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For the problem that the traceability parameters of sudden water pollution are
difficult to determine, a fast traceability model based on a simplified mechanistic
model coupled with an optimization algorithm is proposed to improve the
accuracy of sudden water pollution traceability. In this paper, according to the
diffusion law of pollutants, a quantitative formula of pollutant diffusion is
proposed, and the differential calculation process of the pollutant convection
equation is optimized. The Dynamic Programming and Beetle Antennae Search
algorithm (DP-BAS) with dynamic step size is used in the reverse optimization
process, which can avoid the problem of entering the local optimal solution in the
calculation process. TheDP-BAS is used to inverse solve the quantization equation
to realize the decoupling of pollutant traceability parameters, transforming the
multi-parameter coupled solution into a single-parameter solution, reducing the
solution dimension, and optimizing the difficulty and solution complexity of
pollutant traceability. The proposed traceability model is applied to the
simulation case, the results show that the mean square errors of pollutant
placement mass, location, and time are 2.39, 1.16, and 1.19 percent,
respectively. To further verify the model reliability, the Differential Evolution
and Markov Chain Monte Carlo simulation method (DE-MCMC) as well as
Genetic Algorithms (GA) were introduced to compare with the proposed
model to prove that the model has certain reliability and accuracy.
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1 Introduction

Sudden water pollution has a sudden, accidental, more serious impact on its
environment, so the first task of emergency disposal of sudden water pollution time is
to determine the location of the source of pollution and the intensity of the first time after the
incident (Sheng., 2012; Zhang et al., 2010). Sudden water pollution mostly enters the river
and canal as a point source and migrates and transforms with the diffusion of the river. The
study of the diffusion pattern of pollutants after entering the river canal, and relying on the
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detection value of pollutant concentration to deduce the location,
time, and amount of pollutants put in reverse, is the key to solving
the traceability of sudden water pollution (Cheng et al., 2011).

Sudden water pollution traceability is to understand the
diffusion process of pollutants after entering a water body. At
present, research on sudden water pollution traceability at home
and abroad is still in the exploration and development stage
(Zhu., 2014), and many scholars have made numerous research
results in the identification of pollutant source item information.
However, a complete system of sudden water pollution
traceability issues has not yet been developed (Charles et al.,
2000; Gorelick et al., 2000). There are currently three types of
methods for pollutant traceability, the first of which is the use of
optimization algorithms to optimally solve for pollutant sources,
the second is the use of probabilistic statistical methods, and the
third is the method of coupled probability density analysis
(Charles et al., 2000). Among the optimization algorithms
used, Jha and Datta (2012) used an adaptive simulated
annealing algorithm to study the traceability of groundwater
pollution, Yuan et al. (2017) studied two-dimensional river
water quality parameters using a simplex-particle swarm
optimization algorithm, and Xin et al. (2014) used a
combination of genetic algorithm and mathematical model for
single-point source and multi-point source multivariate
problems. Han et al. (2020) proposed a method that couples
the dispersion equation of groundwater pollutants with a genetic
algorithm (GA) for identifying groundwater pollution sources.
Lei et al. (2022) established a new model combining the radial
configuration in time (RBCN) method coupled with the
differential evolutionary algorithm (DE) for the solution of
pollutant source terms and achieved a better solution
accuracy. The use of optimization algorithm to solve the
pollutant source term can minimize the error of the model
simulation and provide a reliable reference for pollution
control and treatment of water bodies. Mou et al. (2011) used
a differential evolutionary algorithm to study the problem of
single and multipoint fixed pollution source term identification.
For the second type of method, Yan et al. (2019) proposed an
innovative framework based on the Bayesian theory and
groundwater pollution source identification, coupling overall
linear programming as well as the Markov chain, with better
accuracy for the inverse of pollutant source terms. Ghane et al.
(2016) solved the pollutant source identification problem in river
networks based on the inverse probability density. Yang et al.
(2014) transformed the traceability problem into a Bayesian
estimation problem to achieve efficient traceability of
pollutants. Cao et al. (2010) used Bayesian-Monte Carlo
methods to solve the identification problem of the pollution
source for the convection-diffusion equation, Chen et al.
(2012)used Bayesian-Monte Carlo methods to study the source
identification problem of water pollution, and Cheng and Jia
(2010) conducted a traceability study of river pollution based on
the inverse probability method. Among the coupled probability
density optimization methods, Neupauer et al. (2001) used the
location and time of the source term of the inverse probability
density function sphere; Wang et al. (2015) used probability
density analysis coupled with the differential evolution method to
conduct a traceability study of sudden water pollution. Kanao

and Sato (2022) proposed an edge-sensitivity approach, a time-
inverse probabilistic method to estimate the location of pollutant
emissions and the time and total amount of pollution from
observations of finite elements.

The development of traceability technology can simultaneously
quantitatively assess the severity of sudden water pollution events,
quickly activate the emergency treatment mechanism for pollution,
and efficiently safeguard water resources by quickly capturing the
location, time, and discharge quality of such events. Through the
use of an assessment index system, numerous academics have
recently assessed the state of water resources. To qualitatively
evaluate the severity of the lack of water resources, several
researchers (Sullivan et al., 2003) developed the hydrological water
pressure index and the social water scarcity index. Sun et al. (2020) used
the WPI index to assess the level of water poverty in several Chinese
provinces; By creating a balance sheet and the multidimensional water
poverty (MWP) evaluation system, Yuan et al. (2023) assessed the
current state of water resources in Hubei Province and the Yangtze
River Economic Belt and examined the issue of a shortage of water
resources in Hubei Province and the Yangtze River Economic Belt. The
grey water footprint (GWF) and grey water footprint intensity (GWFI)
were examined by Kong et al. (2023) to evaluate and analyze the water
pollution issue in Jiangsu Province. As can be seen, China continues to
face significant problems with its water resources. Traceability
technology can offer technological assistance for the preservation of
water resources. The essence of the method mentioned in this paper is
an improvement in the first type of traceability method mentioned
above, and the main objective is to achieve a rapid response to sudden
water pollution and to obtain accurate information about the source
items of pollutants including the quality, location and time of pollutant
discharge. Compared with previous tracking and tracing studies, the
proposed tracking and tracingmodel based on quantitative formulation
of diffusion law of pollutants coupled with the improved BAS algorithm
is easy to understand and implement. A classic environmental
hydraulics inverse problem is the estimation of the traceability of
abrupt water contamination (Dooge et al., 2005). A coupled
hydrodynamic-water quality model is typically used to simulate the
forward calculation of water pollution dispersion. To discretize the
collection of St. Venant equations for the hydrodynamic computation, a
four-point implicit difference format is used. A one-dimensional
convective diffusion equation is derived from water quality
calculations based on the conservation of matter principle using the
same implicit differential format as the set of equations for discrete
computations.

This method in the forward calculation process will exist due to the
issue of differential format in the oscillation and non-convergence of the
calculation results; to address this issue, the introduction of the pollutant
diffusion quantification method on the conventional hydrodynamic-
water quality coupled model to simplify the calculation through the
physical model to test the quantificationmethod’s reliability to a certain
extent. Due to the linked hydrodynamic-water quality model in the
reverse calculation of water quality along the propagation of the
existence of growing deformation features, the calculation is prone
to unstable outcomes throughout the retrospective calculation process.
In order to accomplish this, a modified Beetle Antennae Search
algorithm based on coupled pollutant diffusion quantification
method is suggested. This algorithm converts the conventional
differential calculation into the calculation of the system of
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equations’ optimal solution and significantly speeds up the solution. In
themeantime, the traditional BAS algorithmwithfixed calculation steps
was replaced with the BAS algorithm with variable calculation steps to
guarantee the accuracy of the calculation results and to realize the
effective and precise traceability of pollutant source parameters.

2 Research methods

2.1 Quantitative methods for pollutant
diffusion

After pollutants enter the water, they generally go through three
stages: the core zone of the jet, the diffusion zone, and the dispersion
zone (Zhang et al., 2005). In this paper, the longitudinal length of the
pollutant, the peak transport distance, and the peak concentration of
the pollutant are selected as the characteristic parameters of sudden
water pollution, and the longitudinal length of the pollutant and the
peak transport distance of the pollutant are calculated to determine
the extent of pollutant dispersion.

The pollutant concentration can be expressed by the following
equation (Long et al., 2016),

C x, t( ) � C0
v������

4πDLt
√ exp

x − vt( )2
4DLt

( ), (1)

where C (x,t) is the concentration of pollutants at the moment along
the x line t, mg/L; C0 is the concentration of pollution source, mg/L;
C0 = M/Q; M is the total amount of pollutants released
instantaneously, g; v is the average flow velocity of the river cross
section, m/s, v = Q/A; Q is the river flow, m3/s; A is the cross-
sectional area of the river, m2;DL is the dispersion coefficient, m

2/s; x
is the distance from the drop point, m.

From Eq. 1, it can be seen that the pollutant concentration is
normally distributed according to the normal distribution
characteristics, when the pollutant concentration x � vt takes the
maximum value, for the channel with low flow rate, the pollutant
concentration transfer distance is:

D � 60vT, (2)
where D is the distance transferred for the pollutant concentration,
m; v is the average flow rate of the section, m/s; and T is the
propagation time, s.

According to the characteristics of the normal distribution, the
dispersion width is defined asmσ (m is a constant, σ is the standard
deviation). The basic idea of determining the dispersion coefficient
according to the known tracer method measures the dispersion
coefficient in terms of the rate of change of the water mass of the
tracer (Najafzadeh et al., 2021).

DL � 1
2
∂σ2

∂t
, (3)

Eq. 3 should be integrated to obtain the longitudinal tensile
speed of pollutants,

v � mσ

t
� a

�
2

√
DL

0.5t−0.5, (4)

where a = m/2.

Integrate Eq. 4 to obtain the longitudinal distance of the
pollutant dispersion,

W � ∫T

o
vdt � 2a

�
2

√
DL

0.5T0.5, (5)

Long (2017) used experimental data obtained from a physical
model to fit the longitudinal distance of pollutant dispersion to
obtain the empirical equation:

W � 12 + ln
M

10
( )[ ] ����

2DL

√
T0.455, (6)

DL � m × 0.011
v2B2

h
����
ghJ

√ , (7)

whereW indicates the distance of the pollutant dispersion, m;M and
DL have the same meaning as above; m usually takes 1; B is the
average width and h is the average water depth of the channel; J is a
hydraulic gradient; v is the average flow rate of the channel, v =Q/A,
m3/s; T is the time of propagation of the contaminant, s; g is the
acceleration of gravity, m/s2.

From Eqs 2, 6, there is a relationship between the diffusion of
pollution and the flow rate in the channel. Because the diffusion process
of pollutants conforms to the normal distribution, with the diffusion of
pollutants, the more downstream, the longer the bandwidth will be, but
the lower the peak value will be (Figure 1). Assuming that the cross
section has not changed and its flow andwater levelmonitoring data are
accurate, the three variables and the cross section flow velocity equation
can be constructed by the change of pollutant concentration and
diffusion distance in different downstream cross sections, combined
with the actual measured data of the accident section. Finally, the source
term of the pollutant (location, time, and concentration) is optimally
solved by the optimization model to obtain the final solution.

2.2 The construction of optimization model

Using the pollutant dispersion quantification method, the
dispersion process of pollutants carried out in the water column

FIGURE 1
Distribution patterns of pollutant concentration at different
monitoring cross-sections.
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is generalized, and the inverse solution of pollutant dispersion using
the method of hydrodynamics, the linear correlation between the
calculated pollutant concentration c and the observed pollutant
concentration C with a correlation coefficient r = 1. The
expression of the correlation coefficients,

r �
∑n
i�1

Ci − �C( ) ci − �c( )����������∑n
i�1

Ci − �C( )2√ ���������∑n
i�1

ci − �c( )2
√ (8)

where ‾C and ‾c indicate the arithmetic mean of the observed
concentration C and the retrospective concentration c, respectively;
n is the value of the observed concentration sequences.

The objective of the optimization model is to find the optimal
solution. Although the use of hydraulic transition process can
achieve decoupling between the emission location, emission time
and emission intensity of the pollutant source, and a series of
pollutant emission locations, emission times and emission
intensities can be calculated, an optimization algorithm is
introduced to find the optimal combination.

Based on the observed concentration sequence Ci, the expression
for ci can be obtained assuming the calculated optimal discharge
location Xi and discharge time Ti, and the objective function is
constructed as shown in Eq. 12, when and only when Xi = xi and Ti =
ti, the correlation coefficient r = 1, at which point the objective
function reaches the optimal state.

min 1 − r( ), (9)

2.3 The model construction process

Based on the quantitative positive description of pollutant diffusion,
this paper describes the diffusion process of pollutants in the positive
direction, and through the analysis of the flow field of the canal, the
source term of pollution source is reversed by coupled with the BAS
algorithm, which is an optimization calculation that simulates the
process of longhorn beetle searching for food. The traditional BAS
optimization algorithm adopts the method of fixed step size for
optimization calculation, but in the process of traceability, if a fixed
step length is used for calculation, it is easy to occur the situation of local
optimal solution, which is not conducive to global optimization. In this
paper, the BAS algorithm is improved and amethod of variable step size
is used for optimization calculation to prevent the occurrence of local
optimization. The specific steps were as follows:

Step 1:Obtain the average flow velocity of the river section through
monitoring sites.

Step 2: Through the observation information of the monitoring
section of the canal, the equation is constructed according to
tequations (2) and (6).

Step 3: Build a combination of pollution source items (ci, xi, ti).

Step 4: Determine the objective function of the optimized model
(Eqs. 8, 9).

Step 5: αl indicates the left whisker position, αr indicates the right
whisker position, o represents the centroid, and d0 is denoted the
distance between the two whiskers. Assuming that the orientation of
the ox is arbitrary, then the left/right whiskers of the ox are also
arbitrary, normalizing the vector,

s � rands m, s( )
‖ rands m, s( ) ‖ (10)

where rands (m,s) is the one-dimensional random vector related to
the pointing of the longhorn whisker, and m represents the
dimension, that is, the number of unknown numbers of the
objective function.

Step 6: After H iterations, the position of the longhorn beetle
whiskers can be given by the vector s.

al � oH + 1
2
dHl

ar � oH + 1
2
dHl

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (11)

where oH represents the position of the iteration H subcenter of
mass; and dH represents the distance between the two whiskers of
iteration H.

Step 7: Update the next moment position coordinates of the cattle,

aH � aH−1 + bssign f al( ) − f ar( )[ ]
b � cd0

(12)

FIGURE 2
Distribution patterns of pollutant concentrations at different
monitoring cross-sections.

Frontiers in Environmental Science frontiersin.org04

Lin et al. 10.3389/fenvs.2023.1134233

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1134233


where b is the step size; c is a constant; f (αl) is the fitness value of αl, f (αr)
is the fitness value of αr; sign is a symbolic function. f (αl)- f (αr) if
positive, indicating that the longhorn ismoving to the left; Conversely, it
means that the longhorn beetle ismoving to the right. For each iteration,
the search distance and step size vary as follows,

dH � αdH−1 + d0

bH � βbH−1
(13)

where α and β represent the update coefficient of the search distance
and the change coefficient of the step size, respectively.

Step 8: Substitute the aH obtained in step 7 into the objective
function until the optimal solution of the objective function is found
or the maximum number of iterations is reached and the iterative
calculation is completed.

The flow of the calculation is shown in Figure 2.

3 Research cases and discussion

The simulation case assumes the following: the river has a
regular rectangular cross-sectional shape with no tributary
confluence. The roughness of the river channel was 0.025, the
bottom width is 20 m, the water depth is 6 m, the slope drop is
0.0028%, and the longitudinal dispersion coefficient of the river
channel was 2.0 m2/s. Assume that 1,000 kg of pollutants are
dropped at point A in the middle of 12:00 noon, and the
pollutant observation sequence is observed at point B, 5 km
downstream from point A, as shown in Figure 3. There will be a
water quality testing point every 1 km downstream of point B. The
water quality testing point will be monitored every 30 min.

3.1 Traceability calculations

According to the average flow velocity of the monitored river
channel of about 0.35 m/s, the default pollutant in the process of

diffusion of the river channel flow pattern is stable, the flow velocity
does not change, the starting time of the calculation from 10: 55,
extract the monitoring data of all downstream observation sections,
and obtain the retrospective observation series (M0,M1,M2. . . . . . .,
Mn), (x0, x1, x2. . . . . . . , xn), (t0, t1, t2, . . . . . . . , tn), and a 10%
observation error was added to the calculated results to account for
instrumental monitoring errors. The source term series was solved
iteratively using the BAS optimization algorithm to find its optimal
solution. The number of iterations was chosen to be 5000, and the
iteration curves for the three parameters are shown in Figure 4.

As it can be seen from Figure 4, the pollutant drop quality, drop
time and drop location all tend to stabilize after 1500 iterations and
stabilize around the true value. For the first 1500 iterations of the
calculation, all three source terms produced huge fluctuations due to
instability in the calculation of the algorithm during initialization,
and these fluctuations were not very helpful for the inversion results.
To further prove the reliability of the retrospective calculation
results, the results of the first 1500 iterations were excluded and
the results of the other 3500 calculations were analyzed, and the
analysis results are shown in Table 1.

As can be seen from Table 1, in the process of traceability
calculation the overall calculation accuracy is relatively high.
Although there is a significant error in calculating the mass M of
pollutants, the mean square error is only 2.39%, and the calculation
error for the pollutant placement position x is the smallest, with a
mean square error of only 1.16%.

As a comparison, DE-MCMC (Shi et al., 2023) and GA method
were applied to the traceability calculation of the same scenario, and
the calculation results are shown in Table 2 and Table 3.

From Table 2, it can be seen that the traceability method
proposed has higher accuracy than the DE-MCMC method in
terms of pollutant quality and placement time, and the difference
between the results calculated by the DP-BAS and DE-MCMC
method is relatively small in terms of pollutant location.

FIGURE 3
Observed concentration changed at section B.

FIGURE 4
Retrospective calculation of iterative curves.
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As can be seen from Tables 1–3, the inversion deviation of both the
mean and median values of the pollutant source terms using the GA
method is greater than that of theDP-BASmethod, and theGAmethod
has the worst effect on the inversion of the pollutant quality, with the
mean square error of 4.76%, while the mean square error of DP-BAS is
2.39%. Through the three inversion methods, it can be found that the
pollutant quality is the worst source term in the inversion processes,
with mean square errors of 2.39%, 2.40%, and 4.76%, respectively. This
may be due to the fact that in the process of pollutant dispersion, the
empirical equations experimentally fitted to the longitudinal dispersion
process of pollutants are used in the physical model, so the errors
accumulate in the traceability process, resulting in a larger deviation of
the pollutant emission quantities compared with the other inversion
terms. In order to further compare the above three methods, the
maximum, minimum and average errors of the three methods were
analyzed, the results of the analysis are shown in Table 4.

From Table 4 for the quality of pollutant release, the traceability
results of DE-MCMC are consistent with the DP-BAS method in this
paper. However, for the location and time of pollutant discharge, the

results calculated by DP-BAS are better than those obtained using DE-
MCMC method. In addition, the DP-BAS method outperforms the
traditional GA algorithm in the inversion results of the three source
terms of pollutants. Through the comparison of three methods, the
inversion results of pollutant emission quality are relatively not well, the
average errors of DE-MCMC, GA and DP-BAS are 2.39, 2.76, and 2.13,
respectively. Second, the difference between the maximum and
minimum errors calculated by DE-MCMC in the three source terms
is 3.77, 2.15, and 2.75, respectively. While the difference between the
maximum and minimum errors calculated by GA in the three source
terms is 3.03, 2.57, and 3.14. The above difference are greater than the
results of the proposed theDP-BASmethod. In the process of traceability
calculation, DP-BAS method can ensure the stability of model
calculation and avoid excessive deviation between the simulation and
the actual value. Besides, for the DE-MCMC and GA methods, a large
number of scholars have confirmed that the twomethods have relatively
reliable calculation accuracy in traceability, but the traceability method
proposed based on velocity dynamic programming also has certain
reliability and stability in the identification of pollutant source terms.

TABLE 1 DP-BAS traceability calculation statistics results.

Parameters Observed values Average value Mean square error/% Median value Mean square error/%

M 1,000 kg 1,024.92 kg 2.39 1,011.65 kg 1.16

x 5,000 m 5,053.54 m 1.16 5,026.06 m 0.52

t 7,500 s 7,410.18 s 1.19 7,426.10 s 0.58

TABLE 2 Statistical results of the DE-MCMC methods.

Parameters Observed values Average value Mean square error/% Median value Mean square error/%

M 1,000 kg 1,025.49 kg 2.40 1,012.65 kg 1.10

x 5,000 m 5,062.54 m 1.25 5,032.06 m 0.64

t 7,500 s 7,321.54 s 2.37 7,624.86 s 1.66

TABLE 3 The GA statistical results.

Parameters Observed values Average value Mean square error/% Median value Mean square error/%

M 1,000 kg 1,047.56 kg 4.76 1,035.46 kg 3.55

x 5,000 m 5,128.36 m 2.57 5,087.29 m 1.75

t 7,500 s 7,291.10 s 2.78 7,304.32 s 2.61

TABLE 4 The error analysis of DE-MCMC, GA and DP-BAS method.

Error Pollutant quality Pollutant location Pollutant time

DE-MCMC GA DP-BAS DE-MCMC GA DP-BAS DE-MCMC GA DP-BAS

Max 4.29 4.37 3.61 2.21 2.75 1.81 2.75 4.12 2.87

Min 0.52 1.34 0.89 0.06 1.18 0.00 0.00 0.98 0.00

Average 2.39 2.76 2.13 1.15 1.72 1.07 1.25 2.11 1.49
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There is no need to enter concentration data in the hydrodynamic-
water quality model for the difference inverse solution of the St. Venant
equation system—convection equation because this study uses the
pollutant dispersion quantification method instead of the coupled
hydrodynamic-water quality model to calculate the diffusion process
of pollutants. Instead optimization algorithms are used to quantify the
pollutant instead, the calculation time is shown in Table 5.

As observed in Table 5, the model warm-up period (calculation
result oscillation) and themodel calculation periodmake up the entirety
of the traceability calculation. The table shows that the model warm-up
and calculation times for DP-BAS are less than those for DE-MCMC
and GA. This is because DE-MCMC and GA also perform the
quadratic differential inverse solution of St. Venant and convective
equations. Model warm-up times for GA and DP-BAS algorithms are
comparable, while the DE-MCMC technique requires additional error
sampling during the inverse solution, which increases warm-up times
significantly. Additionally, the method calls for an error sampling
calculation, which while somewhat correcting the problem also
significantly slows down computation performance. In terms of
model calculation time, DP-BAS and DE-MCMC are comparable;
DP-BAS benefits from variable step size, so the calculation speed
and accuracy are guaranteed in the calculation process; DE-MCMC
has already performed the sampling error calculation in the preheat
calculation, so the calculation speed and accuracy are also guaranteed in
the model calculation; however, GA is constrained by its fixed step size,
so the calculation speed and accuracy are only guaranteed in the model
calculation. This will considerably lessen the impact of model
computation since the local optimum solution will remain emerging
while obtaining the global optimal solution, which will then be
discovered in the local optimal solution.

Overall, both in terms of model computing speed and actuarial
correctness, the DP-BAS in this study offers distinct benefits. In contrast
to the conventional optimization algorithm, this paper enhances the
optimization algorithm by converting the conventional fixed-step
calculation into a variable-step calculation, which simultaneously
increases the computational accuracy and speed of the model. The
traditional algorithm uses implicit difference to quadratic difference in
the St. Venant system of equations-convective equations for forward
simulation and backward trace calculation of pollutants, whereas the
quantized diffusion equation used in this paper greatly improves the
calculation rate.

4 Conclusion

In this paper, the quantitative equation of pollutant diffusion is
proposed based on physical model experiments, and the temporal

and retrograde traceability of sudden water pollution in river and
canal water quality is investigated through the pollutant traceability
model of coupled DP-BAS algorithm. The following main
conclusions were obtained:

(1) The convective diffusion equation is simplified into a quantitative
formula, and a traceability method with the average flow velocity of
the river and canal as the main independent variable is proposed
through parameter generalization, which is simple and practical.

(2) The DP-BAS method decouples the pollutant diffusion
parameters and solves the pollutant concentration, location
and time separately, which reduces the solution dimension of
traceability and avoids the traditional model falling into the
local optimal solution. Thus, the efficient identification of
sudden water pollution is possible.

(3) Through this case study, the traceability outcomes and
calculation rate of the model are improved. The DE-MCMC
and GA techniques were compared and validated, and the
results showed that the traceability model has excellent
accuracy and dependability.

(4) Although the DP-BAS method reduces the difficulty of the
traditional traceability model, in future research, more in-depth
studies on the quality of pollutant traceability through more case
studies and descriptions of the generalizability of the model are
needed.
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