHINA scenario which consists of the NDC scenario but
excluding China’s participation (Estrada and Botzen, 2021).

3.2.1 Climate change impacts on rainfed maize
yields

Results of the simulations of rainfed maize yields for the selected
emissions scenarios are presented in Supplementary Figure S10
included in the Supplementary Material. This figure shows the
changes in yields (%) with respect to 1980–2010 for the SSP370,
NDC and NDCnoCHINA emissions scenarios for the time horizons
2055 and 2085. The SSP370 scenario implies large reductions in
rainfed maize in Mexico by mid-century. These reductions are
highly heterogeneous in space and particularly large for part of
the northeast and most of the southeast of Mexico. This is also the
case for the south-center region of the US, where the yield changes
can exceed −40%. The reductions in yields become much larger and
widespread near the end of the century, reaching over 70% in the
southeast and northeast of Mexico (and in the southeast of the US),
and close to 40%–50% in some regions of the Pacific coast where
some of the largest producers of rainfed maize are located.

Aggregating yield changes at the state level (Figure 1) shows that
under the SSP370 all states, with the exception of the Baja California
peninsula, would experience important decreases in rainfed maize
yields during this century. The largest reductions occur in Nuevo
Leon reaching close to 50% during the 2050s and about 80% at the
end of the century, followed by those in Campeche which exceed
40% by mid-century and 60% by the 2080s. Other states with
decreases in yields exceeding 50% by the end of the century are

3 SIACON is a query system for agricultural information created by the
Mexican government. SIACON is available at https://www.gob.mx/siap/
documentos/siacon-ng-161430

4 Note that there is no consensus about what an acceptable range RMSE or
nRMSE values is. This measure is intended to compare the accuracy of
alternative models in relative terms (Blanc, 2017; Estrada et al., 2020).
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Coahuila, Quintana Roo, Tabasco, Tamaulipas, and Yucatán. States
such as Chiapas, Guerrero, and Oaxaca, which are characterized by
high levels of poverty and small-scale producers that depend on
rainfed maize production for subsistence, would also experience
large reductions in yields. For these states, the expected reductions in
yields are about 30%–45% by the end of the century and 15%–30% in
the following 3 decades. The largest producers of rainfed maize in
the country (e.g., Mexico, Jalisco, and Nayarit) would see reductions
between 5% and 15% by the 2050s, and 15% and 25% at the end of
the century. Figures 2A, 3A show these results as maps for the short
(2025) and medium (2055) time horizons, respectively.

If an international mitigation effort consistent with the NDC
commitments would be implemented, a significant fraction of these
reductions in yields could be avoided. Figure 1B shows the yield
changes obtained for the NDC scenario and reveals that there would
be important benefits for most states if such an international
mitigation effort would be implemented in comparison with a
“business-as-usual” type of scenario (SSP370; Figures 2B, 3B).
Thirteen states would avoid losing at least 10% of their current
yields by the end of the century, and seven states would avoid
reductions in yields of 5% or more by the 2050s. However, if China,
one of key actors for limiting greenhouse gas emissions, would

decide not to participate in the NDC effort these benefits would be
significantly reduced (Figures 1D, 2C, 3C). In comparison with the
SSP370, implementing the NDCnoCHINA scenario would more
than halve the benefits that would be obtained under the full
compliance of all participant countries (NDC): only three states
would avoid reductions of at least 10% by the 2080s and no state
would see benefits exceeding 5% by mid-century.

3.2.2 Risk measures estimates for rainfed maize in
Mexico

In this subsection, the library of realizations in the information
set H is used in combination with resampling methods to
approximate the empirical distribution of crop yields conditional
on the level of warming Tg at time t. Specifically, for each time step,
the set of realizations in H are resampled with replacement
10,000 times and the resulting four-dimensional matrix (latitude,
longitude, time, resampled realizations) is used to approximate the
probability of exceedance of a risk threshold defined by the user. For
the results presented below, a 30% reduction in yields is chosen as
the user-defined risk threshold and the probability threshold is set at
50%. In other words, it is required that at least 50% of the
realizations exceed the risk threshold defined by the user to

FIGURE 1
Percent changes per state in rainfed yields under the SSP370, NDC andNDCnoCHINA scenarios for three time horizons. Panel (A) shows the percent
change in yields under theSSP370 scenario while Panels (B,C) show those for the NDC and NDCnoCHINA scenarios. Projections for 2010–2040 are
shown in red, in green for 2040–2070, and in blue for 2070–2100. The Y-axis depicts the percent changes in maize yields and the X-axis shows the state
names.
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FIGURE 2
Maps of percent changes in rainfed yields under the SSP370, NDC and NDCnoCHINA scenarios for the short time horizon (2010–2040). Panel (A)
shows the percent change in yields under theSSP370 scenario while Panels (B,C) show those for the NDC and NDCnoCHINA scenarios. Figures axes are
latitude (Y-axis) and longitude (X-axis).
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FIGURE 3
Maps of percent changes in rainfed yields under the SSP370, NDC andNDCnoCHINA scenarios for themedium time horizon (2040–2070). Panel (A)
shows the percent change in yields under theSSP370 scenario while Panels (B,C) show those for the NDC and NDCnoCHINA scenarios. Figures axes are
latitude (Y-axis) and longitude (X-axis).
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FIGURE 4
Dates of exceedance of reductions of at least 30% in rainfed maize. Panel (A) shows the dates of exceedance for the SSP370, while Panels (B,C)
present the estimated dates for the NDC and NDCnoCHINA scenarios. Figures axes are latitude (Y-axis) and longitude (X-axis). Units are calendar years.
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declare that the risk threshold has been exceeded. Once the
threshold has been declared as exceeded, the date when this first
occurs is retrieved. These risk measures can help decision-makers
developing critical path planning for adaptation in which dates of
exceedance provide a time frame for designing and implementing a
sequence of adaptation activities.

Animated Supplementary Figures S12–S14 in the
Supplementary Material show the evolution of the probabilities

of exceeding 30% reductions in rainfed maize yields for the
SSP370, NDC and NDCnoCHINA scenarios for the period
2005–2100. Under the SSP370 (Supplementary Figure S12), the
probabilities of exceedance increase rapidly in the second part of
the century reaching values above 80% in the southeast region of the
country and all along the Pacific coast. In contrast, for most of the
central region these probabilities remain below 60%. Although the
NDC is not a very ambitious international mitigation effort, the

TABLE 1 Present values of the cumulative costs of climate change, of the cumulative benefits of international mitigation over this century and of the costs of China
dropping out from international mitigation efforts.

SSP370 NDC NDCnoCHINA

Present value of the costs of climate change $129,773.60 $104,610.17 $113,206.41

Present value of the benefits of mitigation — $25,163.43 $16,567.19

Present value of the costs of China dropping out — — $8,596.25

Figures are in 2012 million pesos.

FIGURE 5
Present value of the cumulative costs of climate change over this century in rainfedmaize production and of the cumulative benefits of international
mitigation. Panel (A) shows the present value of the costs of reductions in rainfed yields for the SSP370 (red), NDC (blue) and NDCnoCHINA (green)
scenarios. Panel (B) shows the benefits of implementing the NDC (red) and the NDCnoCHINA (green) with respect to the SSP370 scenario. The present
value of the costs of China dropping out of the NDC mitigation effort are show in grey. The Y-axis depicts the calculated present values, and the
X-axis shows the state names. Quantities are expressed in million pesos.
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probabilities of exceeding the selected risk threshold for rainfed
maize yields are much lower for most of the country. The exceptions
are the states located in the southeast of the country, as well as in
Nuevo Leon, Coahuila, Tamaulipas, and Veracruz.

Figure 4 shows the dates of exceedance for each of three
scenarios considered. Under the SSP370 scenario (Figure 4A),
most of the area devoted to rainfed maize production in Mexico
would likely experience reductions of 30% in yields during this
century. During the present decade, states such as Nuevo Leon and
Coahuila would reach this risk threshold, as well as some parts of
Campeche. In the 2030s, Tamaulipas, parts of Sonora and the rest of
Campeche would exceed decreases in yields above 30%. The rest of
the southeast ofMexico would exceed 30% decreases in yields during
the 2040–2060 period, and a large fraction of the remaining area
devoted to this crop would exceed the threshold as early as the 2070s.
Strict compliance with the NDCs would not be enough to delay
exceeding the risk threshold for Nuevo Leon, Coahuila, Tamaulipas
or Campeche (Figure 4B). Nevertheless, it would provide about
10 extra years for adaptation in parts of the southeast of Mexico, and
about 20 years in Nayarit, Sinaloa and, Sonora. Furthermore, such
mitigation scenario would push the date for exceeding the risk
threshold into the next century for most of the central part of
Mexico.

If China dropped out of the NDCs (NDCnoCHINA), most
regions in Mexico would still experience some benefits in terms of
delaying the date of exceedance of the risk threshold (Figure 4C).
These areas include the southeast of the country, where the dates for
exceedance would be like those obtained in the NDC scenario. For
most of the Pacific coast there would be a delay of 10–15 years in
comparison with the SSP370 scenario. The central part of the
country would also experience about a 20-year delay for reaching
the risk threshold of with respect to the SSP370 scenario. These
delays would provide additional time for designing and
implementing adaptation strategies to minimize the impacts of
climate change on this crop and for addressing the challenges of
the population that depends on it.

3.2.3 Estimates of the economic costs of climate
change for rainfed maize in Mexico

In this section, estimates of the economic costs of climate change
at the national and state levels are provided. For this purpose, the
official statistics about yields, crop area and prices collected over the
period 2000–2010 by the Ministry of Agriculture and Rural
Development of Mexico are used, as well as the projections of
changes in yields obtained for the SSP370, NDC and
NDCnoCHINA scenarios.

To represent the reference yields and area devoted to rainfed
maize, the state average values of these variables during the
2000–2010 period are used. For each scenario, the future yields
are obtained multiplying one plus the projected changes (%) by the
observed average yield of each state. Assuming the rainfed maize
area remains constant for the rest of this century, the losses/gains
from climate change in rainfed production are calculated as the
difference between future and reference yields in each state,
multiplied by the rainfed maize area in each state. The resulting
quantity of tons are multiplied by the state-level price to
approximate the costs or benefits of climate change for this crop
under a particular emissions scenario. For the results in this

subsection, state prices in 2012 pesos and a 4% discount rate are
used for calculating present values.

At the national level, the present value of the cumulative losses in
rainfed maize yields over this century amounts to $130,000 million
pesos, which is comparable to three times the value of rainfed
production of Mexico in 2012 (Table 1). These losses are highly
heterogeneous at the state level with Chiapas, Jalisco, Veracruz,
Oaxaca, and Guerrero account for about 60% of the total national
losses (Figure 5A). In comparison with the SSP370, the present value
of the cumulative benefits over this century of the NDC scenario
(Figure 5B) would be about $25,000 million pesos, with the largest
benefits in Chiapas ($5,600 million), Jalisco ($3,300 million) and
Veracruz ($3,000 million). The decision of China to drop out of the
NDC agreement would represent a loss of $8,600 million pesos for
Mexico in rainfed maize production in comparison with the strict
implementation of the NDC. About 46% of these lost benefits would
occur in Chiapas, Jalisco and Veracruz (Figure 5B).

4 Conclusion

The amount of data about climate change and its impacts on
natural and human systems that is available for decision-makers and
researchers all over the world is unprecedented and ever-growing.
Moreover, a large fraction of these databases is publicly available
through international efforts of the climate change modelling
community. However, the information needs are highly dynamic
in an era of active mitigation and adaptation policies and are very
heterogeneous among users. As such, information needs can hardly
be satisfied even by such impressive and variated collections of
databases. This is particularly true in the case of complex models for
which runs are typically available for a limited number of scenarios
(e.g., RCP, SSP) and experiments. Limited access to these models
and lack of technical and computational capacities to run them
constitute significant barriers for a variety of users and preclude
them from creating tailor-made scenarios to address their specific
information needs.

This information gap can be addressed through the development
of emulators which can approximate the output from complex
models using simple methods that are not technically demanding
on the user, nor costly in computational terms. Moreover, such
methods can be easily implemented and made publicly available. In
this paper, a simple emulator of the EPIC model applied to rainfed
maize is presented. It is shown that it can adequately reproduce the
output of this complex biophysical crop model and to create
projections for user-defined scenarios, as well as risk measures
that are not available with the original model.

The proposed emulator is illustrated with an application for rainfed
maize production inMexico under three scenarios that are not available
in the AgMIP7 database: the SSP370 and two user-defined scenarios
that represent the strict compliance of the NDC commitments and a
hypothetical case in which China drops out of this international
mitigation effort. It is shown that under the baseline scenario
(SSP370), rainfed maize yields could decrease at least 40% for
11 states of the country and up to 60%–80% in some regions by the
end of the century. These results are consistent with the range of yield
reductions reported in Estrada et al. (2022), which analyzes yield
changes of the EPIC model under the RCP8.5 and RCP2.6 scenarios
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for rainfed maize in Mexico. The probabilities of exceeding a user-
defined risk threshold of −30% reduction in rainfed maize yields are
estimated and the areas with higher risks are identified. Using the
estimated probabilities, the dates of exceedance of this risk threshold are
calculated and reveal that regions such as Nuevo Leon, Coahuila and
Campeche would reach this threshold in the current decade, and that
most of the southeast of the country would do so in the period
2040–2060. Most of the remaining area devoted to this crop would
exceed the risk threshold later this century. It is shown that under the
NDC scenario, yield reductions and risks significantly decrease formost
of the country but that there are some regions in which such an effort
has no effect delaying the date for exceeding the selected risk threshold
(i.e., Nuevo Leon, Coahuila and Campeche). Results also show that if
China decided not to participate in theNDC effort, some benefits would
still be attained but most regions of the country would face significantly
higher risk and yield reductions.

The present value of the cumulative costs of climate change
over this century under these three scenarios is also provided.
Under an inaction scenario (SSP370) the present value of the
losses in rainfed maize yields amounts to $130,000 million pesos,
with much of these losses occurring in Chiapas, Jalisco, Veracruz,
Oaxaca, and Guerrero. As expected, these losses are lower than
those reported by Estrada et al. (2022) for a higher emissions
scenario (RCP8.5). However, these estimates are consistent with
what could be expected for the SSP370, and a similar
geographical distribution of losses is shown. The strict
implementation of the NDC would represent about
$25,000 million pesos of avoided damages in rainfed maize
production for Mexico, while the hypothetical decision of
China to drop out of the NDC would impose losses for about
$8,600 million pesos in rainfed maize production for Mexico.
Overall, the results show that climate change could have
widespread consequences on rainfed production all over the
country, with increasing risks for already vulnerable
populations and large economic costs at the state and national
levels. Moreover, the proposed methodology allows to estimate
dates for exceedance of critical thresholds that can help
stakeholders to develop timely adaptation plans and to
prioritize regions of higher concern. Note that this
methodology can also be used to assess the effects of some
adaptation measures, such as converting production from
rainfed to irrigated in places where water availability allows
for. The development of this type of simple emulators that can
produce policy-relevant information could provide helpful
assistance for government adaptation and risk reduction
policies aimed to minimize the expected negative effects of
climate change in different sectors.
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